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We construct a coarse-grained model of parallel actin bundles crosslinked by compact globular bundling
proteins, such as fascin and espin, necessary components of filopodial and mechanosensory bundles. Consistent
with structural observations of bundles, we find that the optimal geometry for crosslinking is overtwisted,
requiring a coherent structural change of the helical geometry of the filaments. We study the linker-dependent
thermodynamic transition of bundled actin filaments from their native state to the overtwisted state and map
out the “twist-state” phase diagram in terms of the availability as well as the flexibility of crosslinker proteins.
We predict that the transition from the uncrosslinked to fully crosslinked state is highly sensitive to linker
flexibility: flexible crosslinking smoothly distorts the twist state of bundled filaments, while rigidly crosslinked
bundles undergo a phase transition, rapidly overtwisting filaments over a narrow range of free crosslinker
concentrations. Additionally, we predict a rich spectrum of intermediate structures, composed of alternating
domains of sparsely bound (untwisted) and strongly bound (overtwisted) filaments. This model reveals that
subtle differences in crosslinking agents themselves modify not only the detailed structure of parallel actin
bundles, but also the thermodynamic pathway by which they form.
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I. INTRODUCTION

Parallel actin bundles are highly organized structures cru-
cial to diverse range of cellular functions, from mechanosen-
sory specializations such as microvilli, stereocilia, and neu-
rosensory bristles to the highly dynamic filopodial
protrusions of cell cytoskeletons [1,2]. These assemblies
share a common structural organization: axially aligned actin
filaments of uniform polarity, densely assembled into an or-
dered hexagonal array and interspersed with a crosslinking
array of actin bundling proteins. Multiple bundling proteins
have been identified from parallel actin bundles in vivo, al-
though the type and composition of bundling proteins vary
significantly between different cell types [3]. Primary ex-
amples of actin bundling proteins, fascin and espin, are
known to be integral components of filapodia [4,5] and ste-
reocilia bundles [6,7], respectively. It is believed that the
array of multiple bundling proteins affords cells the ability to
form actin bundles with variable properties, such as size
[8,9] and rigidity [10-12], although little is understood about
how distinct features of bundling proteins specifically
modify the assembly of actin filaments into bundles.

Structural studies of in vitro bundles [9,13-18] suggest
that a key aspect of the formation of parallel bundles is the
ability of crosslinking proteins to modify the twist of actin
filaments. In bundles, the helical symmetry of constituent
filaments is modified from its native —13/6 geometry: a left-
handed helix rotating through six turns per 13-monomer re-
peat. This native geometry is poorly suited for the hexagonal
symmetry of the array, which favors coregistry of
crosslinked monomers on neighbor filaments [15]. Electron-
diffraction studies of fascin-crosslinked bundles reveal that
filaments are overtwisted to a —28/ 13 symmetry, correspond-
ing to a change of roughly —0.01 monomer/turn, a distortion
which is consistent with more recent observations of espin-
mediated bundles [17,18]. Despite the apparently similar
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structural change induced by crosslinking, fascin- and espin-
mediated bundles exhibit a dramatically different sensitivity
to concentration of available crosslinkers in in vitro systems.
Based on small-angle x-ray studies, Claessens et al. found
that overtwist of filaments in fascin-mediated bundles is sen-
sitive to the concentration of available crosslinker, with he-
lical filament symmetry varying continuously from native to
fully overtwisted symmetry [9]. In comparison, a recent
study of espin-crosslinked bundles found that above a critical
concentration of crosslinker, bundles lock into the fully over-
twisted state, with little or no further sensitivity to espin
concentration [18]. Evidently these two compact globular
bundling proteins, fascin and espin, are capable of forming
bundles of the apparently same overtwisted structure, al-
though in each case the fully bundled state is approached via
a different pathway of states at intermediate crosslinker con-
centrations.

This rich phenomenology raises a number of questions
about the role of filament twist in the assembly mechanism
of protein-mediated bundles. What is the mechanical cost
associated with distorting bundled filaments from their native
geometry, and how does this cost affect the bundling transi-
tion? What is the role of the torsional rigidity of the
crosslinking bonds themselves? Most puzzling, what is the
nature of the states of intermediate twist observed for fascin-
mediated bundles? To date, previous theoretical studies of
the bundling of filaments by crosslinkers have employed a
“primitive model” description to probe the relative thermo-
dynamic stability of distinct filament organizations: dis-
persed solutions, close-packed bundles and networklike gels
[19,20]. These studies treat filaments as rigid, homogeneous,
and rodlike molecules and show that bundling occurs generi-
cally at sufficiently high concentration of filaments and
crosslinking agents. The specific restructuring of the micro-
scopic helical symmetry of filaments in crosslinked bundles
and its influence on the crosslinking process itself have, so
far, not been considered theoretically.
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In this paper, we analyze a quantitative model that de-
scribes the complex interplay between the optimal geometry
required by crosslinking in actin in hexagonal bundles and
the cost of distorting filaments from their ideal helical sym-
metry. In particular, we focus on crosslinking by compact
globular bundling proteins—such as fascin, espin, or
fimbrin—whose limited size strongly prefers cobound mono-
mers on neighbor filaments to maintain close contact. Based
on a lattice model proposed in Ref. [18], we identify a
unique crosslinked-bundle ground state with —28/13 symme-
try that allows for an optimal number of “ideally” oriented
crosslinking bonds. We study the thermodynamic transition
from untwisted unbound filaments to fully bound overtwisted
bundles driven by increasing the concentration, or chemical
potential, of available crosslinkers. A coarse-grained model
of parallel bundles maps the linker-induced overtwist of actin
filaments onto a commensurate-incommensurate (CI) phase
transition, described by an effective Frenkel-Kontorawa
model. In strongly crosslinked bundles, the ideal geometry of
crosslinks locks bundle filaments into a class of commensu-
rate overtwisted geometries, while the intrinsic torsional
elasticity drives an untwisting of the commensurate bundles
to native incommensurate helical geometry of actin fila-
ments.

We find that this transition takes place by a surprisingly
complex coherent restructuring of filaments in the bundle, in
which bundles possess localized bands, or domains, of native
(—=13/6) and overtwisted (—28/13) filaments. In the language
of the commensurate-incommensurate phase transition the
localized domains of native filament geometry take the form
of discommensurations: rapid coherent jumps in the torsional
state of filaments along the bundle. The overtwisting of
bundled filaments then proceeds as the fraction of over-
twisted bundles increases continuously from zero, in the ab-
sence of crosslinkers, to 1 in excess of available crosslinkers.
Owing to the fundamental role of elastic distortions in this
model, the bundling transition is found to be extremely sen-
sitive to the flexibility of the crosslinking bounds. For suffi-
ciently rigid crosslinkers, bundles pass to the overtwisted
state via a second-order thermodynamic transition, while for
bundles held together by relatively flexible linkers, a smooth
crossover to a maximum state of twist is predicted. The
threshold for rigid and flexible crosslinker binding occurs at
a critical value of linker stiffness, k.~ 500 pN/nm. The pri-
mary conclusion of this study is that differences in the sen-
sitivity of the bundling transition to crosslinker concentration
observed from fascin- and espin-mediated bundles derive
from distinctions of the flexibility of crosslinker to actin
bonds. Hence, we have identified the flexibility of the
crosslinking bonds provided by bundling proteins as a key
parameter controlling not only the structure, but also the pro-
cess by which parallel actin bundles are formed in different
cell types. Importantly, it suggests that different cell types
may utilize different bundling proteins, in part, to modulate
the sensitivity of actin bundling to changes in concentration
of crosslinkers. Sufficiently rigid proteins give rise to a co-
operative switchlike response changes in linker concentra-
tion, while flexible proteins allow for a continuous tunable
response of bundling to increases in linker availability.

The remainder of this paper is organized as follows. In
Sec. II, we present our lattice model proposed in Ref. [18]. In
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FIG. 1. (Color online) A schematic picture of two actin filaments
crosslinked by a bundling proteins (purple) and its lattice model
representation in a box, where G-actin monomers are described by
a set of vectors, §,-!(. The top view of layer € is also shown with the
angular deviation &¢; ; of the monomer from the lattice direction
D,
Sec. II1, the ideal geometry of a crosslinked bundle is briefly
described. In Sec. IV, we discuss the coarse-grained theory of
twist-state transition from unbound filaments to fully bound
bundles. The computed thermodynamic twist-state phase dia-
gram and the predicted intermediate twist states are demon-
strated in Secs. V and VI, respectively. We conclude with
discussion in Sec. VII. Finally, several appendixes are in-
cluded to provide a detailed presentation of model calcula-
tions.

II. LATTICE MODEL OF CROSSLINKING IN PARALLEL
ACTIN BUNDLES

We model a bundle as a parallel hexagonally ordered ar-
ray of actin filaments with fixed nearest-neighbor spacing
D=17 nm, consistent with structural observations [9,17].
The positions of the monomeric G-actin are described by a

set of vectors, aéw, that point from the center line of the ith
actin filament of the lattice to the center of the €th monomer
along the filament, where a==3.75 nm is roughly the diam-
eter of G-actin (see Fig. 1). In the native twist state, these
vectors precess around the centerline of filaments at a con-
stant angular rate of wy=127/13 per monomer (i.e., six ro-
tations per 13-monomer repeat) [21]. We describe torsional
distortions with the following elastic energy [22]:

S5 (A -, m
€

Etwist =

where C is the torsional elastic modulus of actin filaments
[23] and A, (= ¢h; 11— b; ¢ is the rotation angle between suc-
cessive monomers along the ith filament, with ¢;, as the

angle S ;.¢ of the £th monomer direction in the plane of lattice
order.

In our model, crosslinking between neighboring filaments
in the bundle occurs between pairs of monomers at the same
vertical layer € shown schematically in Fig. 1. Because
globular bundling proteins such as espin and fascin have
compact sizes, ~5-7 nm in diameter [6,24], in comparison
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with the lattice between filaments in the bundle,
~15-20 nm, crosslinking occurs preferentially when mono-
mers on adjacent filaments are minimally separated from one
another. Yet, due to incommensurate helical symmetry of ac-
tin filaments, bundles are forced to accommodate crosslinks
with some degree of “misfit” between crosslinked mono-
mers. We describe this effect with the following simple elas-
tic model for enthalpy of crosslinking between monomers,

Epinding= 20 Nijut| — €+ %](54%2,( + 54’_,2-,«)} , (2)
€.(1j)
where the sum is over neighbor filaments, (ij). In this for-
mula, n;; ¢ is 1 if the bond between i and j at € is occupied,
and zero if empty; €, describes the energy gain of a perfectly
aligned crosslinking bond between two monomers; and the
final term in the parentheses describes the energetic cost of
distorting the bond from its ideal geometry. At a molecular
level, binding affinity reflects combination of intermolecular
forces—electrostatic forces, hydrophobic interactions, and
hydrogen bonding—that stabilize the bundling-protein/G-
actin complex, although the detailed structure and energetics
of these binding domains for fascin and espin have not yet
been resolved [3]. Here, 8¢, , is the angular deviation be-

tween §,-’€ and D;;, the lattice vector separating i and j. Fi-
nally, U is a parameter describing the “elastic cost” of dis-
torting the aligned bond between monomers. For example, if
this cost could be described purely in terms of a simple linear
spring energy, k,(A;; (—Ap)?/2, which penalizes changes in
length, A;; ¢, of the monomer-monomer separation from a
zero stretch length, Ay=D-2a, the equilibrium size of
crosslinks, the effective elastic parameter in Eq. (2) becomes
U= Zkbaz.

The bundling of actin is sensitive to the concentration of
free crosslinkers in solution. We therefore study the thermo-
dynamics of crosslinking at a fixed chemical potential u.
This accounts for the equilibrium free-energy cost of remov-
ing a free crosslinking protein from solution and adding it to
a bundle, and therefore u is related to the free crosslinker
concentration by ¢, % e*sT.

III. IDEAL CROSSLINKING GEOMETRY IN BUNDLES

To describe the overtwist transition of parallel bundles, it
is necessary to understand the optimal geometry of highly
crosslinked bundles, as well as the low-energy pathways to
this state from the native actin geometry. First, we briefly
demonstrate the structure of optimally packed actin bundles
in terms of geometric considerations (see Appendix A for
full details). The model described above is highly frustrated,
a generic feature of hexagonally organized filament assem-
blies, well studied in the context of counterion-mediated
biopolymer bundles [16,25-27] as well as helically ordered
phases of DNA [28-30]. Here, we consider the configura-
tions for which crosslinking bonds are perfectly aligned to
the lattice directions (that is, d¢; (=0 for all n;; ,=1) and for
which configurations the number of perfectly oriented bonds
is maximal.

Perfectly aligned configurations require a subset of the
actin monomers to align with a sixfold lattice direction. We
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FIG. 2. (Color online) The unit cell of maximally crosslinked-
bundle ground state in the plane of hexagonal order. The repeat unit
contains a single-filament geometry translated and rotated vertically
to obtain the geometry of the four filaments. Numbers represent the
vertical layers of co-oriented monomers with the lattice direction,
and gray bars represent crosslinkers. On the right, the 28-monomer
vertical repeat geometry of two neighbor filaments, highlighting
definition of ®, the coherent rotation of filaments from the ideal
crosslinking geometry.

construct structures which have alternating sequences of sec-
tions of —6m/n symmetry—each successive monomer is ro-
tated by —27n/(6m). Here, n and m are integers so that mth
monomer lines up with lattice direction of 27n/6, allowing
for a perfectly aligned crosslinking bond to form. It is not
difficult to show that among these commensurate helical ge-
ometries the —24/11 and —30/14 structures are particularly
close the native geometry of actin, differing only by 0.69%
and 1.1%, respectively, in terms of rotation angle per mono-
mer. This proximity to the native geometries confers upon
them an especially low rwist cost among all possible ideal
crosslinking states. To determine the bundle structure with
the maximum number of bonds, we therefore considered pe-
riodic states with a composite symmetry, possessing N, num-
bers of four-monomer sections with —24/11 symmetry and
N5 numbers of five-monomer sections with —30/14 symme-
try. To construct crosslinks, it is not sufficient to consider
aligned monomers to lattice directions from a single fila-
ment, as crosslinking requires the co-orientation of mono-
mers on neighbor filaments at the same vertical layer along
the filaments. Hence, it is necessary to consider the three-
dimensional geometry of possible multifilament structures
arrayed on the hexagonal lattice.

Based on an extensive numerical search of composite
—24/11 and -30/14 structures up to 102 monomers per
repeat length, we find a maximum crosslinking density
for Ny=2 and Ns=4, which has six crosslinks along
every 28-monomer length of actin filament (see Fig. 2).
Notice that this composite structure has —4N,(11/24)
—5N5(14/30)=-13 net turns per 28-monomer repeat. The
overall symmetry and bond/monomer stoichometry of this
ideal geometry are in perfect agreement with careful struc-
tural studies of overtwist actin bundles, formed by both espin
and fascin crosslinkers, which also have an overtwisted
—28/13 structure and crosslinks spaced at four- and five-
monomer intervals along filaments [15]. Although it has non-
hexagonal symmetry, the composite filament-bond structure
of this perfect packing geometry can be repeated to construct
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a parallel bundle of arbitrary size. This unique crosslinker
geometry serves as the overtwist ground state of our model.

IV. UNTWISTING OVERTWISTED BUNDLES:
COARSE-GRAINED THEORY

Having identified the limiting geometry of unbound fila-
ments (13-fold helical symmetry) and fully bound filaments
(28-fold helical symmetry), we consider the thermodynamic
progression of filament twist as crosslinker density in
bundles increases. Although the detailed structure of the
overtwisted —28/13 structure is somewhat complex, the un-
derlying screw symmetry of actin filaments and the in-plane
periodic order imbue this state with a rather simple symme-
try under coherent rotations of each filament by 2/28
around its axis. A 27/28 rotation of each filament in the
ideal crosslinking configuration in Fig. 2 followed by a rear-
rangement of monomers and bonds within the unit cell re-
covers an equivalently ideal geometry, with six perfectly
aligned crosslinks per 28 monomers (see Appendix B).
Hence, the ultimate function of the complex pattern of
crosslinking bonds is to lock the bundle into a —28/13 twist
symmetry and constrain the azimuthal orientation of this
structure to within one of 28-fold bonding free-energy
minima. Competing with this tendency is the intrinsic tor-
sional elastic energy of filaments which favors unwinding the
overtwisted state to the —13/6 symmetry, making it costly
for the bundle to maintain a 28-fold commensurate bond
geometry along its length.

To model the free-energy gain of crosslinking, we con-
struct actin bundles in the fully overtwisted state with a net
degree of twist, Qy=2m(13/28), and consider the low-energy
distortions that untwist the 28-fold commensurate geometry
of bundles as crosslinkers unbind from bundles. The analysis
is based on a coarse graining of the model described by Eqs.
(1) and (2). In particular, we decompose the monomer orien-
tations in terms of two angular deviations from homog-

enously overtwisted filaments: (Zi,g, which describes short-
length-scale monomer relaxations within a 28-monomer
repeat length, and @, describing the slow coherent rotations
of filaments on much longer length scales. In terms of the
angle a monomer direction makes in the plane of hexagonal
order, we define

b=t + D+ by, (3)

where we restrict the length-scale reorganization to sum to
zero rotation within a 28-monomer repeat length, Eﬁg;?%,e
=0, so that the net rotation of filaments away from the over-
twisted state is ®,. As a description of the long-length-scale
structure of bundles, ®, serves as the order parameter, fully
describing the underlying state of our model: overtwisted
states that commensurate with the ideal crosslinking geom-
etry of the bundle correspond to ®,=27m/28 for any integer
m. Due to the separation of length scales between the defor-

mations described by @, and {[)i’(, the elastic twist energy
approximately decouples these degrees of freedom,
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where dwy=wy—Qy=2m/364 is the overtwist distortion per
monomer from the native to the homogeneously twisted
—28/13 state, and we have implicitly assumed that A®, is
approximately constant over the length of a 28-monomer re-
peat.

The final step of our coarse-graining minimizes the twist
and binding free energy, Eqs. (4) and (2), over the distribu-
tions of bonds, n;; ¢, and <7>,<,€, the short-length-scale angular
reorganizations for a given value of ®. We perform this
minimization by analyzing a 28-monomer repeat of the ideal
bonding configuration in Fig. 2, requiring a net rotation of
this structure by @, and finding the subset of the six perfectly
aligned crosslinks for which net free energy of binding, in-
cluding the cost of elastic distortion, is minimal (see Appen-
dix C). The result is the binding free energy per monomer,
V(®), that depends only on mean value of ® within a 28-
monomer repeat (the coarse-grained unit of our model),

27Tm)2:|
—_— /28,
28

(5)

where n;, is the number of crosslinked monomers per
28-monomer repeat, which varies from n,=0 (unbound) to
n,=6 (fully bound) and the minimization of m reflects
rotational symmetry of the binding free energy,
V(®+2m/28)=V(P). Here, p.=-€,+ Su,,, where oy, rep-
resents the excess torsional elastic energy per bond needed to
distort the homogeneously overtwisted filament into a state
where the n;, bonds are perfectly aligned with bond direc-
tions. This torsional cost represents an offset to the binding
free energy of the state with n, monomers proportional to C
that increases with number of bonds: Juy=0, ou;=0,
Our=0, duz=0.000 58C, Su4=0.000 87C, Sus=0.001 91C,
and Sug=0.002 61C. The term proportional to ®? represents
the resistance of the structure to rotations from ideal
crosslinking geometry,

ny Knh
V(@) =min,, | = 27 [p = pelnp) ]+ =7 P+

n, = Tn”)z (6)

This elastic response of the crosslinking array to coherent
rotation is straightforward to understand in the small- and
large-U limits. The rotation of filaments from the ideal bond-
ing state requires either the bond orientation—as param-
etrized by d¢; ¢ for crosslinked monomers—or the torsional
state of the filament within the 28-monomer repeat to adjust.
When U/C<1 and linkers are more flexible than the fila-
ments, this torsional load is carried by the flexibility of the n,
crosslinks themselves; hence, K, <n,U. For very rigid link-
ers, U/C> 1, bound monomers are pinned to the lattice di-
rections and the rotation of the filament section is accom-
plished instead by a twist distortion of the monomer
segments neighboring bonds, so that KnbOCan.
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FIG. 3. (Color online) The free-energy gain per monomer of
crosslinking as a function of ®, the angle of coherent rotation of
filaments in the bundle for different values of the linker chemical
potential [Eq. (5)]. Highlighted for the rigid linker case, U=3C, are
regions of the rotational potential where a 28-monomer repeat
maintains zero, two, four, and six bonds. The maximal number of
bonds occurs for commensurate geometries with ®=27mm/28.

As shown for flexible and stiff crosslinkers in Fig. 3,
V(®) functions as the “rotational potential” describing the
free-energy preference for the filament structure to lock in to
a set of preferred torsional configurations due the favorable
number and arrangement of bonds in overtwisted bundles.
By definition the coherent rotation varies slowly on the scale
of monomers. We take the continuum limit of our model,
®(¢)=d,, and write the final form of the free energy of a
bundle with n; filaments as

L 2
Fpunar (0] =1, f df{%(%— 6w0) + v<<1><€>)}
0

(7

Written as such, the coarse-grained free energy highlights the
essential frustration of parallel actin bundles. The first term
in the integrand is minimized when d®/d€¢=0dw, and the
filaments in the bundle revert to the native 13-fold helical
geometry. Competing with this is the rotational potential,
which is minimized by a constant value ®=27m/28. The
relative importance of these competing effects is sensitive to
M, which largely dictates the depth of V(®P), but also U and
C which together determine the relative stiffness of filaments
and the pinning of rotational potential.

The effective model for parallel actin bundles [Eq. (7)] is
known in condensed-matter contexts as the Frenkel-
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Kontorowa model, employed in the study of incommensurate
one-dimensional solids [31]. The structure and thermody-
namics of the minimal-energy ground states show a complex
dependence on the degree of incommensurability, dw,, and
relative strength of the potential pinning the solid in the com-
mensurate state (here, the overtwisted —28/13 bundle) to the
elastic energy of the incommensurate state (the native —13/6
symmetry). The free-energy minimizing solutions are de-
scribed by the following differential equation [32]:
Cldd\?
5 ( 10 ) =V(P) - V(0) + e, (8)
where € is a non-negative parameter that specifies the entire
rotational structure, ®(€), along the bundle. Minimizing the
bundle free energy (7) of this class of solutions yields an
equation for €, which corresponds to the mean structure of
the bundle,

28 2/28
Sy = e f dO\V(@) - V(0) +e.  (9)
V2CmJo

Even in the absence of thermal fluctuations, this model has a
complex dependence on the binding free energy. For suffi-
ciently strong pinning potentials, the lowest-energy solution
becomes ®=0 and e=0, indicating that the bundle has
locked into the commensurate phase, here —28/13 over-
twisted structure. Below a critical depth of the pinning po-
tential, solutions with €>0 exist indicating that ®(¢) has an
inhomogeneous solution, which gradually unwinds to the na-
tive state. This corresponds to the incommensurate phase of
the Frenkel-Kontorowa model. As a measure of the average
rate of rotation of filament structure, we define the length £
as the length along which the filament geometry unwinds by
24r/28, from one minimum of V(®) to the next. From Eq. (8)
this length, measured in monomer number, is computed from

the integral
C (2728 AP
2/ VV(P) - V(0) + €

This length is related to the mean rate of filament twist by
2m
Apy=Qy——-L7. 11
(A)=0-—1 (11)

In the following section, we analyze the behavior of this
order parameter, as well as the detailed structure of parallel
bundles in terms of the inhomogeneous solutions for filament
rotation ®(€).

V. OVERTWIST TRANSITION

The overtwist thermodynamics of crosslinked parallel ac-
tin bundles predicted from the coarse-grained model is
shown in Fig. 4, which shows the mean filament twist in
terms of crosslinker chemical potential w and the stiffness of
crosslinking bonds, U. For u=-—¢,, crosslinks are not fa-
vored in the bundle, and hence V(®)=0, indicating no ther-
modynamic preference for twist; hence, in this region
(A d)=wy, the native state of actin geometry. For all values
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FIG. 4. (Color online) The twist-state phase diagram—contours
of (A¢)—in the parameter space of (u+e€,)/C and U/C. The evo-
Iution of the stable twist state from —28/13 (overtwist) to —13/6
(native) state is observed.

of u>—g,, crosslinking is favorable and the incommensurate
geometry of the —28/13 ideal crosslinker favors an over-
twisted actin geometry with (A ) > w,.

The sensitivity of filament twist to u+ €, is dramatically
different for stiff and flexible crosslinking bonds. Shown in
Fig. 5 is the p dependence of filament twist plotted for linker
stiffnesses ranging from more rigid (U>C) to more flexible
(U< C) than effective torsional resistance of two successive
monomers. For rigid linkers, we predict that filament twist
initially increases continuously with increased w near the
onset of crosslinker binding = —¢,, but upon approaching a
critical value of the chemical potential ¢y very rapidly over-
twists to the —28/13 structure. For w> ucy, the filament ge-
ometry locks into (A¢)={), and exhibits no further sensitiv-
ity to the availability of crosslinking proteins.

This singular dependence of (A¢) on u+e€, is the signa-
ture of CI phase transition of Eq. (7), marked by a diver-
gence of the distance over which @ rotates by 2/28,
L~ =In(uer—pm). The extreme sensitivity of bundle structure

U=3C
Qnt
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—~ U =08C

5 Rt
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(1 + €)« = 0.0061C pd
U =04C—
U=03C—
wo Pa— L )
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FIG. 5. (Color online) The mean rate of twist (A¢) per mono-
mer, from w to €}, is plotted as a function of the chemical poten-
tial (u+¢p)/ C for the various values of U/C. The dotted line is for
critical value of (u+e€,)=0.0038C, where the minimum in the
binding free-energy potential abruptly changes from V(0)=0 to
V(0)<0.
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to crosslinker chemical potential near the CI phase transition
derives from the highly cooperative change of symmetry of
low-energy state of rigidly crosslinked bundles mediated by
the elasticity of the filaments and the array of crosslinking
bonds in the bundles. The value of wuc; determined by u at
which €—0 from Eq. (9) is shown in Fig. 5. In the limit of
infinite linker rigidity, uc(U> C)— —¢€,+0.0038C, and this
critical value shifts to larger u as U is decreased. In contrast
to the stiff linker limit, below a critical value of linker stiff-
ness, U,.=0.512C, the overtwist shows no CI transition, and
(A¢) shows a considerably reduced sensitivity to u.

What accounts for the distinction between bundling by
rigid and flexible crosslinkers? In our coarse-grained model,
these differences in thermodynamic behavior ultimately de-
rive from distinct features of rotational free-energy potential
V(®d), describing the sensitivity to the free energy gained by
crosslinking to rotational state of actin filaments in the
bundle. The thermodynamic preference to lock into the
—28/23 structure can be crudely understood in terms of rela-
tive cost overtwisting of the filament to a constant ®=0
state, C(Swy)?/2 per monomer, and free-energy cost of rotat-
ing the ideal filament structure from the commensurate state,
roughly corresponding to the depth of the rotational poten-
tial, AV=V(7/28)-V(0), describing the thermodynamic cost
of the nonideal crosslinking geometry. From Egs. (5) and (6),
the narrowness of the minima of V(®) is determined by K,, .
which increases monotonically with increased linker stiff-
ness. As shown in Fig. 3, rigid linkers only allow favorable
crosslinking for a narrow range of rotations from the com-
mensurate geometry; and, hence, rotating away from ® be-
tween minima necessarily forces filament to release its
crosslinks, AV=~(3/28)(u+€,— Sug). Thus, for sufficiently
large w this penalty outweighs the cost of overtwist, and
rigid crosslinkers always lead to bundles locked into the
commensurate state. For flexible linkers, V(®) is a shallow
function of rotation angle, and all rotation angles up to
®=1/28 allow filament segments to maintain six crosslinks,
albeit somewhat stretched from the ideal geometry. In this
case, AV~ (3/28)U(m/28)?, which is determined entirely by
the elastic cost of stretching linkers as no crosslinks need to
unbind to overcome the free-energy barrier. Thus, suffi-
ciently flexible linkers allow the bundles to accommodate a
maximal number of favorable crosslinking proteins even in
the absence of a dramatically overtwisted structure. There-
fore, we see that (n,) the mean number of crosslinkers per 28
monomer repeat (see Appendix D), shown in Fig. 6 is pre-
dicted to increase to six crosslinks for large u+ €, indepen-
dent of crosslink flexibility.

VI. STATES OF INTERMEDIATE TWIST

Upon crosslinking, a parallel actin bundle undergoes a
complex structural change, from a state of filaments possess-
ing a native helical geometry, to a fully bundled state with an
ultimate geometry that is sensitive to the flexibility of the
crosslinking bonds themselves. The one-dimensional coarse-
grained model of Eq. (7) predicts that a bundle progresses
between these limiting structures via a rich pathway of inter-
mediate states of inhomogeneous filament twist. Shown in
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FIG. 6. (Color online) The mean number of crosslinkers, (n,),
per 28-monomer repeat unit is plotted with contour map according
to the color scale at the top. The solid curve indicates the
commensurate-incommensurate transition, while the vertical lines
at u+¢€,=0, 0.0017C, and 0.0061C denote abrupt transitions in
minimal-energy number of crosslinkers as described by Eq. (5).

Fig. 7 are minimal-energy solutions of Egs. (8) and (9) for
the length-scale coherent rotations of bundles filaments,
(), for U=2C.

Beginning in the commensurate state in excess of avail-
able crosslinkers (u>> uc), the bundle filaments lock into
the ground state of binding free-energy density, ®(€)=0. For
M just below this critical value, a weaker rotational potential
does not hold the filament in the commensurate overtwist
state along the entire filament length. Instead, filaments un-
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FIG. 7. (Color online) The profile of coherent rotation ® with
respect to the £ monomer is plotted at the various values of w+ €.
On the right, the inhomogeneous structure of parallel bundles, com-
posed by alternative domains of sparsely bound native (blue) and
densely bound overtwist (red) symmetries, is shown schematically.

PHYSICAL REVIEW E 82, 051919 (2010)

twist by rotating from one commensurate orientation to the
next, say from 27m/28 to 2mw(m+1)/28, by way of rapid
“jumps” in ®(€). In the language of incommensurate solids,
these angular jumps are known as solitons or discommensu-
rations. In this model a discommensuration spans the cross
section of the bundle, representing a domain of nearly native
filament geometry, d¢/d{=~ dw,. Over a relatively short
span of roughly ~15-20 monomers @ rotates between two
nearby minima in the binding free energy. For rigidly
crosslinked bundles, the mean number of crosslinks in these
domains is significantly reduced from n,=6 per 28 monomer
sections, as crosslinks are predicted to unbind for at the free-
energy maximum of V(®) (see Fig. 3).

The inhomogeneous twist and crosslinking structure of
parallel bundles is shown schematically in Fig. 7. The mini-
mal free-energy bundle configurations are described by peri-
odic solutions for ®(€), in which discommensurations have
an equilibrium spacing £ along the bundle. As this length
becomes very large close to iy, the regions between dis-
commensurations represent sections of overtwisted maxi-
mally crosslinked bundles. Hence, a surprising prediction of
this coarse-grained model is that states of intermediate twist
are constructed of alternating domains of sparsely bound na-
tive filament geometry and strongly bound overtwisted fila-
ment geometry. The net rate of filament twist, (A¢), is pre-
dicted to increase as the relative proportion of overtwist to
native twist filament geometry increases, as further portions
of bundle are converted to highly crosslinked —28/13 geom-
etry. As shown in Fig. 7, when u is reduced well below pcy,
L decreases until successive discommensurations merge, re-
laxing the filament to its homogeneous state of native geom-
etry.

VII. DISCUSSION

When actin filaments are bundled in parallel arrays by
action of compact globular bundling proteins, the process of
crosslinking affects complex structural change of the fila-
ments themselves, an overtwisting from a native —13/6 helix
to —28/13 symmetry. This structural change is required to
maximize the number of co-oriented monomers on neighbor-
ing filaments, themselves arrayed on a hexagonal lattice. The
necessity to overtwist actin filaments upon binding of
crosslinking proteins leads to a complex thermodynamic de-
pendence of bundle properties—mean twist and bound
crosslinker density—on the availability of crosslinkers. As it
is the bonds themselves that mechanically distort the helical
structure of bundled filaments, we find that the thermody-
namics of the bundling process is extremely sensitive to the
rigidity of the crosslinking bonds. A mapping of a coarse-
grained free energy of bundles onto the Frenkel-Kontorowa
model of incommensurate solids predicts that rigid crosslink-
ers (U>U,) rapidly overtwist filaments via a second-order
phase transition that takes place over a very narrow range of
crosslinker chemical potential. In contrast, flexible crosslinks
are predicted to be much less efficient in providing the nec-
essary overtwist of filaments, leading to a bundling transition
that takes place over a much broader range of chemical po-
tential and, consequently, over broad range of free
crosslinker concentrations.
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This distinction in crosslinker behavior between rigid and
flexible crosslinkers predicted here is entirely consistent with
the observed differences between crosslinking behaviors be-
tween the globular crosslinking proteins, espin [17,18] and
fascin [9,18]. Based on our present study, we attribute the
respectively abrupt and continuous dependence of filament
overtwist observed for espin- and fascin-mediated bundles,
not to differences in linker affinity, but to differences in flex-
ibility of the crosslinking bond. This suggests that, in part,
different cells form bundles by way of different bundling
proteins, in order to regulate not just the structure of bundles,
but also self-assembly pathway of bundles and consequent
sensitivity of these bundles to modulations in the availability
of bundling proteins. By altering the flexibility of the
crosslinking agents alone, the formation of bundles can be
tuned from a highly cooperative switchlike dependence to
noncooperative  continually  varying dependence on
crosslinker concentration.

A critical value of crosslink stiffness, U,=0.512C, sepa-
rates the stiff linker behavior, which exhibits a CI transition,
from the flexible linker behavior, exhibiting no overtwist
phase transition. The twist modulus of actin is measured to
be C=2.8X10""7 J=6900kyT (units of angular distortion
per successive monomer pair) [23]. If we attribute the elastic
cost of distorting binding directions to a change of
crosslinker length, we may estimate an effective spring con-
stant for linkers with this critical stiffness k,~500 pN/nm,
based a=3.75 nm, half the diameter of actin [21]. This is
considerably more rigid than the bonds provided by the rela-
tively extended crosslinkers in actomyosin bundles [33], or
the much larger bundling proteins, filamin and a-actin [34],
all of order 0.1-10 pN/nm. The stiffness of crosslinking
bonds provided by small globular bundling proteins is not a
well-characterized quantity, although it seems reasonable
that U~ C since the torsional flexibilty of the actin filaments
requires distortion of specific protein-protein bonds between
actin monomers that may not be wholly unlike the distortion
of the bonds between actin monomers and bundling proteins
of roughly the same size. Based on a mechanical model of
crosslinker shear [35], measurement of the effective bending
stiffness of parallel bundles has been used to infer a shear
stiffness of fascin crosslinks [10] that is three to four orders
of magnitude below this estimate for k., suggesting that fas-
cin should fall well within the flexible linker regime. Not-
withstanding the poor understanding of the mechanics of
crosslinking at the protein scale, the classification of fascin
as a flexible bundling protein is consistent with its role as a
primary crosslinker in filopodial bundles [5]. Fascin has been
observed to transiently bind and unbind along filapodia in
vivo, diffusing at a remarkable rate within bundles [36]. In
the context of our present study, we note that flexible linkers
bind and unbind in an essentially independent noncoopera-
tive manner. In contrast, we expect the kinetics of rigid
crosslinkers to be dramatically slower than flexible linkers
due to the cooperative organization of many linkers and co-
herent restructuring of filaments required for each additional
rigid crosslinking bond.

We note here that actin filaments have been also observed
to undergo structural changes in response to protein binding,
which clearly do not fall into the category described by this
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study, in which the structural overtwist induced by crosslink-
ing largely reflects the incompatibility of actin filament ge-
ometry and in-plane lattice order. For example, the proteins
scruin and cofilin are also known to affect the helical geom-
etry of actin upon binding to filaments. High-resolution cryo-
electron microscopic studies of scruin-crosslinked acrosomal
actin bundles reveal that a twist angle between adjacent
monomers varies from —10.4° undertwist to 23.6° overtwist
from the native symmetry [37,38]. These are large torsional
distortions compared to the rather modest symmetry changes
occurring in espin- or fascin-crosslinked bundles, adjust-
ments of order of 1°-2° per monomer. An actin-binding
protein that promotes depolymerization of filaments, cofilin,
is well known to alter the twist of cofilin-decorated actin
filaments, exhibiting 54/25 helical symmetry [39], which
falls into the class of composite geometries considered here,
but provides a suboptimal number of crosslinks in hexago-
nally ordered bundles. However, in this case the change in
helical symmetry is observed for isolated unbundled fila-
ments bound by cofilin. In both cases of scruin- and cofilin-
induced helical deformations, it should be noted that proteins
bind to G-actin monomers at 1:1 ratio, altering the intrinsic
geometry of filament-protein complex itself, quite indepen-
dent of lattice constraints. In comparison, fascin- and espin-
crosslinked bundles are rather sparsely bound, at maximal
packing of one bundling protein for every 9.33 actin mono-
mers. Unlike the cases of scruin- and cofilin-bound filaments
where specific protein-monomer interactions give rise to
change in intrafilament torsional state, the present study re-
flects those changes in filament twist which are brought
about by constraints on inferfilament geometry in bundles.
Hence, we predict that the principle of crosslinking and fila-
ment geometry is preserved for fascin- and espin-crosslinked
bundles.

We conclude by discussing the role of two effects not
included in our model of crosslinked parallel actin bundles:
thermal fluctuations of monomers and crosslinks and the glo-
bal twisting of finite bundles. In the present model, the com-
plex thermodynamic binding properties of crosslinking pro-
teins derive purely from an elastic frustration between
optimal linkers and filament geometries, neglecting thermal
fluctuations of monomers and bonds. In Ref. [18] we studied
this lattice model of parallel bundles in the presence of
strong thermal fluctuations of filament orientation and
crosslinker position. In this regime, the thermodynamic dis-
tinction between rigid and flexible bundling transitions is
maintained: rigid crosslinkers affect a phase transition be-
tween native and overtwist, while the flexible linkers con-
tinuously overtwist filaments upon increasing crosslinker
binding. Given the high torsional modulus [23], one
expects a torsional persistence length of free unbundled
filaments, &=2C/kzT=13 000 monomers defined by
(cos(qﬁfo—¢5€+€0))=cos(w05€)e‘|‘%‘/§t. On the scale of the
coarse-grained repeat lengths of our model, 28 monomers,
thermal fluctuations of filament twist are therefore extremely
modest. However, we do expect that the entropy associated
with distributing crosslinkers at different positions in bundles
quantitatively modifies the predictions of our present study,
although modestly. In particular, the nonanalytical depen-
dence of the binding free energy V(®) on chemical potential
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and filament rotation is smoothed out by the equilibrium dis-
tribution of crosslinks among the many competing crosslink-
ing geometries (see Appendix E). Therefore, certain sharp
features of binding thermodynamics predicted by this “zero-
temperature” theory are somewhat smoothed out when con-
sidering these fluctuations. In particular, the number of bonds
in the minimal free-energy states changes abruptly from
n,=0 to 2 at u+¢€,=0, from 2 to 4 at u+¢€,=0.0017C, and
from 4 to 6 at u+¢€,=0.0061C, leading to kinks in the pre-
dicted equations of state for (n,) and (A¢) vs u (Figs. 5 and
6), which only appear in this limit. Nonetheless, we find that
presence of these fluctuations does not eliminate the sharp CI
native-overtwist transition that occurs for linkers above a
critical stiffness, U,=0.512C, where &K ¢)/du diverges. That
is, the sharp (smooth) overtwist transition for rigid (flexible)
crosslinkers is robust feature of the geometrical frustration in
parallel actin bundles, insensitive to the presence of thermal
fluctuations of bundles.

In our model, we considered parallel actin bundles of es-
sentially unlimited length and width, focusing on the internal
reorganization of filaments within the bundle. Cells maintain
a careful control over the size of bundles, most notably in the
mechanosensory hair bundles of the cochlea [40]. Under-
standing the physical mechanisms that underlie the in vivo
control of bundles on multifilament length scales
(~0.1-10 wm) remains an outstanding puzzle. In vitro stud-
ies of bundle formation observe that the lateral diameter is
indeed sensitive to the concentration of crosslinkers in fascin
and actin solutions [41]. Claessens et al. suggested that the
observed coincident overtwisting of filaments and growth of
bundle diameter upon increased fascin binding implies that
overtwist plays a role in limiting the lateral assembly of actin
bundles [9]. Indeed several theoretical studies [42—-45] dem-
onstrate that a tendency of filaments to globally twist around
the central axis of the bundle leads to thermodynamic frus-
tration that ultimately limits the equilibrium diameter of
bundles. This mechanism is believed to play a role in the
self-limited size of fimbrin bundles [46], which are clearly
observed to globally twist in electron microscopy studies. A
similar mechanism may be at work in fascin-mediated
bundles, as the intrafilament and interfilament twists of heli-
cal filaments are geometrically coupled [47]. To understand
the relationship between crosslinker binding and bundle size,
it is therefore necessary to consider a more complex model
of protein-mediated parallel bundle formation, in which fila-
ments trade the elastic cost of filament overtwist for the elas-
tic cost of globally twisting the entire bundle. Although it is
plausible that the tendency to overtwist individual filaments
also implies a tendency to twist the entire filament lattice in
a bundle, it remains to open question whether the elasticity
of crosslinking bonds is of sufficient rigidity to mechanically
bend filaments into the complex superhelical structures that
frustrate and limit self-assembly.
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APPENDIX A: IDEAL CROSSLINKING GEOMETRY OF
PARALLEL ACTIN BUNDLES

Here, we describe the details of the optimal packing cal-
culation of our overtwist ground state as shown in Fig. 2.
The ideal crosslinking configurations should fulfill the fol-
lowing conditions: (1) maximize crosslinking bonds that are
perfectly aligned to the hexagonal packing directions and (2)
minimize the twist distortion from the native —13/6 symme-
try. To search for the optimal crosslinking configuration of
parallel actin bundles, we first consider a single-filament
configuration with the commensurate helical geometry of
—6m/n symmetry, in which each successive monomer is ro-
tated by —27m/(6m), where both n and m are integers. This
class of helical symmetry allows a subset of monomers align
up with one of the sixfold lattice directions. In the block of m
consecutive monomers with —6m/n symmetry, two mono-
mers at the boundary of the block make perfect alignments
with the packing direction: for example, if the first monomer
starts at ¢=0, the mth monomer lines up with ¢=-27n/6.
Among these helical symmetries, we consider the configura-
tions parametrized by a pair of integers (n,m), which mini-
mize the angular deviation from the native symmetry. In Fig.
8, we plot the angle difference from —13/6 symmetry for
—6m/n symmetry up to m=7. As shown in Fig. 8, it is found
that —24/11 and -30/14—respectively, undertwisted and
overtwisted relative to the native state—symmetries are clos-
est to the native state, corresponding to m=4 and m=35, re-
spectively. In our analysis, we focus on these two commen-
surate helical geometries.

We now construct composite structures of a single fila-
ment, which consists of N, numbers of four-monomer sec-
tions with —24/11 symmetry and N5 numbers of five-
monomer sections with —30/14 symmetry. For —-24/11
symmetry, the four-monomer section makes —27(11/6) ro-
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FIG. 9. (Color online) The structural details of composite struc-
ture for 28-monomer repeat with Ny=2 and Ns=4. The side views
of filament composed by block arrangements of 445555 and 554455
are shown in (a) and (b), respectively, and their top views are shown
in (c) and (d). The layer numbers are the location of crosslinkers.

tation, while for —30/14 symmetry, the five-monomer sec-
tion makes —2m(14/6) rotation. In order to make full N
turns, Ny and N5 must satisfy the following condition:
—4N,(11/24)-5N5(14/30)=N per M monomers, where
M=4N,+5Ns and N is a negative integer for left-handed
turns. As an example, the composite structures of a single
filament with 28-fold symmetry are displayed in Fig. 9,
showing the longitudinal arrangements of blocks, such as
445555 and 554455 in Figs. 9(a) and 9(b), and their top
views with the orientations of crosslinkers in Figs. 9(c) and
9(d), together with the crosslinker layer numbers. In Table I,
we present the class of composite structures, up to 102

TABLE 1. The composite structures of a single filament con-
structed by N4 and N5 blocks with —24/11 and —30/14 symmetries,
respectively. We analyze up to 102 monomer repeat lengths.

(N4,Ns)  Repeat length  Helical symmetry  Overtwist (rad)
2.,1) 13 -13/6 0.000000
(6,0) 24 -24/11 -0.020138
(2,4) 28 -28/13 0.017261
4.,5) 41 -41/19 0.011788
(10,2) 50 -50/23 —0.009666
(6,6) 54 -54/25 0.008950
(14,1) 61 -61/28 —-0.015847
(12,3) 63 -63/29 -0.007672
(8,7) 67 -67/31 0.007214
(6,9) 69 -69/32 0.014009
(14.,4) 76 -76/35 —-0.006359
(10,8) 80 -80/37 0.006042
(20,1) 85 -85/39 -0.01705
(18,3) 87 ~87/40 ~0.011111
(16,5) 89 -89/41 —-0.005431
(12,9) 93 -93/43 0.005197

(10,11) 95 -95/44 0.010175
(8,13) 97 -97/45 0.014948
(22,2) 98 -98/45 —-0.014796
(18,6) 102 -102/47 —0.004738
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monomers per repeat unit, which are used in this analysis.
The remaining task is to build three-dimensional bundles
by tiling the hexagonal lattice with the single-filament com-
posite motifs for a given repeat length M and search for a
state that maximizes the crosslinker density (defined as the
ratio between the number of co-oriented monomers and the
number of monomers in a bundle). Note that crosslinking
only occurs between co-oriented monomers. For this task,
we use a Monte Carlo (MC) method and find an upper bound
of crosslinker density for a given symmetry. The initial con-
figuration of the system is set by arranging filaments in the
hexagonal array (5 X 5 rows). Each filament has one compos-
ite state of longitudinal block arrangements and one orienta-
tional state, which are randomly chosen from the block per-
mutations of (N,;+Ns)!/N,!/Ns! states (all possible block
translations and rearrangements along filament) and the six
orientational states of hexagonal lattice directions. In the MC
step, we make discrete rotational trial moves of filament by
*+60° around its axis, as well as block translational trial
moves, which are accepted if the trial moves increase the
number of crosslinkers (i.e., the co-oriented monomers) and,
otherwise, rejected. The system is let to equilibrate until the
crosslinker density is saturated, which usually requires from
1000 to 5% 10° MC trial movements, depending on the num-
ber of monomers in the filament. To calculate an upper
bound on the maximum crosslinker density allowed by a
given composite structure, we count the number of all co-
oriented monomers belonging to the 3 X3 inner filaments,
embedded within 5 X5 filament lattice. For a given finite
size of lattice, this counting provides the upper bound of
crosslinker density for an arbitrary large size of lattice, be-
cause we assume that this local packing arrangement may be
continued over a larger region of the bundle. In fact, the
crosslinkers along the boundary may be frustrated, resulting
in an ultimately lower density of crosslinks upon considering
a larger region of the bundle. Therefore, the number of co-
oriented monomers for inner filaments serves as an upper
bound for the maximum crosslinkers density allowed for a
given symmetry. The MC procedure is repeated 1000 times
for given N, and Nj to find the crosslinker configuration that
gives the maximum the number of co-oriented monomers.
The upper bounds for crosslinker density are displayed in
the chart of Fig. 10. Up to 102 monomer repeat units, we find
that the ground-state geometry of 28-fold symmetry provides
the maximum crosslinker density, that is, it saturates its up-
per bound with six bonds for every 28 monomers on every
filament. However, for filament lattices of only 5 X5 rows,
the upper bound on the crosslinker density of 13-fold sym-
metry is very close to that of optimal packing geometry. For
the comparison with the optimal packing geometry of
—28/13 symmetry (see Fig. 2 in the main text or Fig. 11), we
also display the crosslinking configuration for —13/6 sym-
metry in Fig. 12, which has an upper bound of crosslinking
density of 0.213 675. Hence, we performed more exhaustive
searches on these two symmetries, by increasing the bundle
size up to 10X 10 to obtain tighter upper bounds for these
structures, as shown in Fig. 13. As the number of rows in-
creases, the configuration with —28/13 composite filaments
exhibits a constant crosslinkers density of 0.214 286, while
the crosslinking of the —13/6 becomes increasingly frus-
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FIG. 10. (Color online) The upper bound of crosslinker density
for various symmetries up to 102 monomers is presented in bar
charts. The results are searched from a Monte Carlo calculation for
5 X5 bundle size. The 28-fold symmetry is found to be the structure
with maximum crosslinker density, 6/28. For 13-fold symmetry, the
upper bound crosslinking density, 0.198 317, from 10X 10 row MC
calculation is marked with a dark gray bar.

trated and ends up with a significantly reduced upper bound
on the crosslinker density, compared to that of —28/13 struc-
ture; for 10X 10 filament rows, the upper bound of the den-
sity of bonds is ultimately reduced to 0.198 317 (see also the
dark bar in Fig. 10). The reduced value in the larger —13/6
bundles can be explained by the fact that, as the lattice size
increases, the number of the “assumed” crosslinkers on
boundary filaments decreases, which in turn reduces the up-
per bound. In the optimal crosslinking geometry of —28/13
symmetry, unlike to the configuration with —13/6 symmetry,
all the monomers aligned with the sixfold lattice directions
are being fully consumed and involved in crosslinking. Note
that —28/ 13 structure can tile a hexagonal lattice of arbitrary
size, maintaining this maximum bond density.

APPENDIX B: 27/28 ROTATIONAL SYMMETRY
OF THE GROUND STATE

The optimal packing geometry of crosslinkning with
—28/13 symmetry possesses the 277/28 rotational symmetry.

0.24

@ 13/6
28/13
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FIG. 11. (Color online) The crosslinking structure in the right is
generated by the 27r/28 coherent rotation of maximally crosslinked
bundle ground state shown in the left, followed by a reorganization
of monomers and crosslinks within a 28-monomer repeat length.
Note that under rotation the layers where crosslinkings occur shift,
while the crosslinking directions are preserved.
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FIG. 12. (Color online) The maximum crosslinking configura-
tion for —13/6 symmetry by Monte Carlo calculation. We calculate
an upper bound on the crosslinker density by counting crosslinks
formed inside the dashed line. Note that the crosslinkers at the
boundary are shared with filaments outside the cell, contributing
only half a crosslink to the upper bound counter. For a 5X5
filament structure, the upper bound of crosslinker density is
(6X2+13)/(13X9)=0.213 675.

Here, we demonstrate that under a coherent rotation by
2/28, the bundle recovers the same crosslinking pattern of
—28/13 overtwist ground state; and, hence, the free energy is
degenerate under this rotation. Starting with the overtwist
ground state as shown in the left panel in Fig. 11, we take the
following steps: (1) remove all crosslinkers, incurring a bond
free-energy penalty, +AF,; (2) rearrange all the monomers
into the homogeneous twist state of —28/13 symmetry by
lowering twist energy, —AE,,. Notice that at this stage,
monomers at layers 0 and 14 are co-oriented along the hori-
zontal lattice directions in Fig. 11. Now, (3) rotate the entire
filaments by 2/28, which brings monomers at layers 1 and
15 into perfect registry on neighbor filaments; (4) rearrange
all monomers back to the original composite configurations
by paying the same amount of twist energy that we gained,
AE,,; and (5) replace the crosslinkers, regaining the same
bond energy, —AF,. As a result of this coherent rotation, the
layers associated with crosslinkings are changed as illus-
trated in the right panel in Fig. 11, but the original crosslink-
ing geometry and the total energy within 28 monomer repeat
unit are preserved, albeit discretely rotated. Note that this
entire procedure is identical to a one-layer translation along
the bundle axis, followed by shifting the planar unit cell to
the right by one-filament spacing.

APPENDIX C: ROTATIONAL POTENTIAL

We drive the explicit form of the potential V(P) in Eq. (5)
by considering a 28-monomer repeat length of filament in
which n,, of the ideal bond structure forms with neighboring
filaments. We describe the angles of this initial state with #n,
monomers aligned to sixfold lattice directions by the angles

>, and each of these states has a composite —28/13 sym-
metry. As bonds are elastic and commensurate orientation
varies along the bundle length, the perfect orientation of
these bonds will relax to a low-energy configuration.
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FIG. 13. (Color online) The explicit comparison between —13/6 and —28/13 symmetries with respect to the row number in MC bond
calculation. Note that 28-fold symmetry shows a constant crosslinker density (saturating the upper bound, 6/28), while the upper bound

decreases for the 13-fold symmetry as the row number grows.

To determine the relaxation of orientation within a 28-
mononer unit cell, we introduce two angular deviations: 8¢y,
the crosslinker deformation from the perfectly aligned state
at the crosslinked layers, and 5¢f, the adjustment of unbound
or free monomers. At layers bound by crosslinks, say €, the
free energy of bonding per monomer from Eq. (2) is simply
—(u+€,)/2+U(S¢,)?/2 since each crosslink is shared by
two filaments. Additionally, the twist elastic distortion be-
tween the €, and €, * 1 monomers from Eq. (1) contributes,

C(A b+ 5¢b 5¢f)2/2+ C(A¢( 17 5¢b+ 5¢f)2/2’ to the
free energy of binding, where ¢’=¢;>—yf. The twist elas-
tic energy of the remaining unbound monomer sections is

simply, C(A@}*)?/2. Summing these contributions, we have
the free energy of binding within a 28-monomer section per
filament in the n, bond state,

28

Fy5(3¢y, Sby) = E (Agp)?

+ %[U(&zsb)z +2C(8p;— 5y — (o + €,)].
(1)

Since @ is the coarse-grained coherent rotation of all these
deformation in a 28-monomer unit, we have the following
relation:

n,0¢;, + (28 — ny,) 8¢,
28 '

b=

(€2)

Minimizing Eq. (C1) with respect to the monomer adjust-
ment angle 8¢, for fixed @, we find that the minimal-energy
bond angle deviation is

56 e (©3)
”_2(1 @)2 |
2C 28

Note that in the limit of rigid crosslinkers, when U> C, the
bound monomers are pinned to the lattice directions,
O0¢,=0. The resulting minimal free energy of the
n,-monomer state rotated to an angle ® is

(C4)

n n
(@)= —# @ = 2 u= ()],

defined as (6) and w.(n,)

=—€,+C32 (AF!")?/n,. The rotational potential is deter-
mined by minimizing F33(®) over all possible bond configu-
rations within the 28-monomer repeat for a given value of @,
according to Eq. (5). Though there are a total of 19 possible
bonding arrangements considered within this class, for each
bond number, n,, a single configuration minimizes the elastic

“offset” energy, CS7(Ad)? (see Table II).

where K, =~ is in Eq.

APPENDIX D: MEAN CROSSLINK NUMBER

At a given coherent rotation @, the optimal number state
of crosslinkers, n,(®), is defined as the number state which
minimizes Eq. (C4) over all the states of perfectly aligned
crosslinking, from n,=0 to n,=6. As shown in examples of
stiff crosslinkers in Fig. 3, the minimized potential V(®P)
possesses the subset of certain number states over the peri-
odic range of ®.

In the minimal free-energy configurations, ®(f) rotates
through multiple angles along the bundle corresponding to
the solution of Eq. (8),

D(0) AP’ -1
[ ()
0 dz
We calculate the mean number of crosslinkers in a 28-
monomer repeat (n,) as follows:

~ l 21/28 nb(q))
{ns) = L fo a V2[V(®) - V(0) + 6]/C. (b2)

(D1)

APPENDIX E: FINITE-TEMPERATURE CROSSLINKER
FLUCTUATION

Our model of the commensurate-incommensurate transi-
tion described in the main text considers purely the elastic
energy of filaments and crosslinkers; therefore, it does not
include the effect thermal fluctuations of monomers and
crosslinker distributions. Here, we include these effects by
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TABLE II. The crosslinking configurations commensurate with the —28/13 filament geometry for all n,,
and the corresponding elastic offset energy ,u,[,(nb,s,,b). For a given M, Sy, denotes a particular bond distri-
bution. In the table, a bar (I) represents a crosslinking bond location, while the integer refers to the number
of monomers between two successive crosslinks. For example, 15123 refers to crosslinks at positions 0, 5, and

28 (equivalent to the 0 position).

28
1,=0 So 28]
M —€p
81 ‘28|
ny= 1
M —€p
, © |14 14| 5123 1820 1018 1315
n,=
b e -6 ~€,+0.00068C  —€,+0.00783C  —¢,+0.00174C  —€,+0.00361C
3 53 |4]10]14] [9]5]14] [13]5]10]| 8]5]15]
n =
b e —€+0.00261C —€,+0.00058C —€,+0.00241C  —¢,+0.00522C
P 14[5]514] [4/10]519| [4/10] 1014 191515191 [8]5[ 1015
ny=
b me  —€,+0.00195C  —€,+0.00239C  —¢,+0.00391C  —¢,+0.00087C  —¢,+0.00391C
s 5 14[515[519] [4/5/5[10[4]
b e —€+0.00191C  —€,+0.00313C
_«  Se [4l5IsIs]5[4]
i’lb—6
pe  —€+0.00261C
considering all possible crosslinking geometries with a 28- 0.0000
monomer coarse-graining unit and computing the probability 74 e el
of each state proportional to e#"(®) at finite temperature, -0.0001} ]
B=kgT. We derive the effective pinning potential per mono- —
mer at the given temperature by considering the crosslinking o
statistics of each filament in bundle cross section indepen- = -00003
dently: < B+ € = 0.0015C 4+ e = 0.005C
K -00004f
=— _ -0.0005} \
V(@) =— kT ln[l +22, exp| BV, ()] 1+ € = 0.008C
51 ~0.0006f
+222) expl— BV, (®)]+2°2 exp[- BV, (®)] = - - o
59 53 —28 —28 0 28 28
. s 0.0000
+2* 2 exp[- BV, (@)]+2° 2 exp[- BV, (®)] - ey
54 55 -0.0001F L+ €, = 0.0015C ]
+2°>) exp[- /av%(@)]]/zs, (BL) o, oo
% >~ -00003
o p+ e = 0.005C
where the fugacity is given by z=exp[B(u+e€,)/2] and the S’ -0.0004f
summation runs over Snys all possible bond distributions for sl
given n,,. Here, the potential for each state is defined by
—-0.0006f ©+ e = 0.008C
nb/“’c(nbisn Kn 2
oy = {—2 oy 7’%1)2] (E2) % —% 0 % %
0]

Notice that the geometry of crosslinking requires us to con-
sider a particular set of 19 correlated configurations of mono-
mer orientations and crosslinker distributions in the
28-monomer span. In Table II, we present the possible
crosslinking configurations for a given n;, and the

FIG. 14. (Color online) The ® dependence of the crosslinking
free energy at BC=6900 for U=3.0C (top) and U=0.5C (bottom)
for various chemical potentials. Finite-temperature effects from the
statistical distribution of crosslinks in the bundle lead to modest
quantitative differences with Fig. 3 of the text.

051919-13



HOMIN SHIN AND GREGORY M. GRASON

native | overtwist

0002 0004 0006  0.008
(u+e)/C

~0002 0,000

FIG. 15. (Color online) The equilibrium diagram of state for
overtwist, (A¢), for BC=6900. The CI transition is shown as a
solid line.

corresponding the elastic offset energies, ,uc(nb,snb). In Fig.
14, we plot Eq. (E1) revealing only modest quantitative dif-
ferences in comparison to the zero-temperature potential.
These curves are quantitatively similar, although the sharp
features associated with the changes in the minimal free-
energy bond pattern have been smoothed out by thermal
fluctuations between competing nearly degenerate bond con-
figurations. To calculate the twist-state phase diagram (Fig.
15) including these finite-temperature fluctuations, we set
BC=6900 based on the known torsional stiffness of actin
filaments

C=8X%10"2° N m? per the monomer spacing of 2.8 nm. In
Fig. 16, the mean number of crosslinkers per 28-monomer
span is also calculated by introducing the bond crosslinker
density operator as follows:

PHYSICAL REVIEW E 82, 051919 (2010)

BC=6900

OF,
-0.002

0002 0004 0006 0008
(b+e)/C

0.000

FIG. 16. (Color online) The mean number of crosslinker per
28-monomer repeat, (n,), for SC=6900. The solid line denotes the
CI transition.

ng(®) = 56—/3—’?‘:7 (@) , (E3)

along with the mean rotation profile ®(€) formula of Egq.
(D2). Including the thermal fluctuations of the distribution of
bonds produces a phase diagram that is quantitatively similar
to the zero-temperature results presented in the main text.
Note, however, that the sharp features, kinks, in the (A ¢) and
(n,) dependences that derive from abrupt changes in
minimal-energy number state of crosslinkers that we saw in
zero-temperature calculation (see Figs. 4 and 6 in the main
text) are smoothed out. In contrast, the sharp commensurate-
incommensurate transition from the native to overtwist state
is preserved at finite temperature, as the twist susceptibility,
KA)/ Iu, necessarily diverges as the “lock-in” state is ap-
proached, indicating a second-order phase transition.
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