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We present a Monte Carlo algorithm that provides efficient and unbiased sampling of polymer melts
consisting of two chains of equal length that jointly visit all the sites of a cubic lattice with rod geometry
L�L�rL and nonperiodic �hard wall� boundary conditions. Using this algorithm for chains of length up to
40 000 monomers and aspect ratios 1�r�10, we show that in the limit of a large lattice the two chains phase
separate. This demixing phenomenon is present already for r=1 and becomes more pronounced, albeit not
perfect, as r is increased.
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I. INTRODUCTION

When a single polymer chain with excluded volume in-
teractions is brought into a bad solvent, the solvent mol-
ecules strongly repel those of the chain. To minimize the
interface between solvent and chain molecules, the chain will
collapse and expel the solvent molecules from its interior.
Similarly, a few polymer chains in a very large volume of
solvent will form a dilute solution of collapsed chains. In
particular, the individual chains will not mix �1�.

Consider now squeezing the chains together so as to form
a solution in which the monomer density is finite �and the
solvent density can be taken to zero�. We may then ask
whether different chains will mix or segregate. One would
expect that the answer to this question might depend on how
the number of chains scales with the size of the system.

A well-studied case is that of a polymer melt where many
chains are present. If there are of the order N1/2 chains, oc-
cupying a total volume N �i.e., with an average monomer
density of N−1/2 for each chain� the so-called Flory theorem
�2� is supposed to apply. According to this, the repulsive
hard-core interaction between different chains is completely
screened out at large distances. This implies that a single
chain within the melt exhibits ideal Gaussian behavior: its
radius of gyration scales as the square root of the chain
length. In particular, different chains should mix �interpen-
etrate� completely, as opposed to a demixing �segregation�
scenario where each chain would occupy a small lump of the
available space �1�.

It has recently been shown by the Strasbourg group in a
number of studies �3� that the Flory theorem is not quite
correct. In particular, these authors have shown that the in-
terplay between chain connectivity and the incompressibility
of the melt leads to an effective repulsion between chain
segments. The bond-bond correlation function, supposed to
be short range by the Flory argument, turns out to exhibit a
long-range algebraic decay. A number of deviations from the
ideal Flory behavior have been pointed out and shown to be
accounted for in an improved scaling theory �3� that views
the chain as a hierarchical arrangement of correlation holes
�1� of subchains on all length scales.

On the other hand, one might be interested in the situation
where there are only a finite number of chains in a solution

of finite monomer density. In this context, the issue of poly-
mer mixing has recently gained renewed interest in the area
of physical biology. One outstanding question is to under-
stand the organization and segregation of chromosomes
within simple bacteria, including during duplication. In par-
ticular, the bacterium Escherichia coli with a single circular
chromosome in a rod-shaped cell has served as a model sys-
tem. In this situation the radius of gyration of a single chain
will necessarily scale as the cube root of the chain length,
and there is no good reason why the Flory theory �2� and the
more recent improvements of it �3� should apply. The ques-
tion whether the chains will mix in that case therefore needs
to be settled separately, as do the possible consequences for
chromosome organization.

The behavior of a dense solution of just two polymer
chains confined to a bar-shaped geometry, akin to that of a
rod-shaped cell, was discussed in �4�. A simple piston model,
combined with a blob-type analysis �1� �see also �5��, was
used to point out the mechanisms by which demixing might
occur. In the limit of large piston pressure �corresponding to
maximal density� the two chains were nevertheless found to
mix. In contrast with this, studies of unentangled ring poly-
mers in concentrated solutions �6,7� concluded that the exis-
tence of topological barriers would lead to segregation. A
molecular-dynamics study, using a parameter-free bead-
spring polymer model of a ring polymer melt, corroborated
the segregation scenario and found several structural and dy-
namical results in agreement with experiments on Droso-
phila and budding yeast chromosomes �8�. The results of �8�
imply that a certain number of experimental observations
could be due to generic polymer effects, and as such could be
accounted for in very simple models.

In this paper, we revisit the problem of two open chains
�not rings�. In line with the above reductionist point of view,
we do so by studying numerically a simple and very pre-
cisely defined parameter-free lattice model of a two-chain
melt of unit monomer density. This model accounts fully for
the constraints of maximal monomer density, and the self-
avoidance and mutual avoidance of the chains.

The conformations of a single maximally compact �space
filling� chain can be modeled on a lattice as a Hamiltonian
walk �HW�. By definition, a HW is a self-avoiding walk that
visits each lattice site exactly once. Upon adding further lo-
cal interactions, the HW model has been proposed as a de-
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scription of protein melting �9� �with bending rigidity� or of
protein folding �10� �with suitable interactions among amino
acids�. The simplest example of the latter is the so-called HP
model in which only two types of amino acids �hydrophobic
or polar� are taken into account.

To similarly model a melt of a finite number of chains,
we can use the model of Hamiltonian chains �HC� �11� in
which M self-avoiding and mutually avoiding walks jointly
visit all lattice sites. By definition, each chain has length of at
least 1 �its two end points cannot coincide�. In what follows
we shall always take the underlying lattice to be simple cubic
�or square, when we occasionally compare with the two-
dimensional case�. It seems natural to assume that the HC
model correctly describes an M-chain polymer melt in the
large-scale limit, where lattice details should be irrelevant.

The question is then whether the HC model validates, for
the case of a melt consisting of only a few chains, the mixing
scenario envisaged for the two-chain case in �4�. In this pa-
per we study in detail the simplest possible case of M =2
identical chains of equal length by large-scale numerical
simulations. We show that, contrary to the above expecta-
tions, the chains actually phase separate. For an L�L
� �rL� lattice, with large L and fixed aspect ratio r, the effect
turns out to be quite subtle �but measurable� for r=1, becom-
ing more pronounced for larger values of r.

II. ALGORITHM

Properties of self-avoiding walks are routinely studied by
importance sampling schemes of the Monte Carlo �MC�
type, with one well-known example being the pivot algo-
rithm �12�. Unfortunately, almost all known algorithms be-
come useless in the fully packed limit, as the acceptance
ratio for any proposed move tends to zero. For the HW case
�i.e., the HC model with M =1 chain� we have recently
shown that an MC move proposed by Mansfield �13� can be
turned into an algorithm that is both efficient �with dynami-
cal exponent z�0� and provides unbiased sampling �each
conformation is generated with uniform probability� �14�.

The working principle of this M =1 algorithm is shown in
Fig. 1. Choose an end point x of the HW at random and
select one of its adjacent empty links �xy�. Then, among the
occupied links adjacent to y, there is exactly one which
would form part of a loop if �xy� were added to the HW; call
it �yz�. The basic move is then to change the HW by adding
�xy� and removing �yz�.

We now state the modifications necessary to deal with the
case of M =2. For the moment we assume that the point x is

in the bulk of the system; the case when it is on the boundary
will be discussed later.

Let the configuration C consist of two chains, and let x be
one of the four end points chosen at random. Once again,
choose with uniform probability one of its adjacent empty
links �xy�. As before, the idea will be to modify C by adding
�xy� and removing one other link. But before adding the link
�xy�, the point y may be adjacent on one or two occupied
links. The former happens if y is another end point, either of
the same chain as x or of the other chain; in that case the
choice of the link �yz� to be removed is unambiguous. In the
latter case �i.e., when y is adjacent on two occupied links�
one must distinguish two different situations. If y is on the
same chain as x, one proceeds as in the M =1 case, making
the unique choice of z that avoids the formation of a loop.
And if x and y are on different chains, one chooses randomly
between the two possibilities for z.

It remains to discuss two subtleties. First, when x and y
are end points of two different chains, the move will consist
of letting the first �respectively, second� chain grow �respec-
tively, retract� by one monomer. In particular, it might hap-
pen that z is the other end point of the second chain. The
move would then consist of letting the second chain shrink to
zero, but since this is not an allowed HC configuration, we
remedy the situation by leaving C unchanged. Second, when
x is at the boundary of the system, it might happen that y is
chosen outside the lattice. In that case as well the move is
rejected, i.e., C is left unchanged.

III. UNBIASED SAMPLING

With all these rules, and considering that an MC move
takes unit time regardless of whether it leads to a change in C
or not, it follows from a careful analysis that the rule of
detailed balance is satisfied. As an independent numerical
check, we ran the simulation on a 2�2�3 cubic lattice until
each of the 4204 possible configurations �11� had been gen-
erated �5�104 times. We then verified that the fluctuations
in the number of occurrences of each configuration were
compatible with counting statistics. Proving that the MC
move is also ergodic, i.e., that any desired configuration may
be reached from an initial one in a finite number of steps,
unfortunately turns out to be much harder �a proof does not
even exist for the M =1 chain case �14��.

As in �14�, we therefore resort to explicit checks of ergod-
icity for small two- and three-dimensional systems. The case
of a 2�2 square lattice is special since no MC move con-
nects the two possible configurations. But for all other
Lx�Ly lattices with 2�Lx, Ly �6, we have checked that the
number of different configurations generated by the MC
move, starting from an initial reference configuration, coin-
cides precisely with the exact enumeration results of �11�. In
particular, precisely 17 570 172 configurations are found on
the 6�6 lattice. We have similarly checked ergodicity on
2�2�2, 2�2�3, and 2�3�3 cubic lattices. Assuming
that ergodicity holds in general �except for the trivial 2�2
square lattice�, we conclude that the MC process converges
toward the equilibrium distribution, i.e., that all HC configu-
rations are sampled with uniform probability.

x

z

y

FIG. 1. �Color online� Move between two of the 2 480 304 pos-
sible Hamiltonian walks on a 3�3�3 cubic lattice.
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IV. PROPERTIES

In the case where the point y is an internal point on the
same chain as the end point x, the identification of the cor-
rect edge �yz� to be removed necessitates tracing out the loop
formed when adding xy. So, at worst, one MC move may
require a time �N. Since each move changes at most two
links, it is appropriate to evaluate the autocorrelation time �
�defined in terms of the link overlap with the initial configu-
ration� in units of the number of MC moves per site. Just as
in the M =1 case �14� we find that in those units ��Lz is of
order unity, independent of the system size. We conclude that
the dynamical exponent z�0, proving our claim that the
algorithm is efficient.

Note that our algorithm provides unbiased sampling of
configurations of two chains of lengths N1 and N2, where
only N=N1+N2 is fixed. To pursue our goal—the study
whether two chains of equal length mix or not—we must
impose the constraint N1=N2 in an efficient way. Trial runs
for L=16 and aspect ratios r=1,2 show that the probability
distribution p��� of the length ratio �=N1 /N is very close to
being uniform: we have in fact �p���−1��0.01 for all
�� �0.02,0.98�. It follows that a configuration with �= 1

2 will
occur on average once for each unit of �.

It is thus tempting to collect a data point whenever �= 1
2 .

There is however an important caveat. Suppose that the end
points of chain 1 are deeply immersed in chain 1, and same
for chain 2, and that the two chains happen to be of the same
length. Then all MC moves will be such that an end point x
of some chain attacks a point y on the same chain, and never
on the other, thus conserving the length of either chain. If
data were collected whenever �= 1

2 , a lot of measurements
would be made which were spaced by just one MC move,
and not one unit of �. This would strongly bias the results. A
better measuring protocol is to collect a data point when
�= 1

2 and require two data points to be spaced by a least one
autocorrelation time. With this protocol, each data point
gives an independent configuration with �= 1

2 , taken uni-
formly within the ensemble of chains of equal length.

To avoid transient effects due to the choice of the initial
state, we discard in each run the first 100 MC moves per site,
before starting the data collection. Figure 2 shows a measure-
ment on a rather small system obtained using this protocol.
To the eyes it certainly looks like that the two chains inter-
penetrate, but obtaining a valid conclusion will require ana-
lyzing the system more carefully.

V. SCALING THEORY

According to the standard scaling theory of polymers �1�,
the number of HWs of length N is ��NN�−1 for N�1. Here
� is a lattice-dependent connective constant and � is a uni-
versal conformational critical exponent. Alternatively, � is
determined by P�x��x2�, where P�x� is the probability dis-
tribution of the end-to-end distance in the asymptotic regime
x	1. Using this, the conformational exponent for HW has
been determined numerically as �=0.94
0.02 �14�. More
recently, the consistent value �=0.95
0.02 has been re-
ported �15�.

The value of � can be used in various ways to argue
whether M =2 chains will phase separate or not. One simple
argument goes as follows. Suppose that the two chains live
in a volume V. In the demixing scenario, each chain would
occupy a volume V /2, and the number of configurations
would scale like that of two independent HWs, viz.,
��V/2�V /2��−1�2��VV2��−1�. If, on the other hand, the two
chains mixed, one could make the assumption �A� that one
end point of either chain would be “close” and hence could
be connected so as to form a single HW in volume V. The
number of configurations would then be �VV�−1. Comparing
these, we conclude that entropy should drive the chains to
mix if and only if ��1. The above numerical determinations
of � are then in favor of the mixing scenario.

The applicability of the above argument clearly hinges on
whether assumption �A� can be considered correct. Some
partial justification can be found in �11� in which the inter-
action of a single HW with the surface of the system was
carefully analyzed. In particular, it was found that the end
points possess a clear tendency to avoid lattice sites of high
coordination number, i.e., they are attracted toward the sur-
face. Since there are fewer surface sites than bulk sites, this
implies an enhanced probability for end points to be close
than would have been the case if they were uniformly dis-
tributed throughout the volume. Moreover, the fact that
��1 means that end points attract one another entropically
also in the bulk.

But despite such arguments, assumption �A� is certainly a
rather weak spot in the above argument: the existence of an
attraction between end points does of course not mean that
they are separated by a single lattice spacing. So the above
reasoning cannot be considered as conclusive. The same is
true for other variant scaling arguments that we have tried
out. We therefore turn to our numerical results to determine
whether the two chains will mix.

VI. NUMERICS

We have used our MC algorithm to generate an extensive
number of independent configurations for the two-chain
problem on L�L� �rL� cubic lattices with L=16 or L=20
and various aspect ratios 1�r�10. In the largest simulation
�L=20 and r=10� each of the chains had length
r
2L3=40 000 monomers, and up to 1.1�105 statistically in-
dependent configurations were generated. The boundary con-
ditions are nonperiodic �hard wall confinement� in all three
lattice directions, as shown in Fig. 2.

FIG. 2. �Color online� A randomly chosen configuration of two
chains of equal length on an 8�8�16 cubic lattice.
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In a first series of runs, we produced N1�3�104 con-
figurations for each r. For each of these, the standard devia-
tion �z=	
z2�− 
z�2 of the z coordinates of the monomers—
rescaled so that z� �0,1�—was computed separately for each
chain, and an average value 
�z� was extracted from the 2N1
measures. The results for L=16 systems are given in the left
part of Table I. They can be compared to the result
�z

0= 1
2	3

�0.288 68, which would be obtained in the case of
full mixing, where the mass of each chain is uniformly dis-
tributed in the z direction.

The results for 
�z� indicate that the two chains tend to
demix, and that this tendency grows with increasing r. Of
course, one is far away from the value 1

2�z
0, which would

result in the hypothetical situation of complete demixing,
where one chain goes completely to the left of the box and
the other to the right. Note also that the difference from �z

0 is
clearly measurable—albeit tiny—for r=1 where the three co-
ordinates are equivalent.

To give more evidence for the demixing and characterize
it more precisely, we turn to a second series of runs. In this
series we construct the probability density p��z� of the quan-
tity �z= �z1−z2�, where zi= 
z� is the z coordinate of the cen-
ter of mass of the monomers in chain i �for i=1,2�.
Obviously, constructing a whole probability distribution
calls for better statistics, so in this series we produced
N2�1.1�105 configurations for each r. The results for

p��z� are shown in Fig. 3. To eliminate fluctuations arising
from the lattice discretization, the values of �z have been
arranged into 50 “running” bins; the statistical error bars can
be judged from the remaining small ripples on the curves.

In a third series of runs we have focused on the mass
density �ij�z� of chain i, measured relative to the center of
mass zj of chain j �for i=1,2�. The normalization is chosen
such that ��ij�z�dz=1. Demixing can be detected via a dif-
ferent behavior for the density of a chain in its own center of
mass ��11=�22 by symmetry� and for the density of a chain in
the center of mass of the other chain ��12=�21�. For these
measurements we have taken L=20 and produced up to
N3�3�104 configurations for each r. Instead of using bins,
we have simply rounded the center-of-mass coordinates as
expressed in lattice spacings �i.e., rLzj� to the nearest integer.
The results for �11�z� are given in Fig. 4, and those for �12�z�
are given in Fig. 5. Both functions should of course be sym-
metric upon reversing the coordinate axis, �ij�z�=�ij�−z�, and
the error bars can be judged from the slight deviations from
this symmetry. It is seen from the figures that when r in-
creases, �11�z� tends to become a more narrow distribution

TABLE I. For various aspect ratios r, we show �1� the averaged
standard deviations 
�z� of the z coordinate of a chain in the fully
packed two-chain problem and �2� the monomer fugacity w� that
will make a single chain fill out one half of the available volume.

r 
�z� w�

1 0.28231
0.00005 0.3632
0.0005

2 0.27675
0.00008 0.3580
0.0005

3 0.27094
0.00011 0.3560
0.0005

4 0.26527
0.00019 0.3550
0.0003

5 0.26002
0.00015 0.3546
0.0003
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FIG. 3. �Color online� Probability distribution p��z� of the dif-
ference of center-of-mass coordinates �z= �z1−z2� of the two chains,
for L=16 lattices with various aspect ratios r. The dashed curve is
for L=20 and r=10.
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FIG. 4. �Color online� Mass density �11�z� of one of the chains,
measured relative to its center-of-mass coordinate z1. The data are
for L=20 lattices with various aspect ratios r.
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FIG. 5. �Color online� Mass density �12�z� of chain 1, measured
relative to the center-of-mass coordinate z2 of the other chain. The
data are for L=20 lattices with various aspect ratios r.
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around the origin, whereas �12�z� spreads out and develops a
depletion near the origin. This is again clear evidence of
demixing.

VII. DISCUSSION

The data in Fig. 3 give clear evidence for demixing as r
increases. For small r we see a rather broad distribution
p��z�, localized around the origin. At r�7, the distribution
becomes almost uniform, and for higher r a peak near
�z= 1

2 , the maximal possible value, develops on a close-to-
uniform background. To make sure that this conclusion is not
a finite-size artifact, we recomputed the r=10 curve for a
larger size L=20. Note that this computation required several
years of CPU time. The result, shown as a dashed curve in
Fig. 3, does not deviate substantially from the L=16 result.

It is useful to compare this situation to that of a single
nonfully packed chain that is constrained to take up precisely
one half of the available volume. To study this, we employ
the nonfully packed version of the M =1 algorithm, discussed
very briefly at the end of �14�. To set the peak of the mono-
mer concentration �=N /V precisely at �= 1

2 , one needs to
tune the Boltzmann weight w of a monomer. Still for L=16,
we find that this is obtained for w=w�, where values of w�

for different r’s are given in the right part of Table I. This
allows us to take a series of data for which each configura-
tion has �= 1

2 precisely. Based on a set of N3�104 data
points, we then construct the probability distribution p�z1� of
the center of mass z1 of the chain. For convenience, here, we
subtract 1

2 from the z coordinates so as to set the origin in the
middle of the box; the support of p�z1� is then z1� �− 1

4 , 1
4 �.

The results for p�z1�, using this time 200 bins, are given in
Fig. 6.

It is of course completely predictable that these distribu-
tions are Gaussian; we find indeed p�z1��a exp�−b�z1�2�,
with b= �0.91
0.01�r. But, more importantly, comparing
Figs. 3–6, one can appreciate that even for r=1 the distribu-
tion p��z� is indeed very broad. This corroborates our pre-
vious claims that even for r=1 the two-chain problem indeed
exhibits demixing.

It is useful to compare the data in Figs. 4 and 5 to the
hypothetical situations of complete mixing �with both chains
uniformly distributed in the z direction� and of complete de-
mixing �with one chain occupying the left half of the box,
0�z�

1
2 , and the other chain occupying the right half,

1
2 �z�1�. In these two extremal situations, the mass distri-
butions �11�z� and �12�z� would be those shown in Fig. 7.
The data in Figs. 4 and 5 bear some resemblance to a cross-
over �with increasing r� between these extremes. A closer
examination of the data however indicates that for r�1 the
distributions �ij�z� will not coincide with those of the com-
plete demixing scenario. �For instance, the tails in Fig. 4
extending out to z= 


3
4 seem to be robust upon increasing

r.� Note also that in terms of the distribution p��z� in Fig. 3
complete demixing would correspond to a Dirac delta func-
tion �z− 1

2 �, whereas the actual data are indicative of a
close-to-uniform distribution on �0, 1

2 � plus possible a finite
peak near z= 1

2 . In other words, the numerics strongly sup-
ports the idea that the physics in the limit limr→� limL→�

�with the thermodynamic limit being taken first� is nontrivial
and corresponds to some kind of “partial demixing.”

VIII. CONCLUSION

We have studied a problem of two compact polymer
chains of equal length in a three-dimensional box of various
aspect ratios r. We have devised an efficient Monte Carlo
method for sampling all configurations of this problem with
uniform probability. Naive scaling theory, combined with ex-
isting evaluations of the conformational exponent � for a
Hamiltonian walk, indicates that the two chains should mix
completely. This same conclusion would be suggested by the
Flory theorem �9� for a polymer melt of many chains or from
a blob-type analysis for a simple piston model of just two
chains �4�. However, our numerical simulations clearly show
that the two chains do in fact phase separate, even for r=1,
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FIG. 6. �Color online� Probability distribution p�z1� of the
center-of-mass coordinate z1 of a single chain, constrained to oc-
cupy precisely one half of the box, for different aspect ratios r.
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and that this demixing becomes more pronounced, albeit not
perfect, in the limit of large r.

Clearly, further work is needed to see whether this con-
clusion can be reconciled with some improved scaling
theory, specifically adapted to a melt consisting of just a few
chains. The demixing scenario obtained in this paper is
somewhat subtle since it is not due to the additive terms of
the free energy. Further study is therefore required to assess
whether the effect is stable toward introducing more param-
eters into the model �nonidentical chain lengths, specific

chemical interactions at the chain ends, off-lattice modeling,
etc.�. It would also be interesting to see whether demixing
can be realized experimentally.
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