
Dispersive kinetics in discotic liquid crystals

O. Kruglova*
Laboratoire Interfaces & Fluides Complexes, Centre d’Innovation et de Recherche en Matériaux Polymères, Université de Mons Hainaut,

20, Place du Parc, B-7000 Mons, Belgium

F. M. Mulder
Department of Radiation, Radionuclides & Reactors, Faculty of Applied Science, Delft University of Technology, Mekelweg 15,

2629 JB Delft, The Netherlands

G. J. Kearley
Bragg Institute, Building 87, Australian Nuclear Science and Technology Organisation, PMB 1 Menai, New South Wales 2234, Australia

S. J. Picken
Polymer Materials and Engineering, Department of Material Science and Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

J. A. Stride
Institute Laue Langevin, BP 156, Grenoble 38042 Cedex 09, France and School of Chemistry, University of New South Wales, Sydney,

New South Wales 2052, Australia

I. Paraschiv and H. Zuilhof
Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen, The Netherlands

�Received 8 April 2010; revised manuscript received 15 October 2010; published 22 November 2010�

The dynamics of the discotic liquid-crystalline system, hexakis �n-hexyloxy� triphenylene �HAT6�, is con-
sidered in the frame of the phenomenological model for rate processes proposed by Berlin. It describes the
evolution of the system in the presence of the long-time scale correlations in the system, and we compare this
with experimental quasielastic neutron scattering of the molecular assembly of HAT6 in the columnar phase.
We interpret the parameters of this model in terms of nonextensive thermodynamics in which rare events in the
local fast dynamics of some parts of the system control the slower dynamics of the larger molecular entity and
lead to a fractional diffusion equation. The importance of these rare local events to the overall dynamics of the
system is linked to the entropic index, this being obtained from the data within the model approach. Analysis
of the waiting-time dependence from momentum transfer reveals a Lévy distribution of jump lengths, which
allows us to construct the van Hove correlation function for discotic liquid-crystalline system.
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I. INTRODUCTION

Discotic liquid-crystalline systems consist of disklike
molecules that self-assemble into columns as a result of
overlap of the � orbitals of the aromatic cores �1,2�. Elec-
trons and holes hop along the column direction and that has
drawn attention to these materials for nanoscale conductive
devices. Since the interdisk hopping occurs on the picosec-
ond time scale �1� and the lifetime of charge carriers is on a
nanosecond time scale �3�, we anticipate that the dynamics
within these time scales will be particularly relevant for tran-
sient conductivity. The transient conductivity is sensitive to
the dynamics of the cores, but the alkoxy tails not only assist
the self-assembly �by phase separation of aromatic and ali-
phatic parts� but also play a crucial role in the dynamics of
the cores. In our study, preference has been given to hexakis
�n-hexyloxy� triphenylene �HAT6� as it brings together
enough simplicity to allow a rather complete interpretation
of data yet contains the basic structural entities that allow our

study to be extended to other complex systems that have
better electronic properties. There has been considerable re-
cent study on larger systems such as hexabenzocoronene us-
ing NMR and atomistic modeling methods �4–8�, which
demonstrates the importance of this type of material.

We choose to develop our model from the experimental
technique, quasielastic neutron scattering �QENS�, because
this technique simultaneously follows hydrogen-atom dy-
namics over picosecond time scales and length scales of ang-
stroms. van Hove �9� established that the neutron-scattering
function S�Q ,��, where Q is the momentum transfer and �
is the energy transfer which is measured in a QENS experi-
ment, represents the Fourier transforms over r and t of the
generalized pair distribution function in space and time
G�r , t�. In general, it describes the correlation between the
presence of the particle at the position r�+r at time t�+ t and
the presence of the particle in position r� at time t�. Under
certain conditions this can be simplified and represents an
average density for homogeneous statistically independent
systems. Such an approximation allows classical models for
G�r , t� to be used and to represent S�Q ,�� as a sum of elastic
and quasielastic parts �10�. This assumption is no longer
valid for complicated systems �11� in which interactions*o.v.kruglova@gmail.com

PHYSICAL REVIEW E 82, 051703 �2010�

1539-3755/2010/82�5�/051703�8� ©2010 The American Physical Society051703-1

http://dx.doi.org/10.1103/PhysRevE.82.051703


within the system must be taken into account. Even initial
fitting of the QENS data of the discotic liquid-crystal HAT6
reveals “longer than” exponential relaxation and this is one
of many examples of complicated dynamics where a conven-
tional, simplified, approach fails. There are two possible ap-
proaches to the analysis of data of this type. First, we may fit
the so-called stretched exponential and try to relate the varia-
tion of the parameters of this analytical function �� and �
will be defined later� to some characteristics of the system.
Alternatively—and preferably—we can consider the molecu-
lar structure and the columnar assembly of HAT6 and try to
characterize their dynamics with a physically meaningful
model that agrees with the experimental QENS data. It has
been established many times that such models produce a
relaxation curve that is virtually indistinguishable from a
stretched exponential unless measurements are made over
many orders of magnitude in time. The advantage of our
approach is that we can extract the variation of the physically
meaningful parameters as a function of temperature and mo-
mentum transfer �Q� from the experimental data and thus
gain some new insight into the dynamics of the system. If
our model is incorrect then it will only agree with experi-
mental data, both temperature and Q dependence, by using
physically unreasonable parameters. Using a simple
stretched exponential any insight gained from the variation
of � and � will be tenuous.

In this paper we analyze our data with a model for the
kinetics of a system that is coupled to a relaxing environ-
ment, taking into account the interactions between different
parts of the system and correlation effects. When combined
with a fractional diffusion equation this allows us to con-
struct the space-time correlation function for the system,
G�r , t�, which we compare directly with the Fourier trans-
form of the experimentally measured function.

II. EXPERIMENTAL TECHNIQUE

QENS spectra for HAT6 �Fig. 1� were obtained using the
cold neutron time-focussing time-of-flight spectrometer
�IN6� spectrometer at Institute Laue Langevin in France with
an incident wavelength of 5.9 Å. Measurements were per-

formed at temperatures of T=340, 352, 358, 364, and 370 K
for the protonated samples and at T=367 K for the tail-
deuterated analog, temperature control being achieved with a
standard heating loop. Formally, 340 K corresponds to the
crystalline→ liquid crystalline phase transition and
T=370 K to the liquid crystalline→ liquid phase transition,

crystalline →
340 K

liquid crystalline →
370 K

liguid.

Our interest is solely in the columnar liquid-crystal phase in
which molecules within a column are held together by �-�
orbitals overlap of the aromatic cores and the van der Waals
interactions of the “phase-separated” alkyl tails. In the crys-
talline phase where the molecules are arranged in a herring-
bone structure there is no charge transfer and the intermo-
lecular coupling of dynamics would in any case have a
different relevance to the electronic properties of the mate-
rial. We, therefore, restrict our study to the columnar phase.

Data were corrected using standard algorithms and ana-
lyzed using locally written routines. We have extended our
previous measurements on this system by using samples in
which the alkoxy tails are deuterated �12� in order to high-
light the dynamics of the aromatic disk cores. The purity of
HAT6 and HAT6 with deuterated tails was verified with mass
spectrometry.

III. MODEL

Studies of the dynamics of complex systems such as poly-
mers, biological molecules, or liquid crystals have revealed
deviations from the behavior described by diffusion equa-
tions and represented by a Gaussian function �13–15�. There
has been considerable effort to find models for the dynamical
behavior that lead to anomalous diffusion �16,17�, but many
of these lack a mathematical description of the processes that
provides the equation of motion with which of the behavior
of complex systems of known initial conditions could be
predicted. Although we attempted to analyze our data using
existing homogeneous �each process relaxes nonexponen-
tially� and heterogeneous �relaxation processes are exponen-
tial but with relaxation-time distribution� models, these are
unable to describe the Q dependence of our experimental
data. For this, data were fitted with stretched exponential
function to determine the dependence �� on Q, as illustrated
in Fig. 2. In the heterogeneous case ���Q−2, while in homo-
geneous case it should be ���Q−2 with �=1. It is clear from
Fig. 2 that neither of these scenarios agrees with our experi-
mental data and for that, therefore, we need alternative
model to describe behavior of discotic liquid crystals.

A natural generalization of the diffusion equation is rep-
resented by a fractional diffusion equation as suggested by
Metzler and Klafter �18�,

�W�r,t�
�t

= 0Dt
1−���

�� ��W�r,t� ,

where W�r , t� is the probability distribution function, � and �
are the characteristic space and time exponents, respectively,

0Dt
1−� is the Riemann-Liouville fractional operator, � is char-

acteristic jump length, and � is a characteristic waiting time.

FIG. 1. Structure of HAT6.

KRUGLOVA et al. PHYSICAL REVIEW E 82, 051703 �2010�

051703-2



Under the conditions �=2 and �=1, the fractional diffusion
equation transforms into Fick’s second law and the solution
then appears in terms of the familiar Gaussian function �see
Ref. �18� for details�. If the waiting-time probability distri-
bution function is broad, then the time relaxation will be
described by the Mittag-Leffler function, E�(−�t /���)
=�n=0

	 (−�t /���)n /
�1+�n�, instead of an exponential func-
tion. But despite its obvious advantages, the fractional diffu-
sion equation does not give any detailed description of the
anomalous diffusion or a representation of the time exponent
and waiting time. Our aim is to reveal the fundamental
mechanism, and for this we will consider the evolution of the
time part of the fractional diffusion equation. We will adopt
one of the simplest phenomenological models for rate pro-
cesses that have been proposed by Berlin et al. �19�, since
intuitively this would seem appropriate to our system. This
model is based on the configurational-energy approach for
the system with a static disorder, which suggests the pres-
ence of more than one configuration energy distribution, act-
ing as traps with depth Ei. Such an assumption is especially
justified for complex materials where an extensive variation
of interaction energies is possible and, therefore, there will
be an extensive variation not only of activation energies but
also of traps. The characteristic time of remaining in a trap,
�, will be determined by

�i =
1

Zw0
exp� Ei

kBT
� , �1�

where Z is the number of states different from ith state, w0 is
the jump frequency of normal diffusion, kB is the Boltzmann
constant, and T is the temperature. Any excitation of such
media, for example, slight change of temperature or pressure,
causes a rearrangement of configurational states and relax-

ation toward energy equilibrium. In complex systems such as
polymers, liquid crystals, etc., relaxation rates toward lower
energies for different pairs of trapping sites will vary over a
very wide range,

ki = k0 exp�−
�Ei

kBT
� , �2�

where k0 is pre-exponential parameter and � is a parameter
whose physical meaning will be discussed further. Clearly,
states �or degrees of freedom� that require less energy to
move toward equilibrium will relax first, and hence hierar-
chical order in relaxation is present in such a system. This
leads to the familiar delayed response in comparison to a
system in which there is little interaction between its parts
�hierarchical order is absent� and relaxation occurs in a par-
allel way.

This type of evolution can be understood in terms of a
survival probability of the initial state P�t�=�ipi�t�, where
pi�t� is the probability of the ith state to be populated at time
t �19� and is represented by a Kolmogorov-Feller integral
equation, which is suitable for solving the kinetic problems,

dpi�t�
dt

= − kipi�t� + �
i,j

�wjipj�t� − wijpi�t�� . �3�

We will show later that P�t� is equivalent to the Fourier
transform of the function measured in the QENS experiment.
By assuming uncorrelated transitions and introducing a
Laplace transform, a general solution is found in terms of the
initial population distribution G�E� and the density of sub-
states g�E�.

Let us consider one particular case, T�T0, which is the
most applicable to our system, where T is the temperature
and T0 is the temperature at which the system would have
Gaussian behavior �where T0 is related to the parameter E0 of
the exponential distribution of substates�,

G�E� = � 1

E0
exp�−

E

E0
� for E  0

0 for E � 0.
	 �4�

Under these conditions the general solution can be reduced
to following expression:

P�t� = E�„− �t/���
… = �

k=0

	
�− 1�k�t/���k


�1 + �k�
, �5�

where � is the waiting time that is defined as

� =
1

Zw0

 �Zw0�

k0 sin�����1 + �� − 1�
1

�
��1/�

�6�

and � is the dispersion parameter defined as �=T /T0 and
0���1. The solution of this kinetic equation is identical to
that of the fractional diffusion equation with a broad waiting-
time distribution. We propose that our model is appropriate
to the discotic system in which �-� interactions connect the
triphenylene cores, and there is entanglement and interdigi-
tation of the alkoxy tails between neighboring disks and col-
umns. The kinetic equation would then also be appropriate.

0.4 0.6 0.8 1.0 1.2 1.4

2

4

6

8

10

12

14
τβ

(p
s)

β

Momentum transfer, Q (Å-1)

T=358K

Fitting with aQ−α, α=1,12

Fitting with aQ-2

FIG. 2. Dependence of waiting times exponentiated in the
power � obtained from fitting intermediate scattering function with
a stretched exponential dependence Sself�Q , t�=A�Q�exp�−�t /����.
This was fitted with ���Q−2, open squares, and with ���Q−�, open
triangles, with 0 ,41���0,48. The waiting-time dependence is in
better agreement with ���Q−� dependence.
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Since the solution was obtained with the condition of an
exponential distribution of substates, one would expect to
obtain the same type of distribution for noncorrelated jumps
and a different type for correlated jumps after a characteristic
waiting time. For that purpose let us analyze expression �6�.
The expression for the diffusion waiting time differs from
that of normal diffusion and clearly will not have a simple
exponential form. Transforming it with respect to Z we ob-
tain the following representation:

Z = 
 ��

��w0
�−1k0 sin�����1/�−1�1 + �� − 1�

1

�
�1/�−1

. �7�

Assuming

C = 
 ��

k0��w0
�−1 sin�����1/�−1

�8�

as a normalization constant, we obtain the expression for the
substate distribution,

Z = C�1 + �� − 1�
1

�
�1/�−1

. �9�

One can immediately see that expressions �4� and �9� are
different. After a characteristic waiting time, the
function type of the initial distribution of substates has
changed. Comparing Eq. �9� and the Tsallis distribution,
p�x�� �1− �1−q�x�1/1−q, we can see close similarities, the im-
portant quantity here being the entropic index q �20�. But we
can also obtain such a distribution by other means �21�.

Let us consider a small volume in our system. The aver-
age number of energy traps in this volume is defined as
�ni=Ei /E0 and the probability distribution of encountering
ni in this volume is Poissonian �22�,

P�Ei� =
�nine−�ni

n!
.

Assuming that some number of subsystems is trapped in this
volume, then the probability of finding � subsystems in those
traps is given by a gamma distribution,

f��Ei� =
1

E0
���
� Ei

E0
��−1

exp�−
Ei

E0
� .

We can now find the expectation value of the number of
subsystems Z that are distinct from those associated with the
ith trapping sites, taking into account that some of them are
still trapped and some are relaxing out of the ith trapping
sites,

Z = �
0

	

Z�ikif��Ei�dEi

=
k0

w0
����0

	

exp�− �
1 + �� − 1�
E0

kBT
������−1d� ,

where �=Ei /E0. If we substitute t=��1+ ��−1��E0 /kBT��
then the integral will be expressed as

Z =
k0

w0
���
�1 + �� − 1�

T0

T
�−��

0

	

e−tt�−1dt

=
k0

w0
�1 + �� − 1�

T0

T
�−�

.

If we define

� =
1

q − 1
, �10�

then

Z =
k0

w0

1 + �� − 1�

T0

T
�1/1−q

. �11�

The expression in curved brackets of Eqs. �9� and �11� is
identical to the Tsallis distribution �20� even though Eq. �11�
is not normalized. We will thus equate � with q and so make
the connection to the experimentally determined value of
��0���1�,

q = � = 2 − � . �12�

Expressions �10� and �12� connect the entropic index q with
number of trapped subsystems and the equilibrium tempera-
ture T0 since � is defined by means of T0. The closer the
temperature is to T0, the more parts of the system are trapped
in particular states that correspond to equilibrium. In this
case q→1. The opposite case is when the temperature is far
from the equilibrium value. Then just one part of system will
be in a particular trap. This case represents q→2. Therefore,
we conclude that the entropic index will fall in 1�q�2.

It is well established that the van Hove neutron-scattering
function S�Q ,�� represents the double Fourier transform of
the generalized pair distribution function G�r , t� �9�. The lat-
ter is traditionally analyzed via a diffusion equation and ki-
netic equation of the Chudley-Elliot model �23� in terms of
the Gaussian function. Equation �3� can be easily trans-
formed into the equation used in the Chudley-Elliot model.
One of the assumptions made there is that there is negligible
time for the jump from one site to another. That time is
described in Eq. �3� by the first term on the right side of the
equation, relaxation rate ki. Another assumption is that time
between two jumps and the distance between two sites are
the same for all sites. With these assumptions, the Chudley-
Elliot kinetic equation is obtained from Eq. �3�, which gen-
eralizes the Chudley-Elliot model. It has been shown that
solution of the Chudley-Elliot model equation is the interme-
diate neutron-scattering function �24� and thus the solution
of Eq. �3� is also the intermediate neutron-scattering func-
tion. It follows that the probability of remaining in the initial
configuration, P�t�, is equivalent to the normalized interme-
diate function F�Q , t�, this being the Fourier transform of
S�Q ,�� for IN6.

IV. RESULTS AND DISCUSSION

As mentioned in Sec. I, a conventional approach and
treatment of our data fails when dealing with such compli-
cated system as liquid crystals, and fitting with two Lorent-
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zians has systematic deviation from the shape of the experi-
mental curve. Of course, fitting with three or even more the
Lorentzian functions would give better fit although the
physical meaning of such an introduction will be ambiguous.
The liquidlike contribution from the alkoxy tails is removed
in the sample with deuterated tails, and spectra from this
sample show an even greater deviation from the simple two-
Lorentzian quasielastic profile. In this case S�Q ,�� reflects
mostly the response from the cores, which are ordered in a
hexagonal lattice and, therefore, should follow the conven-
tional diffusion equation. Therefore, this example becomes
especially illustrative. For interpretation of our data we have
used a different approach and model for the relaxation kinet-
ics in a correlated environment. To analyze our data in the
time domain, S�Q ,�� has to be converted using an inverse
Fourier transform �IFT� and dividing by the IFT of the mea-
sured resolution function to obtain the pure response of the
system. In this way we do not separate the elastic and quasi-
elastic parts of the signal but study the evolution of the sys-
tem as a whole one. This assumes that there is no indepen-
dent “static” component that gives only elastic scattering
�within the resolution limits�. All intermediate scattering
functions F�Q , t� have nonexponential slopes �Fig. 3�, this
fact indicating that the motion of the molecules in this sys-
tem is complex. Our interest here is in the time dependent
entanglement of the alkoxy tails and how this affects the
dynamics of the aromatic cores.

For the fitting procedure we have used 50 terms in the
summation of Eq. �5� since a greater number were found not
to change the overall fitting quality. Figure 3 illustrates the
result of fitting the IFT of the QENS signal by Eq. �5� with
only � and � as free parameters. Therefore, � and � may
have different values for each value of Q. The behavior of
HAT6 is described quite well by expression �5�, which indi-
cates that we are probing a single relaxation process of hy-

drogen atoms, reflecting a system of collective motion over
the entire data.

It is crucially important to examine the value of � as a
function of momentum transfer Q �Figs. 4 and 5� because
this reflects changes in the waiting time as a function of
distance. Figure 3 represents the Q dependence of � at
T=340 and 370 K for the protonated sample �phase-
transition temperatures HAT6� and at T=367 K �phase-
transition temperature� for HAT6 with deuterated tails. The
most striking feature of this figure is that the behavior of
HAT6 with protonated tails at 340 K resembles that of the
effective core motion coming from the sample with deuter-
ated tails at 367 K until Q�0.66 Å−1, corresponding to a
diameter of �9 Å. This is significantly larger than a static
core and probably reflects the sliding motion of the cores
over each other and the participation of the O atom plus the
first one-or-two CH2 units as part of the effective core �25�.
At length scales shorter than this, we see the fast local relax-
ation of the chains in the protonated tail sample, and at
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FIG. 3. Intermediate scattering function for HAT6 at
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longer scales we see more the effect of the core dragging on
and confining the entangled tails. Comparing that with ��Q�
at 370 K reveals that the waiting time becomes significantly
shorter and it is possible that motion of the tails, visible in
the protonated sample, plays a determinative role. The core
is still slower as can be seen from the deuterated tail sample
at roughly the same temperature that confirms findings of
Dvinskikh et al. �26�. It is interesting to see how the waiting
time changes in temperature range 340�T�370 K �Fig. 4�
where the system is in the liquid-crystalline phase. We see in
Fig. 5 that the value of the waiting time for a protonated
sample decreases as the temperature increases from which
we concludes that tails become less entangled, relaxing to-
ward equilibrium more quickly, as has already been observed
in the similar system hexapentyloxytriphenylene �HAT5�
�27�. In the region, Q�0.6 Å−1, values of the waiting time
are almost the same, except for T=352 K, and they tend to
diverge for Q�0.6 Å−1. It is likely that at T=352 K the
effect of the core motion in slowing down the tail motion is
still pronounced although it is reduced by the tails. The dy-
namics in the discotic core-tail system are clearly correlated,
the detailed dynamics of the tails not being simply additive
to that of the cores.

Figures 6 represents change in dispersion parameter �
with momentum transfer Q. The dispersion parameter in-
creases gradually with increasing Q, but it is always less than
1, which indicates that motion in HAT6 takes place in sub-
diffusive regime �18�. Again, values ��Q� for samples with
deuterated tails and a protonated one at T=340 K are very
close to each other for Q�0.66 Å−1, which implies the im-
portance of the core motion on this length scale at low tem-
peratures. The tail motion plays a crucial role at temperatures
close liquid crystalline→ isotropic phase transition and, of

course, at short length scales. The relaxation in these discotic
liquid crystals occurs in the subdiffusive regime �0���1�
�18� �Fig. 6� with a Tsallis distribution of states after charac-
teristic waiting time that has the entropic index �=q�1 in-
dicating a partially equilibrated system �21�. The Tsallis dis-
tribution of states indicates also the presence of long-range
correlations in our system as well as hierarchical order �28�.
With relation to discotic liquid crystals hierarchical order
means a certain order of relaxation: states which need the
minimum possible energy for escaping from trap to equilib-
rium, for example, stretching of CH groups, will relax first,
then states which need more time and space, for example,
methyl-group rotation, then translational motion of one of
the tails, and so on.

The Brownian diffusion is characterized by a diffusion
coefficient that is defined as K= ��x�2 /� or in terms of mo-
mentum transfer K=a /Q2�. Therefore, the dependence of
waiting time vs momentum transfer will be an inverse qua-
dratic relation. But in the case of discotic liquid crystals it
fails to show such dependence. This means that the jump-
length variance no longer has a Gaussian distribution. In the
fractional diffusion equation the diffusion coefficient is de-
fined as K�

����x�� /�� �18�. For this reason we have fitted
that dependence with the power-law function ��=aQ−� �Fig.
7�, the agreement being rather good. This result also agrees
with dependence obtained by Arbe et al. �17�, assuming that
in their case � is equal to 2. Therefore, the jump-length
variance distribution represents a Lévy distribution �18�.
From a physical point of view this implies a higher than
usual probability of long jumps in the system. The inset of
Fig. 7 represents the temperature dependence of the Lévy
index. There is a tendency of � to increase toward 2 when T
increases, indicating that with increased temperature, the sys-
tem gains enough energy to move toward equilibrium with
fewer long jumps. A slightly different picture emerges from
dependence of �� vs Q �Fig. 8�. The Lévy index for HAT6
with deuterated tails that represent cores is smaller than 1,

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.4

0.5

0.6

0.7

0.8

1.3

1.4

1.5

1.6

β,
η

Momentum transfer, Q (Å-1)

β, T=367K, deuterated
β, T=340K
β, T=370K
η, T=367K, deuterated
η, T=340K
η, T=370K

FIG. 6. Dispersion parameter � and entropic index, �, depen-
dences on momentum transfer, Q, for HAT6 with deuterated tails at
T=367 K and HAT6 at temperatures close to the phase transitions
T=340 K �crystalline→ liquid crystalline� and T=370 K
�liquid crystalline→ isotropic�.
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tion ��=aQ−�. Inset: temperature dependence of the Lévy index, �,
represents slow increase toward �=2.
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0.68, suggesting that the core must experience several long
jumps along with small jumps to reach an equilibrium state.
Even though the temperature T=367 K corresponds to the
liquid crystalline to liquid transition temperature, the cores,
unlike tails �Fig. 6 represents fully protonated HAT6 where
response from tails dominates�, seem to be more constrained
in space. That implies the presence of some limited columnar
order in HAT6 even at phase-transition temperature, in con-
trast to the tails that become less entangled with increasing
temperature.

Knowing how waiting times and jump lengths are
distributed and using the solution of the fractional
diffusion equation �18�, we can construct the van Hove
correlation function from the general expression
S�Q ,s�=Fr�Lt�G�r , t���= ��1−w�s�� /s��1 / �1−��Q ,s��� �29�,
where s=�+ i�, complex frequency w�s� is the transition
probability, and ��Q ,s� is the probability distribution func-
tion of making jump of reciprocal length Q in the frequency
interval s to s+ds. Fortunately, the Mittag-Leffler function,
which corresponds to survival probability at initial state, has
a direct representation in the frequency domain:
s−1��s�� / �1+ ��s��� �19�. The probability distribution func-

tion of making jump ��Q ,s� is decoupled for ordered arrays,
as pointed out by Klafter et al. �29�. Since discotic liquid
crystals can be treated as ordered arrays, we can express
the probability distribution function as ��Q ,s�=w�s���Q�.
Then it will be represented in terms of s and Q as
��Q ,s�=aQ� / �1+ ��s���. Finally, the expression for the
Laplace-Fourier space transform of the van Hove correlation
function will be S�Q ,s�=s−1��s�� / �1+ ��s��−aQ��. Since the
van Hove correlation function describes the behavior of the
system in time and space, two characteristic exponents—�,
which indicates on the presence of dispersed waiting times,
and �, which indicates on the presence of long jump lengths
in system—define the behavior of the system. Therefore, in
the case of discotics it will be represented by the non-
Markovian Lévy flight �18� with a broad distribution of wait-
ing times and long jump lengths. So, the fractional space
exponent � and the time exponent �or dispersion parameter�
� are fundamental characteristics of dynamics in liquid-
crystalline system.

V. CONCLUSION

The present work demonstrates that the rather simple
model for rate processes can be developed, which takes ac-
count of the structural aspects of the underlying molecular
system and its assembly, and that this model agrees quite
well with the quasielastic neutron-scattering data. In contrast
to more general interpretations of subdiffusion using
stretched exponentials, our model is developed by consider-
ation of the system itself and hence provides meaningful
parameters that have physically reasonable values. This en-
ables us to understand the dynamics of the system in terms of
slow motions of the aromatic cores that are determined by
disentanglements of the alkoxy tails whose local motions are
on a much shorter and faster scales. The presence of more
than one configuration in the system �static disorder on the
time scale of the QENS experiment� will lead to relatively
long-range correlations in discotic liquid crystals with non-
extensive statistics on the scale of the core diameter fast
dynamics which influences dynamics on longer time scale
exhibiting strong hierarchical structure. Such correlations
have been taken into account by means of the number of
subsystems that occupy the equilibrium state, providing a
good picture of the complex dynamics of discotic liquid
crystals and how these vary as a function of temperature and
phase. It is likely that many other systems could be reana-
lyzed in the physical manner of this model that we have
described here, which would lead to a better understanding
of the evolution of underlying dynamics in terms of the
physical parameters that are produced within model.
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