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Phase-field study of spacing evolution during transient growth
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The primary spacing of a dendritic array grown under transient growth conditions displays a distribution of
wavelengths. The average primary spacing is shown, both experimentally and numerically, to evolve between
characteristic incubation periods during which the distribution of wavelengths remains essentially stable. Our
primary spacing results display a gradual transition period from one spacing range to another, consistent with
the fact that the abrupt doubling of spacing predicted by Warren and Langer for an idealized periodic array
affects different wavelengths of the distribution at different times. This transition is shown to depend on the
rate of change in growth speed using phase-field simulations of directional solidification where the pulling
speed is ramped at different rates. In particular, for high rates of change of the pulling speed we observe

temporary marginally stable array configurations separated by relatively short lived transitions, while for lower
rates of change of the pulling speed the distinction between incubation and transition periods disappears.
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I. INTRODUCTION

Morphology selection has been a central issue in numer-
ous studies of pattern formation in spatially extended non-
equilibrium systems. Directional solidification is a well-
established paradigm for the study of competitive effects in
driven interfacial pattern-forming systems, such as viscous
fingering and electrochemical deposition. Understanding the
evolution of primary spacing in an extended solidifying array
is also important from a technological viewpoint because
dendrite spacing is one of the key parameters that control the
mechanical properties of cast products. Different array ar-
rangements produce different microsegregation patterns that
can influence other processes, such as solidification shrink-
age during the late stages of solidification or precipitation of
new phases in the solid state.

Directional solidification has traditionally been studied in
the context of steady-state growth. A steady-state dendrite
array is assumed as an ideal homogeneous arrangement with
uniform spacing. It is the state that in principle is approached
under constant growth conditions. In practice, when the tem-
perature field, characterized by a gradient G, and the pulling
speed V), are maintained constant from beginning to end, a
marginally stable arrangement with a range of primary spac-
ings appears to be attainable. While spacing selection under
steady-state conditions is an important academic paradigm, it
is not an accurate representation of the conditions in actual
casting processes, where the thermal profile and growth rate
are commonly interdependent and evolve with time.

Classical theoretical models predicting a nominal primary
spacing for a given set of growth conditions are largely heu-
ristic, dependent on fitting parameters commonly associated
with assumptions of the geometry of the steady-state den-
drite morphology [1-3]. As steady state is not achievable in
practical situations, these models cannot be applied directly,
and although useful in elucidating important aspects of spac-
ing selection, these models need to assume the morphology
of the structure they are trying to predict. It is also not clear
whether they hold outside the conditions of the experiments
against which they are calibrated.
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The notion of a unique spacing selection mechanism has
been challenged by the analytical theory of Warren and
Langer, who analyzed the stability of idealized steady-state
dendritic arrays to a period doubling instability [4,5] and
found that an array can be stable over a range of pulling
speeds, implying that there is a range of available spacings
that can be accessed through different initial conditions, by
varying the growth history, or both. Lin et al. [6] reported
experiments where ramping the pulling speed in different
manners resulted in different arrangements with distinct av-
erage primary spacing for the same set of final growth con-
ditions. Losert et al. [7] reported experiments where, under a
gradual change in pulling speed, the average primary spacing
remained stable over a range of pulling speeds, consistent
with the theory of Warren and Langer. Beyond that range an
abrupt transition to a new stable dendritic arrangement, con-
sistent qualitatively but not quantitatively with a period dou-
bling instability, was observed. The deviation from precise
period doubling is attributed to boundary effects.

Phase-field theory has emerged in recent years as a prom-
ising candidate for a fundamental theory to model solidifica-
tion microstructures. Phase-field models are appealing be-
cause their free-energy functional is constructed from basic
thermodynamics and their kinetics from fundamental conser-
vation laws. Moreover, their parameters are identifiable—if
not necessarily known—in terms of fundamental material
and process parameters. The first simulations to test spacing
versus pulling speed in alloys date back to the work of Boet-
tinger and Warren [8] who found that spacing versus pulling
speed fell within a range of values. Their use of very small
dendritic arrays, however, likely precluded a quantitative
comparison with experiments. More recently, phase-field
models have become more quantitative when implemented in
the so-called rhin interface limit [9,10] using novel simula-
tion techniques like adaptive mesh refinement [11]. A first
step using phase-field models to quantitatively study spacing
selection in directional solidification was taken by Green-
wood et al. [12] in two dimensions and Provatas and co-
workers in three dimensions [13]. These works computed the
mean steady-state primary spacing of directionally solidified
succinonitrile (SCN) alloys and found very good agreement
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with two-dimensional (2D) experiments. These studies sug-
gested that, at least for organic alloys grown under steady-
state conditions and one class of initial conditions, there ex-
ists a crossover scaling function interpolating between two
power-law spacing regimes observed experimentally and
modeled by geometrical models.

Despite the success of phase-field modeling in predicting
steady-state spacing, as well as other steady-state properties
such as cell tip structure [14], this formalism has hardly been
used to systematically explore spacing under transient solidi-
fication conditions. In this paper, we exploit the ability of
phase-field models to self-consistently simulate topologically
complex cell and dendrite structures, kinetics and surface
tension anisotropy, phase mobilities, different thermal condi-
tions, and different initial conditions in order to study tran-
sient spacing development and how it may relate to previous
models and theories of the steady-state solidification struc-
tures.

II. PHASE-FIELD MODEL DESCRIPTION

For convenience we focus on simulations that are two
dimensional, corresponding to a longitudinal section through
a row of dendrites. We consider unidirectional solidification
of an AlCu alloy system in the dilute limit with straight
solidus and liquidus lines of slopes m/k and m, respectively.
The corresponding partition relation is c,=kc;, where ¢, (¢;)
is the molar concentration of impurities at the solid (liquid)
side of the interface and k is the partition coefficient. Since
solute diffusion in the solid is several orders of magnitude
lower than in the liquid and convection in the liquid does not
significantly affect the final spacing in upward directional
solidification [15], both are neglected. Latent heat production
is neglected, resulting in the frozen temperature approxima-
tion, modeled as T(z,1)=Ty+G(t)[z—zo— [(,V,(t')dt'], where
T(z9,0)=T, is a reference temperature, while G(7) and V/,(7)
are the local thermal gradient and pulling speed, respectively.
A fourfold anisotropy is implemented on the surface energy
through the anisotropy function a(6#)=1+ € cos(46), where €
is the anisotropy strength and 6 is the angle between the
normal to the interface and an underlying crystalline axis,
taken to coincide with the direction of the thermal gradient.
Setting as the concentration reference the impurity concen-
tration on the liquid side of an advancing steady-state planar
interface c?:co/ k, where c( is the nominal alloy composi-
tion, we reach the following sharp interface solidification
equations:

ﬁ,czDV2c—€-fc, (1)

Cl(l_k)vn:_Dancll'i_nA'fc’ (2)

c]/c(l): 1-(1-k)rdy(0) - (1- k)(z —f Vp(t’)dt’>/lT
0

- (] - k)an9 (3)

where d(60)=1"(6)T,,/L is the solutal capillary length, AT,
=|m|(1-k)c} is the freezing range, y(6) is the interface en-
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ergy, l;=AT,/G is the thermal length, and B=1/(u,AT,) is
the kinetic coefficient. The constants 7, and L are the melt-
ing temperature and latent heat of fusion of aluminum.

In order to promote side branching, thermal noise-induced
concentration fluctuations are included in the liquid by fol-
lowing Echebarria et al. [16] and introducing the current j,,
whose components are random variables obeying a Gaussian
distribution with variance

O?(Fst)jg(’?,at,» = 2DFc5mn5(F_ 7,)5(t_ l,), (4)

where the magnitude F,. is
fluctuation-dissipation relation

determined through the

c F

2\ _ _____c¢
(&)= (NoJvo)AV ~ AV’

()
where ((8c)?) is the equilibrium average of the square of the
departure of the concentration from its equilibrium value in a
microscopically large but macroscopically small volume AV.
The first equality in Eq. (5) follows from the standard rela-
tion ((n)?y=n, where n is the number of solute atoms in the
small volume AV while using the definition c=n/N and that
the number of solvent atoms in the same volume is N
=AVN, /vy, where N, is Avogadro’s number and v, is molar
volume of solvent atoms. The second equality (right-hand
side) of Eq. (5) is obtained by computing {(dc)?) directly
from the sharp-interface equations (1)—(4). By the procedure
outlined in Ref. [17] this incorporation of noise can be
shown to yield the appropriate equilibrium interface fluctua-
tion spectrum in the sharp-interface limit.

Equations (1)—(4) are modeled by adapting the phase-field
formulation developed by Karma and co-workers and de-
tailed extensively elsewhere [9,10]. The evolution equations

are given in terms of a generalization of the field U=(c
—c?)/[c?(l—k)], which represents the local supersaturation

with respect to the point (c,T;):

1 /c}

U= ( ! - 1), (6)
1=\ (1= )2 +k(1+ P)2

with the phase-field variable valued at ¢=1 (—1) in the solid
(liquid). Their explicit form is given by

T(ﬁ)(l -1 _k)w)ﬁ_‘i’
ot

Iy

=wiV[a(@)*V ]+ p— & —N(1 - ¢2)2<U+ ﬂ)

Iy
(7)
[Lk_ 1ok )i
2 2 ot
- = Wo s d®
= V[q(qb)DVU— 2\5{1 +(1 -k Ui P ]
+(—1+(1_k)U)@—€~fu, (8)
2 at

where z;,,= [V, dt’ is the interface position, (i) =ra’(A) is
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TABLE I. Material parameters defining the AlCu system. m is
the liquidus slope, ¢ is the alloy composition, k is the partition
coefficient, D is the diffusivity of impurities in the liquid, I" is the
Gibbs-Thomson constant, and € is the anisotropy strength.

|m| Co D r
(K/wt%)  (wt %) k (um?/s) (K um) €
3.00 0.34 0.15 3400 0.10 0.02

the kinetic relaxation time, A=—(V¢)/(|V#|) is the unit vec-
tor normal to the interface, and the fourfold anisotropy is
imposed through a(i)=1-3e+4€(d,$)*+(d.$)*], where &
is the anisotropy strength. The interpolation function g(¢)
=(1-¢)/2 governs diffusivity across the interface. The fluc-

tuating current ju obeys the correlation
i (FDT(F 1) = 2Dq()F, 6, 0(F = F) St —=1"),  (9)
and depends explicitly on the phase field ¢ via the solute

diffusivity Dg(¢). The magnitude F,=F[1+(1-k)U] is de-
fined by the relation

((6c)’) _ F
Uy =—5 ==, 10
(U= o= 1 (10)
and the constant noise magnitude,
k
-0 (11)

" (1= k)Naco’

is the value of F, for a reference planar interface at tempera-
ture T, (U=0), while Acg=c)(1-k)=co(1/k—1) is the con-
centration jump across the solid-liquid interface.

The material parameters employed are presented in Table
L. Kinetic effects are neglected (i.e., 8=0), at least to first
order, as shown in [10]. The phase-field equations are simu-
lated using the adaptive-mesh-refinement scheme developed
by Provatas and co-workers, details of which can be found in
[11,18].

Two different general transient growth conditions are ex-
amined in this work. In the first case, direct thermocouple
data from a unidirectional solidification experiment [19]
were used to extract the local thermal gradient across the
solid-liquid interface and the effective front velocity. These
were then fitted to provide the functions representing G(r)
and V,(¢). In the second case, the thermal gradient is kept
constant while the pulling speed is discretely incremented
over a predetermined range at varying rates.

Figure 1 shows a typical interface shape and adaptive
mesh detail for a subsection of a simulated dendritic array.
Following Greenwood et al. [12], the primary spacing was
extracted through a power spectral analysis of the interface
profile. Figure 1 also shows the power spectral analysis of
the dendritic structure shown in the top part of the figure.
This analysis is typical and reveals a main peak, which cor-
responds to the mean spacing of the dendritic array as ob-
tained by the usual line intersection or other metallurgical
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FIG. 1. (Color online) Top two frames show the interface shape
of a portion of a typical dendritic array. Grid lines map out the
structure of the adaptive mesh. The bottom frame shows the corre-
sponding power spectrum of the interface.

analyses. It also reveals other persistent length scales that
may exist in transient data, the norm in most experimental
situations.

In order to reduce boundary effects we studied the effect
of the system size on the primary spacing at steady state
conditions. This study, reported in Ref. [19], concluded that
the minimum system size required to avoid finite-size effects
in simulations is 1 mm. This sets the lower bound of system
sizes simulated.

III. RESULTS AND DISCUSSION
A. Transient growth

The time-dependent functions representing the thermal
gradient G(¢) and pulling speed V/,(¢) in the simulations pre-
sented in this section were determined by fitting the local
thermal gradient across the solid-liquid interface and the ef-
fective front velocity obtained from direct thermocouple
measurements in the unidirectional solidification experiment
reported in [19]. The corresponding plots are shown in Fig.
2. Since the pulling speed was modeled after a fit of the
experimental front velocity and the simulated interface is
initially positioned at 7;, the simulated front velocity differs
from the experimental front velocity used to determine the
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FIG. 2. (Color online) Local thermal gradient across the solid-
liquid interface and effective front velocity obtained from direct
thermocouple measurements in the unidirectional solidification ex-
periment reported in [19], and the corresponding fitting curves G(z)
and V(1) employed in the simulations presented in this section.

pulling speed, with the discrepancy decreasing as the system
evolves. Figure 3 illustrates three different stages of micro-
struction evolution using the profiles in Fig. 2. Even though
the width of the simulation domain was 2.5 mm, it features
only small subsections of the interface to be able to appreci-
ate the details of the interface morphology.

The evolution of the mean spacing in our simulations is
characterized by temporary marginally stable states and
shows a remarkable qualitative agreement with the new ex-
periments reported in Ref. [19], as shown in Fig. 4. States of
nearly stable mean spacing can be (statistically) locally uni-
form but not globally. Neither existing dendrites are elimi-
nated nor new ones created, although the structure of indi-
vidual dendrites may change in response to the varying
conditions as described in [14]. While the mean spacing re-
mains roughly constant over some time intervals, it may be
subject to a slow transverse adjustment process aiming to-
ward global uniformity. The agreement between simulations
and experiments is only qualitative since the simulations are
two dimensional and, as mentioned, the simulated pulling

Fue o
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FIG. 3. Details of interface segments of approximately 100 um
width in three different instances of the simulation. At first (bottom
left) the interface exhibits kinetic effects due to the initial high
velocity, and as the pulling speed decreases the kinetic effects fade
(top left). At later time, during a transition period, cell elimination
dominates until a new marginally stable state is reached (right).
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FIG. 4. (Color online) Mean primary spacing as a function of
velocity obtained experimentally (black circles) and via 2D phase-
field simulation (red squares). The blue curve corresponds to the
relationship obtained by Hunt and Lu for unsteady-state solidifica-
tion. [Note that G(r) is also dynamically changing at each point.]

speed is determined through a fit of the experimentally reg-
istered front velocity. It is noteworthy that both results
sharply contrast with the monotonic and uniform behavior
predicted by geometrical models such as that of Hunt and Lu
[20], also included in Fig. 4 for reference.

Analogous dynamics, namely, evolution characterized by
temporary marginally stable states, was observed by Losert
et al. in directional solidification experiments where the pull-
ing speed was slowly ramped [7]. In that case, it was asso-
ciated with the period doubling instability predicted by War-
ren and Langer [4,5] even though the mean spacing during
the stable states did not differ by a factor of 2, a fact that was
attributed to finite-size effects. The small number of den-
drites likely also contributed to a faster transition between
the stable states when compared to our results. It should be
noted that a fast transition between states with significantly
different mean primary spacing has also been associated with
the cell-to-dendrite transition. However, our growth rates and
thermal gradients are far from that transition as evidenced by
the criteria suggested by Trivedi and Kurz I,=kl; [21].

B. Ramping the rate of pulling speed

Experimental studies of the history dependence of pri-
mary spacing have focused on ramping the pulling speed
slowly enough that the system is assumed to reach a steady
state in between each ramping step of the velocity [6,7]. As
an intermediate between this behavior and that found by us
experimentally, we explore numerically a scenario whereby
we ramp the pulling speed in discrete steps between 10 and
20 um/s at different rates. This is achieved by varying the
number (N=2,5,10) and duration of time intervals over
which the pulling speed is kept constant before changing its
value. The mean primary spacing is registered at the end of
each interval. The results from these simulations are shown
in Fig. 5. The starred data are obtained by starting from a
morphologically noisy interface pulled at a constant speed of
10 wm/s until a statistically stable state is reached, and then
using this configuration as an initial condition for a simula-
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FIG. 5. (Color online) Spacing evolution versus pulling speed v »
as v, is ramped from 10 to 20 um in N time intervals, as well as
continuously at each numerical time step; G=5 K/mm. The starred
data are the mean steady-state spacing for the corresponding pulling
speed. Depending on the particular growth conditions, the full
width of the simulation domain, 4 mm, accommodates (in the case
of larger spacing) more than 40 dendrite arms.

tion with a constant pulling speed of 20 wm/s until a new
stable state is reached. The curves in Fig. 5 represent simu-
lations starting with the same initial condition and taking an
equal total amount of time t,,, while the pulling speed is
increased from 10 to 20 wm/s in N discrete steps such that
the nth interval has a constant pulling speed of v,=10(1
+n/N) um/s and lasts ¢,,,/N. In an additional case the pull-
ing speed is varied “continuously,” namely, it is ramped at
each iteration in the same way described above, taking N as
the total number of iterations required for the simulation to
last ¢,,,.

It is noteworthy that Figs. 4 and 5 exhibit the same quali-
tative behavior for the time evolution of the mean spacing,
even though the control parameters in these two figures
cover very different ranges of pulling speed and thermal gra-
dient and begin with very different initial conditions. As
mentioned above, the general behavior is consistent with the
theory of Langer and Warren and the experiments of Losert
et al., and it points to the fact that dendritic arrays are stable
over extended ranges of solidification rate, at least under
transient conditions.

The transient data of Fig. 5 show that competitive growth
between neighboring cells is negligible during periods where
the mean spacing remains roughly constant, while it domi-
nates the evolution of the array during the transition between
those states. To explain this we note that the creation of new
dendrites, or the elimination of existing ones due to competi-
tive growth, is not instantaneous but requires some charac-
teristic time. Even in an ideal periodic array, transitions be-
tween stable states will occur over some time. A distribution
of spacings will thus shift its mean value gradually, which
will result in an extended transition period. As the pulling
speed increases, the distribution of primary spacings remains
roughly unchanged, until a critical velocity is exceeded. At
this point wavelengths in the distribution larger than some
maximum value become most unstable to competitive
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FIG. 6. (Color online) Shift of the main peak of the power
spectra of a dendritic array as v, is increased from a lower (con-
tinuous black line ) to higher (dashed red line) value of v, It is
evident that larger wavelengths in the early time shift to shorter
wavelengths at later time, when v, is increased. These power spec-
tra correspond to the transition period during the seventh interval in
the simulation with N=10 ramping steps shown in Fig. 5.

growth and tip splitting, and cell readjustment occurs. The
weight of the spacing distribution shifts toward a smaller
mean spacing (i.e., higher frequency). This is illustrated in
Fig. 6. During discrete increments in the pulling speed, it is
expected that entire ranges of spacings will be affected at
each step. As the pulling speed is increased further, shorter
wavelengths are affected until another critical pulling speed
is reached when all wavelengths have been affected, after
which the system stabilizes into a new stable state character-
ized by a smaller mean spacing. Figure 7 shows the power
spectra corresponding points in the last interval in the simu-
lation with N=10 ramping steps in Fig. 5, exemplifying the
statistical stability of the spacing distribution during the in-
cubation periods.

The mechanism discussed above depends on the applica-
bility of the theory of Warren and Langer to an array with a
distribution of primary spacings. In that case, the critical val-
ues of pulling speed are expected to depend in some as yet
unknown way on the rate of change of pulling speed. How-
ever, the proposed mechanism is consistent with the analyti-
cal expressions for the critical values of pulling speed that
have been proposed by Ma [22].

With regard to thermal gradient, we expect that given its
stabilizing effect a larger thermal gradient would reduce not
only the average spacing but also the spread (in absolute
values) of the spacings present in the array. Thus, we would
expect a reduction in the duration of the transition periods,
and accordingly different critical values of the pulling speed
limiting the transition, not because of a change in how the
pulling speed affects different wavelengths but because less

—
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FIG. 7. (Color online) Power spectra of the dendritic array dur-
ing two stages of the incubation period corresponding to the last
interval in the simulation with N=10 ramping steps illustrated in
Fig. 5.
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FIG. 8. (Color online) Primary spacing for different morpho-
logically distinct initial interfaces, where \| approximates the mean
spacing registered when starting form a morphologically noisy in-
terface. The other data sets correspond to the spacing reached from
initial interfaces with a sinusoidal perturbation corresponding to the
harmonic of \; indicated.

wavelengths are present in the array. In the same way, we
expect the initial state of the system (growth conditions, ini-
tial concentration distribution, and morphology of the inter-
face) to affect the values of the critical pulling speeds that
limit the transition periods by influencing the initial spectrum
of wavelengths composing the array.

Figure 5 suggests that the higher the rate of change of v,
(larger N), the shorter lived is the unstable growth regime.
This may be due to the fact that the shorter the time between
step changes in v, (f,,/N), the longer a particular wave-
length remains stable against splitting or merging. As a re-
sult, a particular v, is eventually attained where a large num-
ber of wavelengths simultaneously become unstable, leading
to an abrupt change in mean spacing. Conversely, the longer
the interval between steps (lower N), the more time each
wavelength in the system has to become unstable in accor-
dance to the current v I When that is the case, the evolution
becomes more monotonic and closer to the predictions for
steady-state growth (starred data in Fig. 5).

C. Initial conditions and history dependence

The accumulated evidence on the history dependence of
the morphology of an extended array in a stable state pre-
sents an opportunity to extend our numerical study of tran-
sient growth conditions. Figure 8 plots the mean primary
spacing \; once a stable state is reached for a constant v,,, for
different initial interface morphologies. One set of A vs v,
consists of starting from a morphologically noisy flat inter-
face, which is the same as the case previously examined by
Greenwood et al. [12]. In the data sets, the initial conditions
consist of an initially sinusoidal interface of wavelength half,
equal, and double the value of the spacing )\,(vp), i.e., the
mean spacing of the stable state reached under random initial
conditions. The results show certain dispersion in the final
spacing, but are nonetheless confined within a narrow band.
The dispersion in Fig. 5 is larger than the band size in Fig. 8
at the same velocity (see, for example, 20 wm/s). This is
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FIG. 9. (Color online) Evolution of the spacing when v,
=10 um/s from three different initial spacings \;,;, corresponding
to each curve; G=5 K/mm.

because the spacings in Fig. 5 did not have enough time to
converge toward the stable band predicted in Fig. 8. The
convergence of the mean spacing, for a fixed v » is illustrated
in Fig. 9. If this is a general feature of convergence, it would
imply that a large enough spread in the initial conditions will
lead to a mean spacing that asymptotically falls within a
progressively narrowing band of values. When the evolution
of the system is interrupted before reaching convergence, as
when ramping the pulling speed or under transient condi-
tions, the width of the band within which the spacing falls
will depend on the proximity of the (evolving) band to its
converged values. The broader the distribution of initial
states, the longer the system is expected to require to ap-
proach stability.

Further insight into the history dependence and transient
evolution of primary spacing can be found in the sets of
simulations summarized in Fig. 10. Each set corresponds to a
series of simulations with (different) constant pulling speed,
where the state reached at the end of a simulation serves as

- First set (10 -> 20 -> 10) um/sec
B8 First set (10 -> 30 -> 10) pm/sec
&€& First set (10 -> 50 -> 10) um/sec
@@ Second set (20 -> 30 -> 20) pm/sec
[HD Second set (20 -> 50 -> 20) um/sec
@ Third set (30 -> 50 -> 30) um/sec

Primary spacing (1m)

5010 20 30 40 50

Pulling speed (um/sec)

FIG. 10. (Color online) Mean spacing registered once the sys-
tem stabilizes under different constant pulling speeds, for sets of
simulations where the stable state reached at the end of a simulation
serves as initial condition for the next one. The first simulation in
each set starts with a flat interface roughened by adding morpho-
logical random noise; G=5 K/mm.
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the initial condition for the next one. The first simulation in
each set starts with a flat interface roughened by adding mor-
phological random noise. In the set connected by black ar-
rows, the first simulation has a constant pulling speed of v,
=10 wm/s. Once the system reached stability, the resulting
state served as the initial condition for three simulations with
different constant pulling speeds of v,=20, 30, and
50 mm/s. When stability is reached in each of these cases,
each of the resulting stable configurations (vp=20, 30, and
50 wum/s) serves as an initial condition for simulations
where the pulling speed is set (back) to a constant value of
v,=10 um/s. The second and third sets in Fig. 10, each
interconnected by (red and green) arrows, follow an analo-
gous procedure. The second set starts with v,=20 um/s, the
result of which serves as the initial condition for simulations
with constant pulling speeds of v,=30 wm/s and v,
=50 wm/s, respectively. Each of these results then serves as
the initial condition for two simulations where the pulling
speed is set (back) to a constant value of v,=20 um/s. The
third set starts at v ,,:30 um/s, the result of which serves as
the initial condition for simulations with a pulling speed of
v 1,=50 mm/s, the result of which, in turn, serves as the ini-
tial condition for simulations where the pulling speed is set
back to v,=30 um/s.

Figure 10 exhibits the same qualitative behavior as Fig. 8,
both presenting an apparent tight band of accessible mean
spacings. It is noteworthy that the limits of the apparent
bands in Figs. 8 and 10 are very similar since the stable
states have been reached in both cases.

IV. CONCLUSIONS

Under transient conditions, our work shows that the
power-law behavior predicted by most previous heuristic
models is incorrect. In fact, under transient conditions the
mean spacing appears relatively stable over a broad range of
pulling speeds, changing relatively rapidly at specific values,
which depend on the rate of change of the pulling speed.
Even in the case of transient dendritic growth the concept of
a predictable description of spacing within the confines of a
phase space attractor of dendrite spacings that is
mathematically—or at least numerically—calculable may
still be plausible. As our results indicate, such an analysis
would have to incorporate the time dependence of velocity
and its effect on where rapid changes between stable states
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occur. Further study is required to go beyond the current
geometrical models. The results of simulations and experi-
ments suggest that a natural theoretical framework for a
spacing selection theory under transient conditions would
start by extrapolating the dynamical stability theory of War-
ren and Langer to include a dendritic array with a distribu-
tion of wavelengths.

While hysteresis in spacing evolution was not investi-
gated explicitly, Fig. 10 seems compatible with that a set of
simulations in which the pulling speed is cycled, say through
(10—-20—30—50—30—20—10) um/s, may present
hysteresis within at least a closed band when plotted in terms
of the average spacing vs pulling speed. However, we do not
have enough evidence to conclude that the average spacing
will cycle if the pulling speed is cycled. We also find obser-
vationally that the effects on the morphology of a dendritic
array, and in particular the average spacing of the system,
often lag behind its causes. This can influence, for example,
the distribution of modes comprising an array and the result-
ing characteristic time over which their destabilization oc-
curs to shift in the mean spacing of the array. Ultimately, this
effect can create a hysteresis on not only the velocity but also
the duration of the transition period between spacing
branches.

It is noteworthy that the study of morphology selection,
and in particular spacing selection in extended dendrite ar-
rays, has been increasingly regarded as a practical “materi-
als” problem and relegated to journals dedicated to prag-
matic problems. This has been in part due to the fact that
appropriate fundamental formalisms, such as the phase-field
method used in the present paper [10], have only become
available relatively recently. Our work here demonstrates
that spacing selection in solidification in fact possesses many
open fundamental questions regarding nonequilibrium pat-
tern formation in extended driven systems. It is hoped that
our work will peak interest in and lead to further studies in
this important paradigm of nonequilibrium pattern formation.
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