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Cumulative distribution functions associated with bubble-nucleation processes in cavitation
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Bubble-nucleation processes of a Lennard-Jones liquid are studied by molecular dynamics simulations.
Waiting time, which is the lifetime of a superheated liquid, is determined for several system sizes, and the
apparent finite-size effect of the nucleation rate is observed. From the cumulative distribution function of the
nucleation events, the bubble-nucleation process is found to be not a simple Poisson process but a Poisson
process with an additional relaxation time. The parameters of the exponential distribution associated with the
process are determined by taking the relaxation time into account, and the apparent finite-size effect is re-
moved. These results imply that the use of the arithmetic mean of the waiting time until a bubble grows to the
critical size leads to an incorrect estimation of the nucleation rate.
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I. INTRODUCTION

When a system exhibits a first-order transition at some set
of parameter values, nucleation phenomena are observed in a
transient process. A familiar example of such nucleation is
observed in the liquid-gas phase transition. The theory de-
scribing such nucleation was initiated by Gibbs [1], which
was followed by quantitative arguments for the steady-state
nucleation rate [2,3]. This nucleation theory was refined by
Zeldovich [4] and is now called the classical nucleation
theory (CNT) [5]. CNT was first constructed for droplet nu-
clei in a supersaturated vapor and then applied to bubble
nuclei in a superheated liquid [6]. In CNT, the nucleation is
treated as a stochastic process, and CNT predicts a nucle-
ation rate that corresponds to the emerging frequency of
critical embryos. While nucleation rates during the homoge-
neous condensation of a supersaturated vapor are, on the
whole, well predicted by CNT with some modifications [7],
it is well known that the nucleation rates of bubbles in a
superheated liquid predicted by CNT are markedly different
from the values obtained experimentally [8] or numerically
[9]. This discrepancy originates from the fact that the nucle-
ation phenomena of bubbles are considerably different from
those of droplets for the following reasons. (i) The free en-
ergy required to form a bubble is not a unique function of its
volume or the number of particles since a gas is compress-
ible. (ii) Work carried out by bubbles on the ambient liquid
cannot be ignored. (iii) Interbubble interactions via ambient
liquid cannot be ignored. One of the important differences
between the droplet and bubble nucleation is the density of
the ambient phase. For the case of the droplet nucleation, the
ambient phase is gas phase which density is usually negli-
gible. However, the bubbles can interact each other via am-
bient liquid. For example, one bubble growth increases the
pressure of the surrounding liquid which may suppress the
nuclei of other embryos. Corresponding to (i), the compress-
ibility of bubbles can be measured by molecular dynamics
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(MD) simulations [10], and the free energy surface of the
embryos of bubbles has recently been studied in terms of
density functional theory (DFT) [11]. The work carried out
in bubbles can also be estimated directly by MD [9] and
indirectly by DFT from the analysis of cavity [12]. Despite
such studies, less attention has been paid to the finite-size
effect on bubble nucleation, while such effect was investi-
gated for droplet nucleation [13]. If the effect from (iii) is
exhibited, this would cause strong finite-size effect. There-
fore, investigation of the size dependence of nucleation rates
is necessary. In the present paper, we study bubble-
nucleation processes of a Lennard-Jones liquid by MD to
clarify the finite-size effect of bubble nuclei.

II. NUCLEATION RATE

Consider a superheated liquid in a metastable state. While
the gas phase is more stable than the liquid phase, time is
required for the uniform phase to change to the gas-liquid
coexistent phase since there is an energy barrier to be over-
come in the formation of large bubbles. The lifetime of such
a superheated liquid, which we call the waiting time #,, in the
following, is a stochastic variable. The superheated liquid is
characterized by a nucleation rate J, which is the number of
embryos growing beyond the critical size in the unit time and
volume. If the system is in the steady state, J can be ex-
pressed in terms of the expectation value of the waiting time
(ty) as

1
J=——, 1
1) W
with the linear size of the system L. It is widely assumed that
a bubble-nucleation process is a Poisson process, then the
cumulative distribution function (CDF) associated with
nucleation events has the exponential distribution

F(t)= P(t, <t)=1—-exp(-1/7). (2)

The exponential distribution is specified only by the param-
eter 7, which denotes the time scale of this stochastic pro-
cess. From Eq. (2), (t,,) equals 7.
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On the other hand, CNT predicts the nucleation rate from
the work carried out to form the critical bubble as

J=DZc(n*,v"), (3)

where D is the kinetic prefactor, Z is the Zeldovich factor,
which describes the nonequilibrium effect, and c¢(n,v) is the
number density of bubbles with volume v containing n par-
ticles [6]. In a superheated liquid, the reversible work
W(n,v) carried out to form a bubble with volume v contain-
ing n particles has a saddle point at (n*,v*), which corre-
sponds to the critical bubble. The nucleation rate J given in
Eq. (3) is determined only by the temperature and density of
the superheated liquid. Equations (1) and (3) lead to the find-
ing that (z,,) should be inversely proportional to the volume
of the system if the system does not have any finite-size
effect.

III. METHOD

To estimate the waiting time in bubble nucleation, we
perform MD simulations. We use the truncated Lennard-
Jones potential of the form

vl () (2 el e

with the well depth & and atomic diameter o [14]. The coef-
ficients ¢, and ¢, are determined so that V(r.)=V’'(r.)=0
with the cutoff length r., i.e., the values of potential and
force become continuously zero at the truncation point. In
the following, we use the physical quantities reduced by o,
g, and kg; i.e., the length scale is measured using the unit of
o and so forth. We set the cutoff length as r.=3.0. The sys-
tem is a cube with linear size L and is periodic in all direc-
tions. The number of particles is chosen so that the initial
density of the system p=N/L? is 0.7. We first maintain the
system in the pure-liquid phase using a thermostat; then, we
expand the system. The expansion is performed by changing
the radius of the particles from o to o’ =aoc, where « is a
rescaling factor. This procedure is equivalent to the uniform
and adiabatic expansion, which is q;—q,;/a and L—L/a,
where q; is the position of the particle i. Note that all physi-
cal quantities should be rescaled after expansion since we
measure them in the unit of the radius o, for example, 7’
=T/a?, p'=pa’, and so forth. We chose the rescaling factor
a to be 0.98 for all runs, and therefore, the change in the
density upon the expansion is from p=0.7 to 0.659 [15].
After the expansion, we turn off the thermostat and continue
the microcanonical simulation. The system is thermalized at
the temperature 7=0.9 using the Nosé-Hoover method [16].
The integration scheme for the isothermal time evolution is
the second-order reversible system propagator algorithm
[17], and the leapfrog algorithm is used for the microcanoni-
cal simulation with the time step Ar=0.005. The typical time
evolutions of temperature and pressure are shown in Fig. 1.
One can see that both temperature and pressure suddenly
drop when the systems are expanded, and they relax to val-
ues for metastable states, which are superheated liquids with
negative pressure. The time evolutions of temperature and
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FIG. 1. Time evolutions of (a) temperature and (b) pressure.
Only the data for L=64, 128, and 256 are shown for visibility. After
thermalization at 7=0.9, density suddenly decreases from 0.7 to
0.659 at r=50. Then the system relaxes to a metastable state with
T=0.868(2). The time evolutions of different system sizes are al-
most identical.

pressure are less affected by the size of the system. All sys-
tems become superheated liquids at temperature T
=0.868(2). We obtain the phase diagram of this system from
the preliminary simulations. We also determine the spinodal
line between the liquid and liquid-gas coexistent phases by
the method described in Ref. [18]. The obtained phase dia-
gram is shown in Fig. 2. As shown in the figure, the system
with p=0.659 and 7=0.868 is in the liquid-gas coexistent
region. The densities at the binodal and spinodal points for
T=0.868 are 0.695(1) and 0.640(1), respectively. In order to
identify bubbles, we divide the system into small subcells
with length 2.0 and observe the local density for each sub-
cell. From the preliminary simulations, the densities of gas
and liquid coexisting in this system at 7=0.9 are estimated to
be 0.04(1) and 0.67(2), respectively. Therefore, we define a
subcell to be in the gas state when its density is less than 0.2.
We have confirmed that the results do not change for other
values of the threshold such as 0.3. We define that the neigh-
boring gas state cells are in the same cluster and identify the
bubble using the site-percolation criterion in the simple cubic
lattice. The time evolution of a bubble identified by the
above method is shown in Fig. 3.

IV. RESULTS

We first estimate the critical size of a bubble. After expan-
sion, the volume of the largest bubble fluctuates for a certain
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FIG. 2. Phase diagram showing the vicinity of the phase bound-
ary between the pure-liquid and gas-liquid coexistent regions. The
solid line denotes the binodal line between the liquid and gas-liquid
coexistent phases, and the dashed line denotes the spinodal line
where spinodal decomposition takes place. The filled and open
squares on the binodal and spinodal lines denote the observed point,
which are used to draw the lines. The system is first thermalized in
the pure-liquid phase, then is suddenly expanded. Then the system
crosses the binodal line and becomes a metastable state (super-
heated liquid) in the vicinity of the spinodal line. The solid and
open circles denote the states of the system before and after expan-
sion, respectively. (Inset) Overall view of the gas-liquid phase dia-
gram. The symbols “G,” “L,” and “GL” denote the pure gas, pure-
liquid, and gas-liquid coexistent regions, respectively.

period of time, and then the monotonic development of a
bubble with a different waiting time is observed. If a bubble
exceeds some critical size, then it starts to grow explosively.
Conversely, the sizes of bubbles before the explosive growth
should be smaller than the critical size. The maximum vol-
ume of the bubbles in the region of fluctuation is estimated to
be about v=180. We therefore define the waiting time #,, as
the interval between the time of expanding operation (r
=50) and the time when the volume of the largest bubble
reaches v=200. We study several system sizes from L=32 to
256. The sizes of the studied systems and the number of
particles are listed in Table I. We observe 256 independent
samples of the waiting time for each system size and take
their simple arithmetic mean. Computations are mainly per-
formed on HITACHI SR16000/L1 (32 ways on 1 node). For
the largest systems with 11 744 051 particles, 40 850 steps
including those for thermalization are calculated in an aver-
age of 12274, which give the calculation speed of 39.1
X 10 updates/s. The system-size dependence of the waiting
time is shown in Fig. 4. It is apparent from the figure that the
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FIG. 3. (Color online) Time evolution of bubble in the system
with L=128. Left to right: snapshots at =100, 150, and 550. We
divide the system into small subcells and define them to be in the
gas state when their densities are less than 0.2. Only the gas state
subcells are shown. An embryo appears after a waiting time then
grows slowly into a large bubble.

waiting time is not proportional to L3, and therefore the
nucleation rate exhibits a strong finite-size effect.

In order to clarify the reason for the finite-size effect, we
observe the probability distribution of the nucleation events.
First, we determine whether the nucleation process is a Pois-
son process. Equation (2) leads to

#/r=—1In[1-F(1)], (5)

which means that the function Y(f)=-In[1-F(f)] becomes
linear and its slope gives the parameter of the distribution
provided the nucleation is a Poisson process. The values of
Y(¢) are shown in Fig. 5. Whereas the lines are straight for
small systems, those of larger systems bend at low values of
t. Additionally, the x intercepts are not located at the origin,
which suggests that the distribution of the waiting time has
the form

t=t,

Flo) = {0’ (6)

1 —exp[- (t—to)/7], t= 1,

with the additional relaxation time #,. Therefore, we perform
a fitting assuming the form given in Eq. (6). For systems
with L=96, we only apply a fit to the region where the line
appears to be straight in Fig. 5. The fitting results are sum-
marized in Table I. It is shown that the additional relaxation
time 7, is almost independent of the system size. The addi-
tional relaxation time was also reported in droplet nucleation
[13,19]. While it was considered to be the time that the sys-
tem needs to produce a nucleated cluster in droplet nucle-
ation, it can be a result due to the expansion since the relax-
ation time does not exhibits the finite-size effect such as the
temperature of the liquid under expansion as shown in Fig. 1.
In order to estimate the relaxation time due to the expansion,
we observed the autocorrelation function of the temperature

TABLE I. Summary of the physical quantities for systems with length L and number of particles N. The
arithmetic mean of the waiting time is denoted by (z,). The characteristic time of the exponential distribution
7 and the additional relaxation time 7, are determined by the CDFs of z,,.

L 32 64 96
N 22937 183500 619315
(ty) 2.03) X 10°  150(12) 68(3)
T 1854(1) 114.3(5) 32.5(3)
to 27(4) 36.6(2) 39.7(2)

128 192 256

1468006 4954521 11744051
54(2) 37.9(9) 31.8(6)
19.7(1) 7.63(8) 4.2(1)
36.3(2) 32.4(1) 29.6(1)
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FIG. 4. System-size dependence of the expectation value of the
waiting time (t,,). Decimal logarithms are taken for both axes. The
error bars are smaller than the symbols. The solid line, which de-
notes L3, is a guide for the eyes.

after the expansion, that is, the autocorrelation function of
the superheated liquid. We assumed that the autocorrelation
function’s form has a simple exponential form, C(r)
~exp(—t/7,), with the characteristic time scale 7,, and we
found that 7,=2.00(2), which is too short to explain the
value of additional relaxation time #,~ 30. We also check the
definition of the waiting time t,,. The value of the waiting
time depends on the volume of the critical bubble where we
choose v=200 for the nucleation threshold in this study.
However, the value of 7 should be independent of this defi-
nition since it is a parameter which depends only on the state
of the superheated liquid. In order to confirm the above, we
observe the waiting time with different values of the thresh-
old v=180 and 220 for L=64. Then we find that the addi-
tional waiting time 7, becomes longer for larger values of the
threshold as #,=35.0, 36.6, and 37.4 for v=180, 200, and
220, while the time scale parameter 7 is almost independent
of the value of the threshold. Therefore, we conclude that the
additional relaxation time in bubble nucleation is also a time
to produce a nucleated cluster as in droplet nucleation.

The system-size dependence of the parameter of the ex-
ponential distribution 7 is shown in Fig. 6, which shows that
the parameter is almost proportional to L3, which implies

3 - .
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0 P ‘
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t

FIG. 5. Cumulative distribution functions of nucleation events.
The values of Y(f)=-In(1—-F) are shown as functions of time. The
labels near lines denote system sizes.
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FIG. 6. System-size dependence of the characteristic time scale
7 of the Poisson process. Decimal logarithms are taken for both
axes. The error bars are smaller than the symbols. The solid line,
which denotes L3, is a guide for the eyes.

that the nucleation rate is almost independent of the system
size. Assuming the relation J=1/(7L?), as suggested by Fig.
6, we estimate the nucleation rate to be J=1.66(5) X 1078,
which is much larger than the value of J~2.63 X 107!! pre-
dicted by CNT, as well known [20]. The nucleation rate still
exhibits the finite-size effect for larger systems, for example,
the value of 7 when L=256 is only five times shorter than
that when L=128, which should be eight times shorter with-
out the finite-size effect. In order to illustrate how close the
bubble nucleation is to a Poisson process, we plot the CDF
as a function of the value X=1-exp[-(t—1,)/ 7] in Fig. 7. If
the nucleation process is a stochastic process with the distri-
bution given in Eq. (6), then the plot will become a straight
line connecting the origin to (1,1). The figure shows that the
CDFs of the larger systems deviate from the Poisson process
for small values of X. This implies that the relaxation process
caused by the expansion may affect bubble nuclei, but it is
difficult to separate the time scale of bubble nuclei from that
due to the expansion when two time scales are similar to
each other.

0.8
0.6

0.2

FIG. 7. Cumulative distribution function F(r) plotted as a func-
tion of X=1-exp[-(t—1)/ 7] for system sizes with the values listed
in Table L. If a nucleation process is perfectly described in Eq. (6),
then this plot becomes a line connecting the origin to (1,1).
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V. SUMMARY AND DISCUSSION

In the present study, we investigated the bubble-
nucleation process of a Lennard-Jones liquid by MD simula-
tions. We found that the nucleation rate, defined by the arith-
metic mean of the waiting time, exhibits an apparent finite-
size dependence that can be removed by analysis of the CDF
associated with the nucleation events. The obtained CDF is
found to be an exponential distribution with an extra delay
time. Therefore, it is necessary to study a system in which
the waiting time is sufficiently longer than the additional
relaxation time to study bubble nuclei in a superheated lig-
uid. The nucleation rate correctly determined by CDF has a
smaller finite-size effect. This suggests that the discrepancy
between the prediction of CNT and the experimental data
does not originate from the result of interbubble interactions
though the pressure of the ambient liquid but from the inac-
curate estimation of the reversible work carried out to form a
critical bubble. To verify this conjecture, the direct measure-
ment of the reversible work is required, which can be
achieved by observing the bubble distribution in a super-
heated liquid. This is one of important issues. We investi-
gated the origin of the additional relaxation time #,. Similar
to the droplet-nucleation case, #, is the time required to make
the critical bubble from the candidates which are the fluctu-
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ating embryos in the superheated liquid. We also studied
some different expansion ratios and found that the additional
relaxation time hardly depends on the expansion ratio which
implies that #, depends only on the density and the tempera-
ture of the metastable liquid after the expansion. Figure 7
shows that there are bubble nuclei in the short-time region
t<ty, which is apparent for larger systems, while we as-
sumed that the probability of nucleation is zero in Eq. (6).
This suggests that the inhomogeneity of density caused by
the expansion of the system may enhance bubble nuclei, but
further studies are required to clarify the effect of expansion
on the formation of bubbles.

ACKNOWLEDGMENTS

The authors would like to thank S. Takagi and T. Komatsu
for fruitful discussions and S. Sasa for valuable comments.
This work was partially supported by Grants-in-Aid for Sci-
entific Research (Contract No. 19740235) and by KAUST
GRP (Grant No. KUK-I1-005-04). The computation was
partly carried out using the facilities of the Supercomputer
Center, Institute for Solid State Physics, University of Tokyo
and the Research Institute for Information Technology, Ky-
ushu University.

[1]J. W. Gibbs, The Collected Works of J. W. Gibbs (Longmans,
New York, 1928), Vol. 1.
[2] M. Volmer and A. Weber, Z. Phys. Chem. 119, 288 (1926).
[3] L. Farkas, Z. Phys. Chem. 125, 236 (1927).
[4] J. B. Zeldovich, J. Exp. Theor. Phys. 12, 525 (1942).
[5]7J. Feder, K. C. Russel, J. Lothe, and G. M. Pound, Adyv. Phys.
15, 111 (1966).
[6] M. Blander and J. L. Katz, AIChE J. 21, 833 (1975).
[7] M. Horsch, J. Vrabec, and H. Hasse, Phys. Rev. E 78, 011603
(2008).
[8] V. E. Vinogradov, P. A. Pavlov, and V. G. Baidakov, J. Chem.
Phys. 128, 234508 (2008).
[9] T. Yamamoto and S. Ohnishi, Phys. Chem. Chem. Phys. 12,
1033 (2010).
[10] T. Kinjo and M. Matsumoto, Fluid Phase Equilib. 144, 343
(1998).
[11] M. J. Uline and D. S. Corti, Phys. Rev. Lett. 99, 076102
(2007).
[12] S. N. Punnathanam and D. S. Corti, J. Chem. Phys. 119,
10224 (2003).

[13] G. Chkonia, J. Wolk, R. Strey, J. Wedekind, and D. Reguera, J.
Chem. Phys. 130, 064505 (2009).

[14] S. D. Stoddard and J. Ford, Phys. Rev. A 8, 1504 (1973).

[15] When the system is expanded by changing the radii of the
particles, the temperature decreases since the positive work is
required for the expansion. In this simulation, the temperature
just determined by the velocities of the particles decreases
from 7=0.9 to 0.834 by the expansion. However, we have to
measure the temperature in terms of the new scale ao; then,
the value of the temperature after the expansion is determined
to be 0.868.

[16] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

[17] M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys.
97, 1990 (1992).

[18] A. Yu. Kuksin, G. E. Norman, and V. V. Stegailov, High Temp.
45, 37 (2007).

[19] J. Wedekind, G. Chkonia, J. Wolk, R. Strey, and D. Reguera, J.
Chem. Phys. 131, 114506 (2009).

[20] X. C. Zeng and D. W. Oxtby, J. Chem. Phys. 94, 4472 (1991).

051604-5


http://dx.doi.org/10.1080/00018736600101264
http://dx.doi.org/10.1080/00018736600101264
http://dx.doi.org/10.1002/aic.690210502
http://dx.doi.org/10.1103/PhysRevE.78.011603
http://dx.doi.org/10.1103/PhysRevE.78.011603
http://dx.doi.org/10.1063/1.2931539
http://dx.doi.org/10.1063/1.2931539
http://dx.doi.org/10.1039/b918541k
http://dx.doi.org/10.1039/b918541k
http://dx.doi.org/10.1016/S0378-3812(97)00278-1
http://dx.doi.org/10.1016/S0378-3812(97)00278-1
http://dx.doi.org/10.1103/PhysRevLett.99.076102
http://dx.doi.org/10.1103/PhysRevLett.99.076102
http://dx.doi.org/10.1063/1.1617275
http://dx.doi.org/10.1063/1.1617275
http://dx.doi.org/10.1063/1.3072794
http://dx.doi.org/10.1063/1.3072794
http://dx.doi.org/10.1103/PhysRevA.8.1504
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://dx.doi.org/10.1063/1.463137
http://dx.doi.org/10.1063/1.463137
http://dx.doi.org/10.1134/S0018151X07010063
http://dx.doi.org/10.1134/S0018151X07010063
http://dx.doi.org/10.1063/1.3204448
http://dx.doi.org/10.1063/1.3204448
http://dx.doi.org/10.1063/1.460603

