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Brownian particles drifting through a periodically structured force landscape can become entrained by the
landscape’s symmetries. What direction a particular particle takes can depend strongly on subtle variations in
its physical properties. Consequently, a homogeneously structured force field can sort a mixture of particles
into spatially separated fractions, much as an optical prism refracts light into its component wavelengths. When
the force landscape is implemented with structured light fields, such continuous multichannel sorting may be
termed prismatic optical fractionation. We describe experimental and numerical studies of colloidal spheres’
transport through periodic arrays of optical tweezers, which reveal an important role for three-dimensional
motion in determining a drifting particle’s fate. These studies also demonstrate sorting on the basis of statis-
tically locked-in transport, in which Brownian fluctuations contribute to direction selection.
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I. BIASED DIFFUSION IN PERIODIC FORCE FIELDS

The motion of a driven Brownian object in a periodic
force field has been studied extensively for half a century �1�,
not only because of its intrinsic interest, but also because of
its close relationship to such disparate physical phenomena
as charge transport in Josephson junctions and the kinetics of
chemical reactions. Most studies have focused on biased dif-
fusion in one-dimensional systems, the tilted washboard
problem providing the archetype for the field. Even this
much-studied model continues to yield surprises, with giant
enhancement of thermal fluctuations recently having been
discovered for particles that are marginally trapped by the
washboard �2–7�.

Higher-dimensional systems have a substantially richer
phenomenology because the driven particle enjoys the addi-
tional freedom of selecting its course through the force land-
scape. The force field itself can have a richer variety of char-
acteristics including multidimensional symmetries �8–16�
and solenoidal components that give rise to interesting non-
equilibrium effects �17,18�. Because the particle can move
around obstacles, the force landscape can even consist of
impenetrable barriers �16,19�. How a Brownian particle finds
its way through such structured terrains remains incom-
pletely understood.

One comparatively recent observation is that Brownian
particles can be deflected by their interaction with a periodic
force field away from the direction of a driving force and
into another direction dictated by the landscape’s symmetries
�8,9,16,20�. Directional mode locking can take place in the
deterministic limit where thermal fluctuations are negligible
�9,11,16,21,22�. In this case, a particle’s interaction with one
potential energy well or barrier deflects it into the domain of
the next, and so on through the landscape. Thermal fluctua-
tions can modify this process, enabling trajectories to be-
come statistically locked-in to high-order symmetries of the
landscape even when they are not microscopically accessible
�12,16�.

What direction a particle takes through a particular land-
scape has been predicted �11,16,21� and recently demon-

strated �22,23� to depend with exquisite sensitivity on the
particle’s properties. The most recent of these experimental
studies �23� furthermore confirmed the prediction �9,12� that
a homogeneously periodic landscape can deflect different
types of objects into several distinct directions simulta-
neously, with each of the fractions following a specific crys-
tallographic symmetry of the landscape. These experiments
were performed using holographic optical traps �24–26� to
create landscapes consisting of arrays of discrete optical
tweezers �27� through which colloidal particles are driven by
flowing fluid. Colloidal sorting in periodic light fields has
come to be known as optical fractionation �10,21�, and we
recently have suggested that the multi-channel variant should
be termed prismatic optical fractionation by analogy with a
prism’s ability to disperse different wavelengths of light into
different directions.

This paper explores prismatic optical fractionation both as
an archetypal realization of two-dimensional biased Brown-
ian motion in a periodic force landscape, and also as a prac-
tical method to sort colloidal particles that offers unparal-
leled resolution and previously unavailable sorting
modalities. Through a combination of theoretical, simula-
tional and experimental studies, it demonstrates design crite-
ria for optical landscapes that implement specific sorting pro-
tocols and reveals ramifications of practical departures from
idealized models. Section II specifies the model for transport
in two-dimensional force landscapes upon which our theory
for prismatic optical fractionation is based. Section II F de-
scribes how Brownian trajectories can become kinetically
locked-in to symmetry-defined directions through an optical
landscape, both in principle and also through simulational
studies. These studies emphasize the important role that ther-
mal fluctuations can play, not only in smearing out transi-
tions between deterministically locked-in states, but also in
providing access to microscopically inaccessible directions
through the process of statistically locked-in transport �12�.
Experimental realizations of the predicted transport phenom-
ena, presented in Sec. III, make use of holographic video
microscopy �28–31� to both track and characterize colloidal
particles flowing through holographic trapping arrays. These
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experiments agree in quantitative detail with predictions
based on idealized models for transport through two-
dimensional periodic force landscapes. Indeed, the agree-
ment is far better than might be expected given the model’s
relatively crude approximations.

II. MOTION IN TWO-DIMENSIONAL POTENTIAL
ENERGY LANDSCAPES

Recent experimental studies �32–34� have drawn attention
to the nonconservative optical forces that act on particles
trapped within optical tweezers �32–35� and to the resulting
nonequilibrium effects that they engender �32,33�. Because
such effects generally are quite subtle �32–34�, however, an
optical trap may be modeled with reasonable accuracy as a
�conservative� potential energy well for a colloidal particle.
The optical forces experienced by a colloidal sphere moving
through a nonuniform light field depend on the particle’s
radius ap and refractive index np. Following previous studies
�11,21�, we model the jth optical trap in an array of traps as
a three-dimensional Gaussian well,

V�r�ap,np� = − V0�ap,np�exp�−
r2

2�2�ap�� , �1�

whose depth �11,36�,

V0�ap,np� =
nmap

3

�2�ap�c�m2 − 1

m2 + 2
�p , �2�

depends on the strength of a particles’ interaction with the
focused light beam, and whose range depends on the parti-
cle’s size �21� through

�2�ap� = ap
2 + �0.61�

NA
�2

, �3�

where NA is the numerical aperture of the lens that brings
the light to a focus. Here, m=np /nm is the refractive index of
the particle, np, relative to that of the medium, nm, for light of
vacuum wavelength �, p is power of the laser beam power-
ing the trap, and c is the speed of light in vacuum. An array
of N identical traps centered at positions r j therefore creates
a landscape

W�r�ap,np� = �
j=− N

2

N
2

−1

V�r − r j�ap,np� , �4�

with a total laser power P=Np whose structure depends not
only on the distribution of projected light, but also on the
properties of the particle passing through it.

A. Transport in a potential energy landscape

A particle driven through such a potential energy land-
scape by the Stokes drag of a fluid of viscosity � flowing at
velocity v experiences a maximum force of

F0�ap� = 6��apv , �5�

in the direction of the flow. If this driving force is smaller
than the maximum restoring force that a trap can exert, a

particle will become localized in the first trap it encounters.
To ensure that the particle moves continuously through the
landscape, we therefore require

F0�ap� �
V0�ap,np�
��ap�	e

. �6�

Small particles also are influenced by random thermal
forces that tend to help them to escape from traps. Such
thermally activated processes can be used to sort microscopic
objects, albeit quite slowly. The influence of thermal fluctua-
tions can be minimized by ensuring

V0�ap,np� � kBT �7�

at absolute temperature T. This, together with Eq. �6� de-
scribes particles moving rapidly through an array of traps,
which is the appropriate limit for high-throughput sorting.
The particle’s most likely trajectory then can be computed
with deterministic equations of motion. Even in this limit,
thermal fluctuations can influence a particle’s trajectory, as
will be discussed in Sec. II E.

B. Transport through a line of traps

The driving force may be oriented at angle ��	 with re-
spect to a symmetry direction x̂	 through the landscape, la-
beled by index 	. If the particle hugs the landscape and
moves along x̂	 rather than following the applied force, it is
said to be kinetically locked-in to that direction. For this to
happen, the particle must be deflected enough by its interac-
tion with one trap to enter into the potential energy well of
the next. In particular, the total force exerted by the traps
must be large enough to compensate for the driving force
along ŷ	, the direction perpendicular to x̂	.

If we assume that the traps are arranged periodically, r j
= jb	x̂	 with lattice constant b	, then the transverse force,

Fy = −
V0

��ap�
y	

��ap�
exp�−

y	
2

2�2�ap�
� �

j=− N
2

N
2

−1

exp�−
�x	 − jb�2

2�2�ap�
�

+ F0�ap�sin ��	, �8�

must vanish for the particle to remain kinetically locked-in at
deflection angle ��	. The maximum deflection angle there-
fore satisfies

sin ��	 

V0�ap,np�

��ap�F0�ap�
y	

��ap�

�exp�−
y	

2

2�2�ap�
� �

j=− N
2

N
2

−1

exp�−
�x	 − jb	�2

2�2�ap�
�

�9�

along the entire trajectory r�t�= �x	�t� ,y	�t�� observed in the
�x̂	 , ŷ	� frame. The deflection angle is limited by the maxi-
mum transverse force that the landscape can apply, which
occurs at y	=��ap�. Particles must remained locked-in, fur-
thermore, along the entire length of the array, including the
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midpoints between the traps which are its weakest points. If
we assume that the transverse force is dominated by the two
nearest traps, we recover the result originally reported in Ref.
�21�,

sin ��	 

V0�ap,np�

��ap�F0�ap�
2
	e

exp�−
b	

2

8�2�ap�
� . �10�

This is an underestimate for the maximum deflection angle
because it does not include contributions from more distant
traps. For an infinite array,

sin ��	 �
V0�ap,np�
b	F0�ap�

	2�

e
� 
3
−

�

2
,exp�−

2�2�2�ap�
b	

2 �� ,

�11�

where 
3� . . . � is an elliptic theta function, always exceeds
the prediction of Eq. �10�. Furthermore, y	=� may not be
kinematically accessible at the midline between the traps be-
cause no periodic trajectory reaches there. In that case, par-
ticles would remain kinetically locked-in to the x̂	 direction
at steeper angles without falling through the ‘holes’ between
the traps.

On the other hand, the derivation of Eq. �10� does not
account for thermal fluctuations �11,13–16� or randomness in
the position and depth of the traps �37�, both of which help
particles to break free of locked-in trajectories. Stably
locked-in transport therefore might be limited to angles
smaller than predicted by Eq. �10�.

C. Two-dimensional kinetic lock-in

Although Eq. �10� was derived for transport along one-
dimensional arrays of traps, it provides useful insights also
into transport through two-dimensional arrays. A given lat-
tice of traps possesses symmetry directions described by
Miller indexes 	= �ij�. These directions are oriented at angles
�	 with respect to the array’s principal �10� lattice direction.
The driving force F0 is oriented at angle � with respect to the
�10� axis. The particle’s trajectory then passes through the
array at an angle that we label �. The challenge in describing
colloidal transport through two-dimensional arrays is to de-
termine how � depends on the properties of the particle and
the array for a given driving direction �.

A particle should become locked-in to direction 	 if the
driving force is oriented within ��	 of �	. The maximum
deflection angle, ��	, depends on the array’s geometry
through the intertrap separation, b	. For example, a square
array with lattice constant b has separations b	=b	i2+ j2.
The range of locked-in angles around a given direction �	

therefore falls off rapidly with increasing index 	. Figure 1
depicts this transport characteristic for a few illustrative di-
rections through a square array as a function of particle size
for a fixed refractive index and laser power.

D. Lock-in transitions

A particle driven at an angle � that falls into one of the
unshaded regions in Fig. 1 is not locked in to any direction
according to Eq. �10�. Consequently, it is not systematically

deflected by the array and travels along the driving direction
with �=�.

If, on the other hand, the particle falls into the locked-in
domain around symmetry direction �	, its trajectory is de-
flected away from the driving direction � and the particle
travels instead along �=�	. The vertical dashed line in Fig. 1
therefore maps out the fate of a given size and composition
of particle as a function of driving direction. For a given
driving direction, the particle either is locked-in to nearest
symmetry of the lattice or else escapes from the lattice and
travels in the direction of the driving force.

E. Statistically locked-in transport

The situation is different for larger particles that interact
more strongly with the lattice. In this case, the locked-in
domains predicted by Eq. �11� can overlap. The higher-index
directions in such overlapping regions are not microscopi-
cally accessible because particles will encounter and interact
preferentially with traps along lower-index directions. Under
these conditions, the particle may principally follow one di-
rection with occasional excursions in another. The net result
is a mean travel direction � that reflects the influence of all
overlapping symmetry directions. What direction the particle
travels depends on the relative probability for jumps in mi-
croscopically accessible directions �12� which may require a
full two-dimensional treatment to determine.
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FIG. 1. �Color� Locked-in directions as a function of particle
size for a sphere of fixed refractive index np moving under a con-
stant force F0�ap ,np� at angle � through a square array of traps.
Shaded regions indicate predictions of Eq. �11� for the conditions
under which a sphere of radius ap becomes kinetically locked-in to
particular lattice directions indicated by their Miller indices. Over-
lapping regions indicate opportunities for statistically locked-in
transport, with higher-index directions becoming accessible as ran-
dom sequences of lower-index jumps. Unshaded regions indicate
conditions under which the particle freely follows the direction of
the driving force. The horizontal dashed line indicates the different
fates of particles with different sizes moving through a square lat-
tice at fixed orientation tan �=0.41. The vertical dashed line indi-
cates the lock-in transitions that a particle of radius ap=0.4b will
experience as the driving direction is rotated from �=0° to �=45°.
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The overlap in the one-dimensional results still has pre-
dictive power in that it signals a crossover from determinis-
tically locked-in transport along the low-index direction to
statistically locked-in transport along another direction. This
becomes still more complicated when locked-in domains for
multiple lattice directions overlap. The resulting competition
between candidate locked-in directions at least qualitatively
explains the fairly complicated pattern of locked-in plateaus
that have been reported experimentally for colloidal transport
through square arrays of traps �9,12�.

F. Prismatic optical fractionation

Although the angles �	 are defined solely by the geometry
of the array, the ranges ��	 depend also on the size and
refractive index of the particle. For a given driving orienta-
tion �, therefore, different objects may travel in different
directions ��ap ,np� through the array. This effect may be
used to sort objects into spatially separated fractions on the
basis of their physical properties �9,10,21�, a process known
as optical fractionation.

Previous realizations of optical fractionation have sorted
samples into two fractions �10,21� usually distinguished by
whether or not particles were locked in to a particular direc-
tion. Sorting into more fractions or more refined fractions
then relied on passing samples through multiple graduated
stages of optical force fields �47�. The possibility that differ-
ent objects might become kinetically locked-in to different
directions in a uniform, static landscape has been proposed
�9,11,12� as a means to implement multichannel optical frac-
tionation. How this might be accomplished in practice was
not specified.

The horizontal dashed line in Fig. 1 indicates one strategy
for sorting into multiple fractions by size with a single pass
through a uniform array of optical traps. Particles too small
to be locked in to any lattice direction travel through the
array undeflected, with �=�. Other somewhat larger par-
ticles satisfy �
���10� and become kinetically locked in to
�=0°. Still larger particles become statistically locked in to
�=��21� and are deflected in the opposite direction to �
=27°. The sample thus is divided by size into three distinct
fractions whose physical separation scales linearly with the
size of the optical trapping array. The size ranges in each
fraction can be tuned through the driving angle and the ar-
ray’s lattice constant. Such simultaneous sorting into mul-
tiple distinct channels distinguishes prismatic optical frac-
tionation from other modes of operation.

Optical fractionation of spheres sorts on the basis of
�complex� refractive index as well as size. Equation �10� may
be recast to differentiate those particles that can become
locked in to a particular direction at a specific driving angle
from those that cannot,

n	�ap� = nm	A�ap� + 2B	���
A�ap� − B	���

, �12�

where

A�ap� = �ap

b
�2� b

�p
�3

exp�−
b2

8�p
2� �13�

depends on particle size through the ratio ap /b, and

B	��� =
	e

2

6��vc

nmP
b sin�� − �	� . �14�

Particles satisfying np�n	�ap� can become locked-in to the
lattice direction at angle �	, and those with np�n	�ap�
should escape.

In considering these results for practical applications,
some account should be taken of the underlying approxima-
tions. Even if the more comprehensive Eq. �11� is substituted
for Eq. �10�, the forms for V0�ap ,np� and ��ap� in Eqs. �2�
and �3� are fairly crude, particularly for particles comparable
in size to the wavelength of light or larger.

III. EXPERIMENTAL RESULTS

Despite its shortcomings, the theory outlined above per-
forms remarkably well in describing and predicting the out-
come of experimental studies. Our experimental implemen-
tation is shown schematically in Fig. 2. Colloidal spheres
dispersed in de-ionized water flow through a 2 cm long mi-
crofluidic channel with a 1 mm�30 �m rectangular cross
section. The channel is cast in poly�dimethyl siloxane�
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FIG. 2. �Color� �a� Schematic representation of the combined
holographic optical trapping �HOT� and holographic video micros-
copy �HVM� instrument. The hologram encoding the optical twee-
zer array is imprinted onto a laser beam with a spatial light modu-
lator �SLM� and relayed to the objected lens with a dichroic mirror.
A second collimated laser beam illuminates the sample, and the
resulting in-line holograms are collected by the same objective lens,
magnified, and relayed to a video camera. �b� Image of an array of
optical tweezers in the microscope’s focal plane obtained by replac-
ing the sample with a front-surface mirror. The four superimposed
traces are the measured trajectories of two particles �squares� that
were locked in to the array’s �10� direction and another two �circles�
that were locked in to �11�. Dashed boxes indicate the region from
which particles flow into the array �input� and the two detection
regions downstream of the array �apex and sides�. �c� Typical holo-
graphic snapshot of the same field of view showing colloidal
spheres interacting with the array of traps. Scale bar indicates
5 �m. Inset: fit of the indicated image to Lorenz-Mie predictions.
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�PDMS� and bonded to a no. 1.5 glass cover slip and the
constant flow is maintained with a syringe pump �Harvard
Apparatus PHD 2000�.

This sample is mounted on the stage of an inverted optical
microscope �Nikon TE2000U� outfitted with a 100� oil-
immersion objective �Nikon Plan Apo, NA=1.4�. This objec-
tive lens is used to project arrays of optical tweezers �27�
into the midplane of the sample using the holographic optical
trapping technique �24–26,38�. Figure 2�b� shows the mea-
sured intensity of a typical optical trap array recorded in the
microscope’s focal plane, each discrete optical tweezer ap-
pearing as a point of light. This optical trap array is powered
by a frequency-doubled solid state laser �Coherent Verdi 5W�
operating at a vacuum wavelength of �=532 nm whose
beam is imprinted with computer-generated holograms �26�
using a liquid crystal spatial light modulator �SLM�
�Hamamatsu X8267–16�. The hologram then is relayed to
the objective lens’ input pupil with a dichroic mirror.

The sample also is illuminated with the collimated beam
from a HeNe laser �Uniphase 1103P� operating at a vacuum
wavelength of 632.8 nm. Light scattered by the colloidal
spheres interferes with the unscattered portion of the beam in
the focal plane of the objective lens. The interference pattern
is imaged by the objective lens and a video eyepiece onto a
video camera �NEC TI-324IIA� that records its intensity at
30 frames/s. This system has an effective magnification of
0.091 �m /pixel. Figure 2�c� shows a typical holographic
snapshot of colloidal spheres interacting with the optical trap
array in the same field of view as Fig. 2�b�.

We fit each sphere’s holographic image to predictions of
the Lorenz-Mie theory of light scattering �39–41� using the
MPFIT implementation �42� of the Levenberg-Marquardt
nonlinear least-squares fitting algorithm. Each fit yields a
sphere’s three-dimensional position with nanometer reso-
lution and also its radius with nanometer resolution and its
complex refractive index to within one part in a thousand
�29,31�. A typical fit is shown in the inset to Fig. 2�c�. This
approach to holographic video microscopy therefore pro-
vides the time-resolved tracking and characterization data re-
quired to assess the efficacy of arrays of optical tweezers to
sort fluid-borne particles through kinetically and statistically
locked-in transport.

A. Mixed silica colloidal particles

The data in Fig. 3�a� show results obtained with a mixture
of two populations of monodisperse colloidal silica spheres,
one 1.0 �m in diameter �Duke Scientific Catalog no. 8100,
Lot no. 21024� and the other 1.5 �m in diameter �Duke
Scientific Catalog no. 8150, Lot no. 30158� at 1:1 stoichiom-
etry. This mixed dispersion was flowed at v=24�8 �m /s,
through an optical trap array of the type shown in Fig. 2�b�
with intertrap separation of b=2.025 �m along the �10� di-
rection and a=3.27 �m along the �01� direction. The �10�
direction is inclined at �=30° with respect to the flow. The
laser power per trap is estimated to be P
=2.0�0.3 mW / trap based on imaging photometry of im-
ages such as the one in Fig. 2�b�.

The dense silica spheres tend to settle to the lower wall of
the channel, as confirmed by three-dimensional holographic

particle tracking. They thus approach the trap array more
slowly than the peak flow rate along the channel’s midplane
because of the Poiseuille flow profile. Once they encounter
the traps, however, they are drawn to the midplane by optical
forces, and move through the array in the peak flow. This
focusing of the colloidal flow by optical forces was over-
looked in previous studies �9,10,21,22� and helps to explain
why an idealized two-dimensional analysis might be success-
ful at explaining transport through a complex highly struc-
tured three-dimensional optical field.

Under these conditions, Eq. �12� predicts that the larger
spheres will be locked-in to the �10� direction while the
smaller spheres will be statistically locked-in to �21�. The
dividing line based on this prediction is plotted as a dashed
curve in the np�ap� plane in Fig. 3�a� and passes cleanly
between the two populations.

A random sample of 2500 particles passing through the
input region �indicated in Fig. 2�b�� was characterized by
Lorenz-Mie scattering theory. These particles radii, ap, and
refractive indexes, np, were compiled with a nonparametric
density estimator �43� into the relative probability distribu-
tion ��ap ,np� plotted in Fig. 3�a�. This clearly resolves the
two populations of silica spheres, the larger of which is
slightly less dense than the smaller. The marked anticorrela-
tion between size and refractive index in the individual
monodisperse populations appears to be a normal feature of
particles synthesized by emulsion polymerization �29,31�
and is not seen in samples of known uniform density such as
fluid droplets �30�.

This input distribution passed through the array of optical
tweezers an into the two analysis regions indicated in Fig.
2�b�, one at the apex at the array and the other comprised of
the two side regions. These two output distributions, plotted
in Fig. 3�a� show that the large particles are preferentially
deflected to the apex of the array whereas the smaller par-
ticles are preferentially deflected to the sides. A small pro-
portion of the large spheres did not become locked-in to the
�10� direction or otherwise leaked through the array and so
appear in the side distribution. Similarly small particles that
entered the array near its midline were not deflected and
passed through to the apex. A larger proportion of small
spheres thus contaminates the distribution analyzed at the
apex. Even so, the two populations were sorted with better
than 90% efficiency in the side distribution and better than
80% efficiency at the apex.

Previous studies �10,21,44� have demonstrated optical
fractionation of bidisperse colloidal mixtures with such eas-
ily distinguishable characteristics. Theoretical studies
�11,13–16,21� suggest that optical fractionation can have ex-
quisitely fine resolution for sorting by size, and perhaps by
refractive index. Although these predictions have been tested
indirectly through transport studies on monodisperse samples
�22�, Lorenz-Mie characterization �29,31� has fine enough
resolution for particle size and refractive index to enable di-
rect tests.

B. Monodisperse silica colloidal particles

Figure 3�b� shows comparable results in the same optical
tweezer array for a monodisperse sample of colloidal silica
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spheres with a nominal radius of 0.75�0.04 �m �Poly-
Sciences Catalog no. 24327, Lot no. 600424�. Lorenz-Mie
characterization reveals the actual sample-averaged radius to
be somewhat smaller and more sharply distributed than the
manufacturer’s specification, with ap=0.715�0.021 �m.
The measured refractive index of np=1.418�0.004 also is
significantly lower than the nominal range for 1.43 to 1.46
for colloidal silica spheres, suggesting that these spheres are
somewhat porous.

This sample was flowed with a slightly lower speed, v
=22�5 �m /s, than in the previous example so that the pre-
dicted condition for locked-in transport along �10� cuts
through the middle of the sample’s range of properties. The
results in Fig. 3�b� show that smaller particles with lower
refractive index are systematically deflected into the side ar-
eas, their mean deflection indicating statistically locked-in
transport along �21�. The larger higher-index particles, by
contrast, are kinetically locked-in along �10� and are de-
flected to the apex of the array. These distributions were
obtained with 6000 randomly selected particles. The discrete
points plotted in the center and right panels of Fig. 3�b�
indicate the properties of the four particles whose trajectories
are plotted in Fig. 2�b�.

Although the mean radius of the particles deflected to the
apex is only slightly greater than that of the other fraction
�0.716�0.021 �m versus 0.710�0.027 �m�, the differ-
ence is found to be statistically significant at the 99.9% level
with a Wilcoxon rank-sum test. A far more substantial dis-
tinction is observed in the refractive indexes of the sorted
populations. The spheres at the apex have a mean refractive
index of 1.420�0.003 whereas the side fraction has a mean
refractive index of 1.416�0.003. These two populations
again differ with better than 99.9% confidence according to
the Wilcoxon rank-sum test.

Not only do these results agree quantitatively with the
predictions of Eq. �12� for kinetic lock-in along the �10�
direction, they also agree with the heuristic model of Sec.
II E for the onset of statistical lock-in. The initially monodis-
perse sample is thereby divided into two spatially separated
fractions with resolution for refractive index approaching the
part-per-thousand resolution of Lorenz-Mie characterization.
This is the finest resolution for fractionation by refractive
index reported for any technique. It is achieved, moreover,
despite the inevitable imperfections in the optical trap array
and fluctuations in the fluid velocity. As in the previous ex-
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FIG. 3. �Color� Experimental tests of prismatic optical fractionation. �a� Bisdisperse silica sample: �left� input distribution, �center�
fraction deflected to the sides along the �11� directions, �right� fraction deflected to the apex along the �10� directions. �b� Monodisperse silica
sample. Symbols plotted in the center and right panels indicate the particles whose trajectories are plotted in Fig. 2�b�. �c� Monodisperse
polystyrene sample. Dashed curves are predictions of Eq. �12� for kinetic lock-in along �10�.
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ample, the efficiency for sorting exceeds 95% in both
samples.

C. Monodisperse polystyrene colloidal particles

The data in Fig. 3�c� were obtained under comparable
conditions with monodisperse samples of polystyrene
spheres with a nominal radius of 0.50�0.02 �m �Duke Sci-
entific Catalog no. 5100A, Lot no. 27527� and a nominal
refractive index of 1.59 at 589 nm. Unlike silica spheres,
polystyrene spheres are only 5% more dense than water.
Consequently, they fill the channel as the flow toward the
array of traps. Their comparatively high refractive index,
moreover, renders them more susceptible to radiation pres-
sure and thus less strongly trapped by optical tweezers
�45,46,48,49�. Rather than being drawn by optical forces to-
ward the cell’s midplane, consequently, these spheres pre-
dominantly are pushed toward the upper glass wall and creep
along the surface in the slowest part of the Poiseuille flow.
To compensate for the observed axial displacement, we re-
focus the optical trap array so that the particles continue to
pass through in the plane of best focus. We furthermore
modify Eq. �5� to account for the spheres’ hydrodynamic
coupling to the wall at distance h from their centers,

F0�h� = 6��ap�1 −
9ap

16h
+ O�ap

3

h3
�−1

v . �15�

At a measured height of h= �1.2�0.1�ap, the particles move
down the channel at v=7.7�2.5 �m /s.

Given these considerations, a trap array resembling that in
the previous examples was created with lattice parameters
b=2.5 �m and a=2.72 �m and powered with a laser power
of P=2.2�0.2 mW / trap. The resulting threshold for kinetic
lock-in to the �10� direction is plotted in Fig. 3�c�. This array
was designed so that the fastest of the most strongly inter-
acting particles would remain kinetically locked-in. Unlike
the previous demonstration of sorting of silica spheres, this
array was designed to emphasize sorting by size. The slope
of nc�ap� can be adjusted with the accessible control param-
eters to achieve a desired balance between sorting by size
and refractive index.

The data in Fig. 3�c� were amassed from the trajectories
of 2000 randomly chosen particles. Despite complications
arising from the less easily trapped sample, the prediction of
Eq. �12� still quantitatively agrees with the measured distri-
butions in the two output fractions, the nominally monodis-
perse sample being separated into even more finely resolved
fractions along the curve nc�ap�. The mean radius of the par-
ticles in the apex region, 0.497�0.017 �m, is substantially
larger than in side regions, 0.478�0.014 �m, demonstrat-
ing sorting by radius with a resolution finer than 20 nm. The
difference in size between the two fractions is found to be
statistically significant at the 99.9% level with a Wilcoxon
rank-sum test. Although the two fractions also differ slightly
in mean refractive index �1.576�0.016 versus
1.589�0.019�, this difference is only significant at the 95%
confidence level. The polystyrene particles thus indeed are
sorted mainly by their sizes.

IV. SIMULATION RESULTS

The Langevin equation of motion for a colloidal sphere
moving in flowing fluid through an optical trap array is

�
dr�t�

dt
= − �W�r� + F0 + ��t� , �16�

where � is the sphere’s viscous drag coefficient, and where
��t� describes random thermal fluctuations. The stochastic
force satisfies ���t��=0 and ���t� ·��t+���=2�kBT���� at
temperature T, where ���� is the Dirac delta function. We
integrated this equation of motion with the stochastic fourth-
order Runge-Kutta algorithm �50–52� to obtain simulated
trajectories, r�t�, that are analogous to the experimental data
presented in the previous Section. Particles with sizes and
refractive indexes drawn at random from a desired distribu-
tion were released at random into the force and flow fields
described by Eqs. �4� and �5�, respectively, and their in-plane
motions compiled into distributions comparable to those ob-
tained experimentally.

A. Comparison with experimental results

The data in Fig. 4 show results of such simulation de-
signed to mimic the experimental conditions in Fig. 3�b�.
Particle properties, ap and np were selected at random from
an elliptical Gaussian distribution fit to the measured input
distribution in Fig. 3�a�. Each particle then was released at a
random position within the input region indicated in Fig.
2�b� and its subsequent trajectory recorded. Figure 4�a�
shows the probability distribution of particle positions for
5000 such simulated trajectories.

The specific distribution of input properties is plotted in
Fig. 4�b� to permit direct comparison with the experimental
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FIG. 4. �Color� Simulation of the experimental conditions in
Fig. 3�b�. �a� Computed probability density of particles flowing
from left to right through the array. �b� Distribution of refractive
indexes and radii of the spheres in the input region, chosen to
mimic the experimentally observed sample. �c� Output distribution
in the side regions. �d� Output distribution in the apex region.
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size and refractive index distribution obtained with holo-
graphic video microscopy in Fig. 3�b�. The dashed curve in
this figure is the predicted lock-in condition for the �10� di-
rection through the simulated array of traps, using the experi-
mentally determined parameters.

Figures 4�c� and 4�d� show the simulated output distribu-
tions in the apex and side collection areas indicated in Fig.
2�b�. As for the experimental results in Fig. 3�b�, the simu-
lated trajectories yield well-sorted output fractions with the
larger, more strongly interacting particles being preferen-
tially deflected to the apex of the trapping array and the
smaller more weakly interacting fraction either passing
through the array or else being deflected to the side regions.
As in the experimental case, the division between output
fractions falls closely along the curve predicted by Eqs.
�12�–�14�.

These observations lend support to our suggestion that the
idealized one-dimensional model developed in Sec. II quan-
titatively predicts the trajectories of particles moving through
two-dimensional arrays of traps, including capturing the
transition to statistically locked-in transport. They also sug-
gest that the experimental results in Sec. III were correctly
interpreted within this model. Similarly good agreement
among experiment, simulation, and theory are obtained for
the other experimental realizations as well.

B. Optimized prismatic fractionation

Although prismatic optical fractionation in inclined arrays
of optical tweezers is demonstrably effective in sorting col-
loidal spheres by size and by refractive index, the mode of
operation that we have demonstrated is not the most effec-
tive. In particular, the selected fraction at the apex is mixed
with a small population of particles that were not deflected at
all. This defect is obvious in the results presented in Fig. 3.
This can be overcome at the cost of slight additional com-
plexity, as we now demonstrate with Brownian dynamics
simulations.

The problem of spheres leaking through the array can be
mitigated by reversing the flow direction and confining the
incoming stream of particles to a comparatively narrow
stream within the bulk flow, as shown in Fig. 5�a�. In prac-
tice, particles can be confined in this way with hydrodynamic
flow focusing �53� in a microfluidic chip.

Figure 5�a� shows the probability density for finding a
particle at a given position in the plane. Individual traps in
the array are visible as local probability maxima. Regions are
colored according to the mean direction of the trajectories
passing through. Trajectories kinetically locked-in to the �10�
direction are colored red. Statistically locked-in trajectories
in the �21� and �31� directions are colored green and cyan,
respectively. Undeflected trajectories are colored blue. Out-
put bins are defined as indicated in Fig. 5�a� for each of these
four categories.

Particles in these simulations were selected with the broad
range of radii and refractive indexes indicated in Fig. 5�b�.
Each point in this map is colored by the mean transport
direction taken by particles with those properties, using the
same color-coding scheme as in Fig. 5�a�. The space is

clearly divided into bands of color, with the largest, most
strongly interacting particles being locked-in to the �10� di-
rection and the smallest, least strongly interacting particles
passing through the array undeflected.

The dashed curves in Fig. 5�b� indicate the predictions of
Eq. �12� for kinetically locked-in transport along �10�, and
statistically locked-in transport along �21� and �31�. These
dashed curves agree reasonably well with the observed fates
of the particles. The success of Eq. �12� at predicting the
transitions to and between statistically locked-in states is
quite remarkable considering its derivation from a semiquan-
titative one-dimensional model. This simulation also demon-
strates the possibility and potential utility of prismatic optical
fractionation to sort heterogeneous samples into multiple
spatially separated fractions simultaneously and continu-
ously.

V. SUMMARY AND DISCUSSION

We have demonstrated that a homogeneous periodic force
landscape can be used to sort microscopic spheres into spa-
tially separate fractions with extremely fine resolution for
size or refractive index. Although the basis for designing
such multidimensional separations, Eq. �12�, was obtained
using limiting arguments for a one-dimensional array, it has
proved quantitatively accurate for predicting the transport of
colloidal spheres through two-dimensional arrays of traps
both in simulation and also experimentally. This success is
observed not only for kinetically locked-in transport along
microscopically accessible sites, but also for statistically
locked-in transport along directions that are not microscopi-
cally accessible.

We have experimentally demonstrated the use of pris-
matic optical fractionation to select two fractions from a het-
erogeneous sample and to deflect them in opposite direc-
tions. Our simulations of the inverted geometry suggest that
fractionation into multiple physically distinct samples also
should be feasible. Such multichannel multidimensional sort-
ing takes advantage of both kinetically and statistically
locked-in transport mechanisms.
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FIG. 5. �Color� Prismatic optical fractionation. �a� Computed
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The present work focuses on sorting of colloidal spheres
that are well enough separated to avoid interparticle interac-
tions. Pairwise collisions tend to blur the transitions among
locked-in states �9� and might be expected to diminish the
effectiveness of prismatic optical fractionation. Many-body
cooperativity, however, might open new avenues for sorting.
Recent studies �54� have begun to extend the study of
locked-in transport to aspherical objects. These also suggest

avenues for continuous sorting, including so-far untapped
channels for prismatic optical fractionation.
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