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Irreversibility and chaos: Role of long-range hydrodynamic interactions in sheared suspensions
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Non-Brownian particles suspended in an oscillatory shear flow are studied numerically. In these systems it
is often assumed that chaos (due to the long-range nature of the hydrodynamic interaction between particles)
plus noise (contact or roughness) lead to irreversible behavior. However, we demonstrate that the long-range
hydrodynamic interactions are not a source, nor even a magnifier, of irreversibility when coupled with non-
hydrodynamic interactions. Additionally, analysis reveals that the apparent anisotropy of the particle diffusion
is due to coupling of the shear flow and transverse diffusion.
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I. INTRODUCTION

Particle dispersion in sheared suspensions has been a sub-
ject of intensive research since 1977 [1]. Even though many
theories have been put forth to explain this phenomenon,
some confusion remains about its physical origin. When the
interactions are solely determined by Stokes flow, which is
termed the “pure-hydrodynamic limit” (i.e., only hydrody-
namic forces are present and the Reynolds number is zero),
the motion of the particles is deterministic and expected to
be reversible [2]. The observed dispersion was attributed to
excluded volume effects [3]. In a shear flow, when two
spheres approach, the minimum separation can be less than
107 of their radius. Surface asperities can therefore induce
particle displacement, forcing particles from their reversible
path; particles separate on streamlines further apart than on
their approach. Within this frame, diffusivity coefficients
were obtained using a path integration method [4]. Brady
and Morris [5] extrapolated a scaling theory valid for dilute
systems to describe shear-induced self-diffusion in the con-
centrated regime.

Drazer ef al. [6] showed that the complex dynamics of
sheared suspensions can be characterized as a chaotic motion
in phase space. Chaos when coupled to any source of noise
ensures that reversal of the velocities of all the particles does
not, in practice, lead to a time-reversed motion; any small
perturbation in the state of the system grows exponentially in
time. Thus, small perturbations (weak Brownian motion, par-
ticle roughness, or any finite-ranged force), which are inevi-
tably present in a real system [7], will grow. It is thus im-
possible for the system to retrace its dynamical path upon
reversal.

For sedimenting particles, Jdnosi er al. [8] demonstrated
that chaos arises from long-range hydrodynamic interactions
(LRHIs). The chaotic nature of hydrodynamic interactions
was also invoked [9] to account for the observed irreversible
behavior in sheared suspension. Sierou and Brady [10] men-
tioned that it is not clear whether the presence of an inter-
particle force is necessary for diffusive motion to appear.
Marchioro and Acrivos [11] also suggested that in the ab-
sence of an interparticle force, diffusive like characteristics
could be present owing to the chaotic nature of the many-
body hydrodynamic interactions.
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However, recent experimental studies [12] have shown
that the extent of the irreversibility is strongly correlated
with the particle roughness, as also found for the interaction
between only two particles [3,13]; in the latter case, since
only two particles are involved, one cannot invoke chaos to
account for the irreversible motion of the particles. The mi-
croscopic origin of particle dispersion thus remains obscure.
Several fundamental questions persist regarding the role of
the long-range hydrodynamic interactions in generating
chaos and whether contacts should be considered just a
source of noise or as a primary source of irreversible dis-
placements.

This paper reports on a simple numerical model devel-
oped to inquire specifically about the role of the long-range
hydrodynamic interactions on particle dispersion and chaos
in sheared suspension. In contrast to the case of sedimenta-
tion, we find that the long-range hydrodynamic interactions
tend to damp the particle dispersion and do not contribute to
the chaoticity of the system.

II. NUMERICAL MODEL

A minimal model is used to describe suspensions of non-
Brownian particles within a periodic shear flow. A total of N
particles is initially distributed in a monolayer with nonover-
lapping positions to give the desired areal fraction; simulat-
ing a monolayer of particles provides substantial savings in
computational time while maintaining an accurate descrip-
tion of the relevant physics. The particle positions are peri-
odic in the flow (x) direction and are constrained in the z
direction by solid walls. The velocity of particle n, u,,, is the
sum of the advection velocity due to the shear flow, the ve-
locity disturbances generated by the straining flow, and the
motion created by interparticle forces,

N N
— 1
u,= j’zn sin(wt)ex + E Um(X) + E E an, (1)
m#n m#n

where U,, is the disturbance velocity due to a sphere located
at x,, at a distance x=x,,—X,, from the sphere n. The leading-
order description is used to account for the LRHIs between
particles [14],
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where E is the rate of strain and a is the particle radius. To
account for steric effects, a pairwise-repulsive force (RF) is
included. The repulsive force exerted by particle m on par-
ticle n is

Fo if |x|=2
- — 1 X = Za
F *Ix]

3)

nm —

0 if |x| > 2a,

where F;, denotes the amplitude of the repulsive force and &
in Eq. (1) is the Stokes resistance. We set Fy/é=1. Other
values were tested for F|y as well as other repulsive potentials
[15], but all returned similar results.

This numerical model represents a rudimentary descrip-
tion relative to the substantially more accurate three-
dimensional models existing in the literature [4,10]. How-
ever, this version includes long-range hydrodynamic
interactions and captures the many-body hydrodynamic in-
teractions at the level of multiple summed pairs. The model
does not include lubrication forces purposely as we aim to
investigate whether long-range hydrodynamic interactions
engender chaos; as a result, effects such as closed trajectories
of a pair of particles in close proximity are not observed
from simulations at the level of Egs. (1)—(3). However, com-
parisons of this model with a code containing multiple re-
flections and the velocity disturbance created by the repul-
sive force (i.e., Stokesian dynamics without lubrication
interactions) demonstrated qualitative agreement in all re-
spects, so the present model is used for the sake of simplic-
ity.

Equations (1)—(3) are solved numerically. Knowing the
positions of the particles at time #=0, the subsequent posi-
tions of each particle are calculated using a variable order
Adams-Bashforth-Moulton solver. Simulations were per-
formed with up to N=50 particles that were tracked over 25
cycles at strain amplitudes 7y, between 0.25 and 3. One strain
unit corresponds to a relative displacement of the cell walls
equal to their separation distance. The total accumulated
strain after n cycles is y=4nvy,, as v, is the strain for a
quarter cycle.

III. RESULTS

We first present results from simulations of 50 particles
that neglect the LRHIs. We thus consider a suspension of
hard spheres driven by an external shear flow where interac-
tion between particles only occurs through the repulsive po-
tential given by Eq. (3). At very short times, the mean-square
particle displacements, {xx) and (zz), increase rapidly and
then transition to a linear regime for y=20 as seen in Fig.
1(a). The transient regime, as previously observed [10,16],
corresponds to the rearrangement of the initially random
configuration into a self-organized one. The slopes of the
mean-square particle displacements for #>20 define the di-
mensionless diffusivities D;=(xx)/2a*y and D}=(zz)/2ay
plotted in Fig. 1(b). The diffusion coefficients along, D7, and
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FIG. 1. (Color online) (a) Mean square displacements along and
perpendicular to the flow direction, (xx) and (zz), versus accumu-
lated strain, 7, for y,=2 and in the inset for y,=0.5. (b) Diffusivity
coefficients, D and D], and normalized diffusivity coefficient
D’/ a2(1+%720) (which accounts for the advection-diffusion cou-
pling) versus strain amplitude, y,. Squares are from experiments

[9].

perpendicular, D7, to the flow direction rapidly increase with
strain amplitude.

These numerical results closely agree with the experimen-
tal data of Pine ef al. [9] and successfully predict the transi-
tion of the particle dispersion at y,= 1. For strain amplitudes
smaller than 1, the system self-organizes into a nonfluctuat-
ing quiescent state [see inset of Fig. 1(a)] as suggested by the
experiments of Corté et al. [16]. The structure of the self-
organized state varies according to the concentration and the
strain amplitude as demonstrated by Stokesian dynamics
simulations [15].

An advection-diffusion coupling occurs when diffusion
takes place in a shearing flow. In a channel, the sheared
velocity profile interacts with cross channel diffusion to aug-
ment the dispersion along the channel. This effect, first stud-
ied by Taylor [17], was solved analytically in the specific
case of a periodic shear flow and for a Brownian diffusion
process [18]. The resulting effective diffusivity which arises
from this coupling is D(1+0.597), where D is the bulk iso-
tropic diffusion coefficient. Normalizing D? by (1+0.5y)
collapses the points onto those of Dj as shown in Fig. 1(b).
Hence, the larger diffusion coefficient measured along the
flow direction does not arise from an intrinsic anisotropy of
the particle diffusivity but more simply results from
advection-diffusion coupling.

To test the effect of LRHIs, Egs. (1)-(3) are solved fully
including all terms. A striking result is that the mean-square
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FIG. 2. (Color online) Effect of the LRHI on the relative trajec-
tory of a pair of particles embedded in a simple shear flow. When in
recession, the tensile normal stress brings the particles closer. The
streamlines and the color scale represent, respectively, the flow dis-
turbance [Eq. (2)] and the pressure field generated by the particle
located at the origin.

displacements [see Fig. 1(a)] remain unchanged when the
LRHIs are included. In fact, the simulations involving both
repulsive forces and long-range hydrodynamic interactions
generate slightly smaller particle mean-square displace-
ments. This slight damping of the particle dispersion process
may be understood considering the fore-aft symmetry of the
hydrodynamic interaction between particle pairs, specifically
the tensile normal stress of pairs when in recession [4,5].
Figure 2 illustrates this phenomenon. When particles are in
recession, the LRHI is attractive. Not including the LRHI
suppresses this effect and the resulting overall particle dis-
persion is larger.

However, this two-particle scenario omits the role of mul-
tiple particles colliding while also interacting hydrodynami-
cally, which has been cited in the literature as a source of
chaoticity [6,9,10,20]. To explore the role of LRHI on the
chaoticity of multiple particles, simulations are undertaken
with six particles; formally, the N-body problem only re-
quires more than two particles to exhibit chaotic trends. Five
hundred initial configurations are used and only those simu-
lations that resulted in no particle contacts are retained
within the analysis. Following Refs. [6,8,19], each initial
condition is simulated twice, with two slightly different ini-
tial configurations, A and B. Configuration B is prepared
from configuration A by displacing each particle in a random
direction by a small distance €. The Euclidian distance be-
tween these two simulations is computed in phase space as
I= \/,%,Eﬁil(x?—xf)%(zf\—zf)z. In chaotic systems, [ grows
exponentially as ee”, where \ is the largest Lyapunov expo-
nent. For three particles settling in a viscous fluid, Janosi et
al. found A =0.04, where y corresponds to time, not strain,
in their results. The positive value of the Lyapunov exponent
clearly indicates chaos. Conversely when the particles solely
interact through LRHI in periodic shear, the separation dis-
tance between two initially perturbed simulations remains
unchanged as shown in Fig. 3(a). The corresponding
Lyapunov exponent is too small (A<<1077) to observe cha-
otic behavior in the time frame of the simulations. This result
is independent of the magnitude of the initial perturbation.

The separation distance is also evaluated for simulations
of N=50 particles. This time, contact between the particles is
allowed and simulations with and without LRHIs are com-
pared. Figure 3(b) shows the exponential increase of the
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FIG. 3. (Color online) Separation distance, /, versus accumu-
lated strain, 7, for a strain amplitude of y,=2. (a) Simulations are
performed with N=6 particles interacting solely through LRHI. Dif-
ferent magnitudes of the initial perturbation, e, are tested. (b) Simu-
lations are performed with N=50 particles. Both sets of simulations
(RF or RF+LRHI) started with the same initial positions.

separation distance, /, with accumulated strain amplitude, 7.
The positive growth rate, A = 0.3, indicates a chaotic behav-
ior. Note that the slope or chaoticity remains the same when
neglecting the LRHIs.

IV. CONCLUSION

We have examined the nature of particle dispersion in
sheared suspension of non-Brownian particles submitted to a
periodic flow using a simple numerical model including a
repulsive potential (to avoid particle overlap) and long-range
hydrodynamic interactions (to capture the many-body and
long-range nature of the hydrodynamic interactions between
particles). In the studied range of parameters, three major
conclusions can be made:

(i) Long-range hydrodynamic interactions are not a source
of irreversibility nor even a magnifier of irreversibility when
coupled with nonhydrodynamic interactions. In fact, as a re-
sult of the tensile normal stress between pairs when in reces-
sion, LRHIs damp the particle dispersion.

(ii) Long-range hydrodynamic interactions do not gener-
ate chaos in sheared suspension. If the particles solely inter-
act through LRHI, the particle motion is reversible since the
Stokes equations are linear and, as we have shown, insensi-
tive to perturbations.

(iii) A minimal model, involving the particle steric effect
only, can successfully predict the experimentally observed
transition of the particle dispersion at y,= 1.
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These results provide a perspective on sheared suspen-
sions that differs fundamentally from that of sedimenting
suspensions. In the latter case, the fluid flow is generated by
the fall of the particles themselves and the ratio of the fluid
flow disturbances (Stokeslets =F/r, where F is the body
force acting on the particles) to the average velocity of the
particles (mean settling velocity =F/a) is O(1) at one-
particle diameter, r=2a, from any particle of the suspension.
In sedimenting suspensions, these hydrodynamic interac-
tions, which decay inversely with separation distance be-
tween the particles, indeed prevail [8,19,21]. Consequently,
sedimenting particles (which solely interact through these
long-range multibody hydrodynamic interactions) constitute
a chaotic system. This was clearly demonstrated by Janosi et
al. [8].

Sheared suspensions are fundamentally different. This
time, an external flow is imposed and the ratio of the distur-
bances (stresslets *a’E/r?), to the mean particle velocity
(cyL), where L is the cell wall distance, is O(a/L) for r
=2a. These weaker interactions, which decay as the square
of the inverse separation distance, do not generate chaos.

The main constraint driving the system may thus more
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likely be stated as particles cannot overlap. This would ex-
plain why exceedingly simple descriptions such as the recent
collision-induced model [16,22], which does not include any
hydrodynamics, or the one presented here largely capture the
dynamics observed in experiments. This also corroborates
recent observations that the extent of the irreversibility
strongly correlates with particle roughness [12,13]. To avoid
particle overlap, one can use, as we did, a repulsive potential.
Dispersion of the particles then naturally occurs as this inter-
action is by essence irreversible. Another candidate to pre-
vent particles from overlapping is lubrication. Lubrication is
a reversible interaction on account of the Stokes equations; it
may nonetheless be a source of chaos. We plan to address
this question in future work.
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