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Molecular dynamics simulations are carried out to investigate the diffusion behavior of penetrable-sphere
model fluids characterized by a finite energy barrier �. The self-diffusion coefficient is evaluated from the
time-dependent velocity autocorrelation function and mean-square displacement. Detailed insights into the
cluster formation for penetrable spheres are gained from the Enskog factor, the effective particle volume
fraction, the mean free path, and the collision frequency for both the soft-type penetrable and the hard-type
reflective collisions. The simulation data are compared to theoretical predictions from the Boltzmann kinetic
equation and from a simple extension to finite � of the Enskog prediction for impenetrable hard spheres
��→��. A reasonable agreement between theoretical and simulation results is found in the cases of ��

�� /kBT=0.2, 0.5, and 1.0. However, for dense systems �packing fraction ��0.6� with a highly repulsive
energy barrier ���=3.0�, a poorer agreement was observed due to metastable static effects of clustering for-
mation and dynamic effects of correlated collision processes among these cluster-forming particles.
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I. INTRODUCTION

The so-called penetrable-sphere �PS� pair potential is de-
fined as

uPS�r� = �� , r � �

0, r � � ,
� �1�

where � is the diameter of the penetrable spheres and ��0 is
the strength of the repulsive energy barrier between two
overlapping spheres when they penetrate each other. The PS
model was suggested by Marquest and Witten �1� as a simple
theoretical approach to micelles in a solvent to explain the
experimentally observed crystallization of copolymer me-
sophases, where a simple cubic solid phase coexisted with
the disordered suspension. This simple model system has
been the subject of several theoretical and simulation studies
�2–10�. An excellent review in this area up to 2001 can be
found in Ref. �11�. More recently, the PS model has been
extended to include a short-range attractive tail �12–14�.

The PS interaction model reduces to the classical hard-
sphere �HS� system when ���� /kBT→� �where T is the
temperature and kB is the Boltzmann constant�. This is
equivalent to the zero-temperature limit T��kBT /�→0. In
the opposite high-penetrability or high-temperature limit
���→0, T�→�� the PS system becomes a collisionless ideal
gas. Except in the pure HS case, penetrability allows one in
principle to consider systems with any value of the nominal

packing fraction ���	 /6�n�3, where n is the number den-
sity. The first correction to the equilibrium ideal-gas struc-
tural and thermodynamic properties in the combined limit
��→0, �→� with ���=const has been exactly obtained �7�.

Recently, the nonequilibrium transport properties of un-
bounded potentials, such as the linear-core �15� and
Gaussian-core �16� fluids have received much attention. In
the case of the PS model, the Liouville operator and the
Boltzmann-Lorentz collision operator were long time ago de-
rived in Refs. �17,18�, respectively. As a more explicit appli-
cation of kinetic theory to soft matter �19�, one of the authors
has derived the relevant transport coefficients �self-diffusion,
shear viscosity, and thermal conductivity� in the context of
the Chapman-Enskog method for the Boltzmann equation of
dilute gases ��
1� �20�. Interestingly, in the PS binary col-
lision dynamics the particle penetration is analogous to the
double refraction of light through a sphere made of a trans-
parent material of relative refraction index depending on the
relative collision velocity and the repulsive energy parameter
�19�.

In addition to transport properties, two of us �21� have
applied two different theoretical predictions, based on the
fundamental-measure theory proposed by Schmidt �3� and
the bridge density-functional approximation proposed by
Zhou and Ruckenstein �22�, to the inhomogeneous structure
of PS model fluids in the spherical pore system. More re-
cently �23�, as a continuation of theoretical approaches along
this direction, the modified density-functional theory �based
on both the bridge density functional and the contact-value
theorem� has been investigated for the structural properties
of PS fluids near a slit hard wall, and the Verlet-modified
bridge function for one-component systems proposed by
Choudhury and Ghosh �6� has also been extended to PS fluid
mixtures.
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Theoretical results for such a precisely defined model po-
tential can be directly compared against the exact machine-
experimental data obtained from computer simulations via
Monte Carlo �MC� and molecular dynamics �MD� methods.
So far, almost all simulations for the PS model fluid have
been carried out using the MC method. On the other hand,
better statistics can be achieved in MD simulations, particu-
larly in systems with discontinuous interactions. For in-
stance, in order to calculate the virial route to the equation of
state for hard-core systems, MC computations require an ac-
curate estimation of the radial distribution function at the
contact point. Computationally, the pair distribution function
may change rapidly near the contact distance in the systems
of ionic solutions, highly charged colloids, aligned liquid
crystals, etc. Under those conditions the extrapolation of the
pair distribution function to the contact value may lead to
large uncertainties. For this reason, the pressure determined
by MC simulations is known to be less accurate than that by
MD computations �24�.

The main motivation in the present work is to undertake a
detailed molecular-based simulation study of transport prop-
erties of PS model fluids, which can be in turn directly com-
pared with theoretical and/or empirical predictions. MD data
for the PS interaction potential have not been presented in
the literature before. More specifically, we have investigated
the PS model system via the equilibrium MD method over a
wide range of densities and repulsive energy parameters to
investigate the equation of state, the self-diffusion coeffi-
cient, and its related time-dependent quantities including the
velocity autocorrelation function �VACF� and the mean-
square displacement �MSD�. Together with existing approxi-
mations for the equilibrium equation of state as well as for
the self-diffusion coefficient in the Boltzmann and Enskog-
like descriptions, our simulation results can be used to assess
and construct a fundamental basis of theoretical and practical
predictions for the relevant transport properties. Such simu-
lation approaches at the atomic or molecular level can also
be used in improved statistical integral-equation theories of
liquid state and help in interpreting real experimental data.

The organization of this paper is as follows. Section II
presents some simple theoretical approximations for the
equation of state and the self-diffusion coefficient of the PS
fluid. The MD method employed in this paper is briefly de-
scribed in Sec. III. The most important part of the paper is
contained in Sec. IV, where the simulation results for the
pressure, the self-diffusion coefficient, the Enskog � factor,
the effective particle volume fraction, the mean free path, the
collision frequencies, the velocity autocorrelation function,
and the mean-square displacement are presented, compared
with theoretical approaches, and discussed. The paper is
closed with some concluding remarks in Sec. V.

II. THEORETICAL APPROACHES FOR THE PS FLUID

A. Equation of state

The equilibrium compressibility factor Z= p /nkBT in the
PS model, where p is the pressure, is given by �9�

ZPS = 1 + 4�x�PS, �2�

where

x � 1 − e−��
�3�

is a parameter measuring the degree of penetrability of the
particles �ranging from x=0 in the free-penetrability limit
��→0 to x=1 in the opposite impenetrability limit ��→��
and �PS�gPS��+� is the contact value of the radial distribu-
tion function gPS�r�.

In Ref. �10� two approximate theories were proposed to
obtain gPS�r�: one valid in the high-penetrability �i.e.,
small-��� regime and the other one in the low-penetrability
�i.e., large-��� regime. We will refer to these two theories as
the high-penetrability approximation �HPA� and the low-
penetrability approximation �LPA�, respectively. We give be-
low the expressions for � in both approximations.

In the HPA, � is given by �10�

�PS = 1 + xw�1�exw�1�, �4�

where

w�r� =
48�x

	r
�

0

�

dk
�k cos k − sin k�2

k3 − 24�x�k cos k − sin k�
sin�kr�

k2 .

�5�

Equation �4� reduces to the exact result �=1+xw�1� in the
limit x→0 �i.e., ��→0� with �x=const.

In the case of the LPA, one has �10�

�PS =
A

x

1 + �/2
�1 − ��2 + �1 − A���4 − ��

. �6�

Here, A is obtained from the transcendental equation

12
�1 − x�A2

x�1 − A�
��1 + �/2�

�1 − ��2 + �1 − A���4 − ��

= 	
i=1

3
zie

zi

B1 + 2B2zi + 3B3zi
2 , �7�

where zi �i=1,2 ,3� are the three roots of the cubic equation
1−B1z−B2z2−B3z3=0 and the coefficients B1, B2, and B3 are

B1 =
3

2

�

1 + 2�
, B2 =

1

2

1 − �

1 + 2�
, �8a�

B3 =
1

12

 1

�A
−

4 − �

1 + 2�
� . �8b�

In the limit x→1 �i.e., ��→��, the solution of Eq. �7� is A
=1, and so one recovers the solution of the Percus-Yevick
integral equation for HS �25�.

B. Self-diffusion coefficient

In the low-density regime ��→0� the transport coeffi-
cients of a gas made of particles interacting via a potential
u�r� can be derived by application of the Chapman-Enskog
method to the well-known Boltzmann equation �20�. The
crucial quantity distinguishing an interaction potential from
another one is the scattering angle as a function of both the
impact parameter b and the relative velocity of the colliding
pair, v12.
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In the particular case of the PS potential �19�, if the scaled
relative velocity v12

� �v12 /�� /m, where m is the mass of a
particle, is smaller than 1, the “projectile” particle does not
have enough kinetic energy to penetrate into the core of the
“target” particle, and consequently it is deflected exactly as if
the target were a hard sphere. On the other hand, if v12

� �1
and b /���1−v12

�−2, i.e., if v12
� �1− �b /��2�1, the projectile

traverses the core analogously to the double refraction of
light through a sphere made of a transparent material of rela-
tive refraction index �1−v12

�−2. In fact, if b /���1−v12
�−2, i.e.,

1�v12
� �1 /�1− �b /��2, a “total reflection” process takes

place and the deflection is again as in the HS case. Figure 1
shows different possible trajectories corresponding to v12

�

=1.1.
In the first Sonine approximation, the self-diffusion coef-

ficient D0 obtained from the Boltzmann equation for the PS
model is given by �19�

D0
PS =

1

16
�	kBT

m

�

�

1

�11
� , �9�

where

�11
� = 1 − �

��

�

dye−yy2R1�y/��� , �10�

with

R1�y� =
�y − 1��y + 2�

6y2 +
4y2 − 4y + 3

12y3/2�y − 1
+

2y − 1

8y2�y − 1�


ln�2y − 2�y�y − 1� − 1� . �11�

Obviously, in the low-penetrability limit ���→��, the self-
diffusion coefficient for the PS model in Eq. �9� reduces to
that of the HS model, namely,

D0
HS =

1

16
�	kBT

m

�

�
. �12�

As said above, Eqs. �9� and �12� are derived from the Bolt-
zmann equation �in the first Sonine approximation�, and thus
they are well justified in the high-dilution limit �→0. On the
other hand, they do not account for finite-density effects. To
correct this deficiency, several empirical or semiempirical
expressions have been proposed in the case of the HS model.
Among them, the most basic one is provided by the Enskog
kinetic theory �20�. The Enskog correction for the self-
diffusion coefficient in the HS system is

DHS =
D0

HS

�HS , �13�

where the Enskog factor �HS is the contact value of the radial
distribution function of the HS fluid. This quantity is related
to the corresponding equation of state in terms of the com-
pressibility factor by

ZHS = 1 + 4��HS. �14�

Equation �13� takes into account that the effective number of
collisions in a dense gas is increased by a factor �HS. Con-
sequently, the self-diffusion coefficient is decreased by the
same factor, relative to the Boltzmann prediction at the same
density. An excellent approximation for �HS within the stable
fluid region �0���0.494� is provided by the Carnahan-
Starling �CS� formula �25,26�

�HS =
1 − �/2
�1 − ��3 . �15�

There are also a number of empirical formulas for DHS. For
systems of 500 HS particles or slightly fewer, the following
analytical fit to MD data was reported by Speedy �27�:

DHS = D0
HS
1 −

�

�g
�
1 + c1
 �

�g
�2

− c2
 �

�g
�4� . �16�

Here, �g�0.57 is the packing fraction at the HS glass tran-
sition and Speedy’s values are c1=0.48 and c2=1.17. Re-
cently, a much more extensive MD computation was per-
formed by Sigurgeirsson and Heyes �28� with an efficient
MD algorithm dealing with up to 32 000 HS particles. They
refined the values of the fitting coefficients c1 and c2 in Eq.
�16� as c1=0.4740 and c2=1.1657. The empirical form �16�
takes into account the crowding effects in the first bracket
term and the hydrodynamic backflow effects at intermediate
densities in the second bracket term. Both the Enskog for-
mula �13� and the empirical expression �16� have in common
the fact that, as expected on physical grounds, DHS�D0

HS,
i.e., the self-diffusion coefficient decays more rapidly than
hyperbolically with increasing density.

In the case of the PS system, the task of extending the
Boltzmann result �9� to finite density to get the self-diffusion
coefficient DPS is much more difficult than in the HS case. In
fact, the ratio DPS /D0

PS is not only a function of density �as in
the HS case� but also a function of temperature or, equiva-
lently, of ��. Based on the Enskog result �13�, it seems natu-
ral to propose the following Enskog-like expression:

FIG. 1. �Color online� Different possible trajectories in a colli-
sion with a scaled relative velocity v12

� =1.1. The dashed trajectories
correspond to “soft” �refraction� collisions, while the solid trajecto-
ries correspond to “hard” �specular� collisions. In general, the col-
lisions are of hard type if v12

� �1− �b /��2�1. As the �reduced� re-
pulsive energy barrier �� increases, less and less collisions are soft.

MOLECULAR DYNAMICS SIMULATION STUDY OF SELF-… PHYSICAL REVIEW E 82, 051202 �2010�

051202-3



DPS =
D0

PS

�PS , �17�

where D0
PS is given by Eqs. �9�–�11� and �PS is either ob-

tained from the empirical values of ZPS from Eq. �2� or de-
rived from the HPA �Eqs. �4� and �5�� or from the LPA �Eqs.
�6�, �7�, �8a�, and �8b��. According to Eq. �17�, DPS�D0

PS.
However, as will be seen in Sec. IV, this inequality is in
general not supported by our MD data.

III. COMPUTATIONAL METHOD

As a successful diagnostics tool, molecular-based com-
puter simulations are usually employed to investigate the un-
derlying diffusion behavior of the model system of interest.
To this end, in this work we have carried out microcanonical
MD simulations for the PS model fluid in a manner similar to
that originally proposed by Alder and Wainwright for hard-
core systems �29�, which is well described elsewhere �24�.
Postcollision velocities for colliding pairs of particles are
assigned according to the type of collision �see Fig. 1�: either
hard-type specular reflection or soft-type refraction. In all
cases both the total momentum and kinetic energy are con-
served in these PS collision conditions.

The initial configurations with 864 penetrable spheres
were generated by randomly inserting particles with veloci-
ties drawn from Maxwell-Boltzmann distributions. The ini-
tial configurations were aged, or equilibrated, for 5
107 col-
lisions before accumulating the final simulation results.
Additional ensemble averages were evaluated from a total
number of 5
108 collisions.

Our MD algorithm has been tested in a number of ways.
When the repulsive energy parameter was assigned a large
value �typically ���3� at the low-density regime ���0.2�,
the static and dynamic results generated from our MD simu-
lations faithfully reproduced the pure HS system. Our result-
ing MD calculations for a few selected runs were also com-
pared with MC computations reported in the literature. A
good agreement with previous MC data for the thermody-
namic and structural properties �10� again confirmed the va-
lidity of the MD method employed in this work. All MD
results reported here are scaled to dimensionless quantities
by using a unit particle diameter �, a unit particle mass m,
and a unit thermal energy kBT. In these system units the
reduced self-diffusion coefficient is expressed as D�

=D /��kBT /m.

IV. RESULTS AND DISCUSSION

A. Equation of state

Before presenting the results for the self-diffusion coeffi-
cient, which is the main quantity of interest in this work, it is
worth considering the equation of state. Figure 2 compares
the MD simulation data for Z with the HPA and the LPA. For
the most penetrable case ���=0.2� both theories agree well
with the MD data, with the agreement being excellent in the
case of the HPA �relative deviations between MD and HPA
are smaller than 0.1%�. For ��=0.5 the HPA is still quite
good, while for ��=1 the LPA performs very well. It is re-

markable that both theories, while being based on opposite
approaches, are so close each other up to ���1 and densities
as large as �=1. In the least penetrable case ���=3� the LPA
behaves reasonably well up to �=0.3 �where the PS system
is only slightly distinguishable from a HS system, repre-
sented here by the CS equation of state� but strongly overes-
timates the MD values for larger densities, when penetrabil-
ity effects start to play a relevant role. By accident the HPA
does a good job for ��=3 and ��1. It is important to remark
that the MD data for the PS fluid with ��=3 clearly deviate
from the HS values for ��0.2. The reason is that, even
though the value ��=3 represents a rather high energy bar-
rier, as the density increases more particles are forced to
overlap, which results in a substantial decrease in the pres-
sure relative to that of the HS system at the same density.

B. Self-diffusion coefficient

The self-diffusion coefficient is a single-particle quantity
which has been more frequently studied in MD calculations
than other collective transport properties, such as the shear
viscosity and the thermal conductivity. The self-diffusion co-
efficient D can be determined from the temporal integration
of the VACF using the Green-Kubo formula

D =
1

3
�

0

�

dt�v�0� · v�t�� , �18�

and also from the slope of the MSD versus time using the
Einstein relation

�r2�t�� = 6Dt . �19�

In our MD simulations these two methods have produced
consistent results, typically with less than 3% differences.

FIG. 2. �Color online� Compressibility factor Z versus the pack-
ing fraction � for several values of ��. The circles are MD results,
the solid lines are the HPA predictions �Eqs. �2�–�5��, and the
dashed lines are the LPA predictions �Eqs. �2�, �6�, �7�, �8a�, and
�8b��. The diamonds at ��=1 and �=0.4, 0.5, 0.6, and 0.8 are MC
simulation data from Ref. �10�. For comparison, the curve corre-
sponding to the HS fluid described by the CS equation of state �Eqs.
�14� and �15�� is also plotted �dash-dotted line�.
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By using a semilogarithmic scale, in Fig. 3 we display the
reduced self-diffusion coefficient D� as a function of the
packing fraction �, as obtained from MD simulations, from
the Boltzmann theoretical predictions in the high-dilution
limit �Eqs. �9�–�11�� and from the Enskog-like theoretical
approximations �Eq. �17��. For comparison, Fig. 3 also in-
cludes curves corresponding to the HS system ���→��: the
Boltzmann theoretical values in the high-dilution limit �Eq.
�12��, the Enskog theoretical values �Eq. �13��, and the em-
pirical fitting values from MD simulations �Eq. �16�� with
c1=0.4740 and c2=1.1657.

There are several interesting features that can be observed
in Fig. 3. As expected, the self-diffusion coefficient de-
creases with increasing density. It also decreases with in-
creasing repulsive energy barrier at fixed �. This behavior is
not counterintuitive. As the �reduced� energy barrier �� in-
creases, more and more collisions are of hard �specular� type.
This gives rise to an increase in the effective collision fre-
quency and thus a decrease in diffusion. At the Boltzmann
level of description, this effect can be grasped from compari-

son between Eqs. �9� and �12� and the property �11
� �1. For

given values of �� and �, the self-diffusion coefficient evalu-
ated from the Boltzmann kinetic equation is larger than the
one from the Enskog-type correction equation. As shown by
Eq. �17�, both coefficients are simply related by the � factor,
which is the contact value of the radial distribution function,
i.e., �=g��+�. This value is close to 1.0 in the high-dilution
limit and increases with increasing density due to particle
crowding effects near the contact distance.

Except for the case ��=3.0, the qualitative behavior of the
MD self-diffusion data is similar for the different values of
��. In the cases ��=0.2, 0.5, and 1.0, we observe in Fig. 3
that the PS Boltzmann approximation produces a reasonably
good agreement with the corresponding MD data, even for
relatively large values of the packing fraction �where the
Boltzmann approximation would be expected to break
down�. In the case ��=0.2 the relative deviations of the Bolt-
zmann predictions with respect to the MD data increase with
density. For ��=0.5, however, the relative deviations reach a
maximum at about �=0.6 and then slowly decay with in-
creasing density. In the two previous cases the Boltzmann
prediction �Eqs. �9�–�11�� underestimates the self-diffusion
coefficient, at least in the density domain 0���1. This
qualitative feature changes in the case ��=1.0, where the
Boltzmann values are below the MD ones up to ��0.5 only.
In fact, the best general agreement between the Boltzmann
results and the simulation data occurs, because of this acci-
dental crossing, for ��=1.0. It is expected that, on increasing
the barrier, the crossing shifts toward lower densities. For the
highly repulsive system with ��=3.0, there is no crossing
effect, and so the Boltzmann approximation overestimates
the MD values of D�, being reliable only in the narrow range
of densities ��0.2.

For the pure HS fluid, it has been reported �28,30� that
reliable self-diffusion data, significantly improving over the
Boltzmann values, are obtained from the Enskog kinetic
equation within the range of equilibrium stable HS fluids
���0.494�. One may see this point from Fig. 3 by compar-
ing the MD-fitting diffusion data with the HS Boltzmann and
Enskog theoretical approximations. It would then seem natu-
ral to expect a similar improvement of the Enskog-like cor-
rection �17� over the bare Boltzmann prediction also in the
case of the PS fluid. Interestingly enough, however, this ex-
pectation only turns true for the highest repulsive barrier
considered ���=3, where a good agreement with MD data is
observed in the density range ��0.5�, as well as for ��=1
and ��0.8. Since, according to Eq. �17�, the Enskog-like
values of D� are smaller than those obtained from the Bolt-
zmann equation, the former values are worse than the Bolt-
zmann values whenever the latter underestimate the MD
data. As shown in Fig. 3, this is what happens for ��=0.2 and
0.5, as well as for ��=1 and ��0.5.

The system with ��=3.0 deserves further comments. First,
as indicated above, neither the Boltzmann equation nor the
Enskog-like correction provides reliable values of D� for �
�0.6. In fact, the MD values decay with increasing density
much more rapidly than both theories predict. Moreover, the
MD diffusion data �in the semilogarithmic representation in
Fig. 3� are seen to exhibit an inflection point near �=0.4, a
qualitative feature not accounted for by either the Boltzmann

FIG. 3. �Color online� Reduced self-diffusion coefficient D� as a
function of the packing fraction � for several values of ��. The
symbols are MD simulations for the PS system; the solid lines are
the Boltzmann theoretical predictions in the high-dilution limit for
the PS fluid �cf. Eqs. �9�–�11��; the dotted lines are the Enskog-like
theoretical approximations for the PS fluid �cf. Eq. �17��, comple-
mented with the empirical values of �PS; the dash-dotted line �in-
terrupted at the maximum packing fraction of HS systems, �
=	�2 /6�0.7405� represents the Boltzmann theoretical values in
the high-dilution limit for the HS fluid �cf. Eq. �12��; the dash-dot-
dotted line represents the Enskog theoretical values for the HS fluid
�cf. Eq. �13��, complemented with the CS values of �HS; and the
thick solid line represents the empirical fitting values from MD
simulations for the HS system �cf. Eq. �16� with c1=0.4740 and
c2=1.1657�.
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or the Enskog theories of the PS fluid. On the other hand, the
existence of an inflection point of log D� vs � is also present
in the HS system, as observed from the Enskog and the em-
pirical lines in Fig. 3. In fact, the MD data of the PS fluid
with ��=3 are close to the HS values up to ��0.2, analo-
gous to what happens with the pressure �see Fig. 2�. For
larger densities, however, the self-diffusion of PS particles is
much larger than that of HS particles at the same packing
fraction. One may suggest that, in this range of higher den-
sities with a high repulsive interaction, the self-diffusion pro-
cess is greatly affected by static structural effects together
with dynamic correlated motion involved in the PS model
system. Later in this section, we will comment on some in-
teresting observations from additional structural and dy-
namic results obtained from our MD calculations. It may be
worthwhile noting here that, even in the simple HS system,
there are various transition properties, mostly investigated by
simulation approaches, such as freezing of the fluid ��
=0.494�, melting of the solid ��=0.545�, loose random
packing ��=0.555�, glass transition ��=0.57�, and dense
random packing ��=0.64� �28�.

C. Enskog � factor and thermodynamic consistency

In order to gain more detailed insights into the thermody-
namic and structural properties related to the diffusion be-
havior, we have also examined other relevant properties of
the PS model interaction system. Here, we start by consider-
ing the Enskog-type correction � factor.

According to statistical mechanics, there are two main
routes in theoretical and simulation studies to obtain � in a
PS system: �a� one from the contact value of the radial dis-
tribution function as �PS=gPS��+� and �b� another one from
the pressure via the so-called virial route as represented by
Eq. �2�, i.e., �PS= �ZPS−1� /4��1−e−��

�. In simulation ap-
proaches, � values in the contact-value method �a� can be
directly computed during simulation runs, while in the sec-
ond method �b� they are indirectly evaluated from MC en-
semble averages or MD time averages of the compressibility
factor at a given thermodynamic condition. In principle, ex-
cept for unavoidable computational errors, those two meth-
ods should generate the same value in equilibrium stable
liquid states.

As shown in Fig. 4, an excellent agreement between those
two methods is observed over the entire density range for
��=0.2, 0.5, and 1.0. Again, the system with ��=3.0 requires
separate comments. In that case, we observe that, up to �
�0.2 the MD values are very close to the HS contact values
obtained from the CS formula. This agrees with what is ob-
served in Figs. 2 and 3. Nevertheless, the HS values of �
increase rapidly as the density increases, while the PS values
reach a maximum around �=0.4 and decrease thereafter. The
most striking feature observed in Fig. 4 is the separation
between the MD values of � obtained from methods �a� and
�b� with ��=3.0 and ��0.6, with the maximum relative de-
viation being of almost 30% at �=1.

Also, although not shown in Fig. 4, we have evaluated the
values of the ratio g��+� / �g��−�e��

� by using the extrapolated
MD data from g�r�. This ratio should take the unity value,

except for computational errors, at any given density and
repulsive energy parameter if the system is in an equilibrium
stable liquid state. We have observed that the deviations of
g��+� / �g��−�e��

� from unity in the cases ��=0.2 and ��

=0.5 are less than 0.1% and 0.3%, respectively. The internal
agreement between g��+� and g��−�e��

is also very good in
the case ��=1.0, with a maximum deviation of about 3% at
�=0.9. Again, the least penetrable case ���=3.0� presents a
peculiar behavior. Up to �=0.5 the ratio g��+� / �g��−�e��

�
deviates from 1 less than 5%, but thereafter it markedly in-
creases with density until having g��+� / �g��−�e��

��1.6 at
�=1.

All these discrepancies between the values of � obtained
from g��+�, �Z−1� /4��1−e−��

�, and g��−�e��
when ��=3.0

and ��0.6 are likely due to the appearance of cluster-
forming metastable structures. Under these conditions we
have employed the direct contact-value method �=g��+� to
obtain the Enskog-type kinetic approximations for the self-
diffusion coefficient shown in Fig. 3.

D. Effective particle volume fraction

As a dimensionless measure of the number of particles
per unit volume we are using the nominal packing fraction
�= �	 /6�n�3. In the case of HS systems, � coincides with
the fraction of the total volume that is occupied by the
spheres. For PS systems, however, particles can interpen-
etrate, thus reducing the fraction of occupied volume. Let us
define the effective particle volume fraction �eff as the aver-
age effective total volume occupied by PS particles divided
by the system volume. Of course, �eff is a function of both �
and �� that satisfies the inequality �eff��, with the equality
taking place only in the HS limit ���→�� or in the low-

FIG. 4. �Color online� Enskog-correction factor � as a function
of packing fraction � for several values of ��, as obtained in MD
simulations. The solid symbols are obtained from the contact-value
method, while the open symbols are obtained from the compress-
ibility factor. The solid line represents the function �HS��� given by
the CS equation of state for the HS fluid �Eq. �15��.
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density limit ��→0�. For fully penetrable systems in the
high-penetrability limit ���→0�, the corresponding particle
configuration will become that of a totally unbiased random
structure, and this leads statistically to �eff=1−e−� �31�.

We have calculated �eff by the simple hit-and-miss
method using a uniform �10�
10�
10�� grid over ap-
proximately half a million equilibrium configurations during
our MD computations. The results are displayed in Fig. 5.
For the systems with ��=0.2, 0.5, and 1.0, the resulting data
are very close to �but slightly above� the curves representing
randomly distributed configurations. In the case ��=3.0, the
MD values of �eff are close to � up to ��0.2, which indi-
cates HS-like configurations in that density range. As the
density increases further, �eff /� significantly decreases and
at ��0.6 it even crosses the random distribution expecta-
tion. It is paradoxical that at �=1, for instance, particles are
so much overlapped in the case ��=3.0 that less than 55% of
the available volume is actually occupied by them; in con-
trast, at the same density, particles occupy about 65% of the
total volume in the case of a much less repulsive barrier ��

=0.2. Again, this signals in the case ��=3.0 a transition near
�=0.6 to a metastable state characterized by a high degree of
clustering.

E. Mean free path and collision frequencies

In the HS kinetic theory, the mean free path �HS in the
dense system is related to that in the high-dilution limit
�0

HS=� /6�2� by the �HS factor in a similar way as in Eq.
�13�, i.e., �HS=�0

HS /�HS �32�. In this case of HS systems the
mean free path simply characterizes the typical distance
�much higher than the diameter � in the dilute regime� tra-
versed by a sphere between two successive collisions. Of
course, the distance between the centers of the two particles

in a HS collision is r=�+. In contrast, two classes of events
contribute to the mean free path in the PS system �see Fig.
1�. On one hand, one still has hard collisions taking place at
r=�+. On the other hand, soft encounters give rise to a pri-
mary “external” collision at r=�+ followed by a secondary
“internal” collision at r=�−; this second event contributes to
the mean free path with a value smaller than �. Therefore,
every soft collision has two contributions �primary and sec-
ondary� to the mean free path. For dilute systems, where �
��, the primary contribution is on the order of �, while the
secondary one is practically zero; as penetrability increases,
almost all the collisions are soft, and thus the mean free path
is about half the value obtained in a HS system at the same
�low� density.

We have evaluated the mean free path for PS fluids during
MD simulations, and the results are displayed in Fig. 6. In
the semilogarithmic scale of Fig. 6�a�, the values of ��

�� /� display a similar decaying behavior for the cases ��

=0.2, 0.5, and 1.0. However, again in the case ��=3.0 a
different behavior can be observed, where �� is seen to ex-
hibit a weak density dependence for ��0.6. Figure 6�b�
shows that, in the case ��=3.0, the product ��� agrees with
the HS prediction up to �=0.2, but then it presents an ac-
centuated minimum at ��0.4; this peculiar behavior is an-
other distinct evidence for cluster-forming structures. On the
other hand, the curves for ��=0.2, 0.5, and 1.0 clearly depart
from the HS values, even for small densities. This illustrates
the penetrability effects in the PS fluid and the influence of
soft collisions, as discussed above. For instance, in the case
��=0.2 the values of ��� slowly decay with density, taking a
nearly constant value that is almost half the Boltzmann HS
value ��0

HS /���=1 /6�2�0.117 85.

FIG. 5. �Color online� �a� Effective particle volume fraction �eff

and �b� ratio �eff /� as functions of the packing fraction �. The
symbols �with lines to guide the eye� represent MD data for several
values of ��. The upper and lower dashed lines correspond to the
limiting cases of the nonoverlapping HS system ���→�� and the
totally random overlapping PS system ���→0�, respectively.

FIG. 6. �Color online� �a� Reduced mean free path ��=� /� �in
semilogarithmic scale� and �b� product ��� as functions of the
packing fraction. The symbols �with lines to guide the eye� repre-
sent MD data for several values of ��. The dashed and dash-dotted
lines correspond to the HS system in the Boltzmann and Enskog
approximations, respectively.
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For HS systems, the collision frequency is �HS

=2�v� /�HS, where �v�=�8kBT /	m is the average speed. In
the case of PS systems, it is instructive to decompose the
collision frequency �=�s+�h into the soft-type collision
frequency ��s� and the hard-type collision frequency ��h�.
They are calculated as follows. Every time a collision with
relative speed v12 and impact parameter b occurs, it is cata-
loged as either soft or hard depending on whether
�mv12

2 /���1− �b /��2�−1 is positive or negative, respectively.
If Ns�t� and Nh�t� denote the total numbers of soft and hard
collisions, respectively, over a time interval t, then �s
=2Ns�t� / tN and �h=2Nh�t� / tN, where N is the total number
of particles.

The collision frequencies �s and �h are plotted in Figs.
7�a� and 7�b�, respectively. We observe that soft collisions
are dominant in the cases ��=0.2, 0.5, and �to a lesser extent�
1.0. In particular, soft collisions represent about 90% of all
collisions for all the systems with ��=0.2. It is interesting to
note that both �s and �h grow almost linearly with � in those
three cases. In contrast, if ��=3.0 we find an initial quasilin-
ear growth followed by a much slower regime for ��0.6.
As might be expected, for ��=3.0 hard collisions dominate
over soft ones, with the former representing about 90% of all
collisions.

F. Velocity autocorrelation function and mean-square
displacement

Both the VACF �see Eq. �18�� and the MSD �see Eq. �19��
provide useful insights into the dynamic time-dependent be-
havior related to diffusion processes in PS systems. It is then
illustrative to analyze the manner in which those functions
change with increasing densities and repulsive energy pa-
rameters.

In Figs. 8�a� and 8�b� we display the VACF �in units of
3kBT /m� as a function of time in units of the relevant HS
mean collision time �HS=1 /�HS=�HS /2�v� for ��=0.5 and
��=3.0, respectively, and several characteristic densities. The
primary mechanism involved in the rapid decay of the VACF
is provided by hard collisions, so that colliding particles rap-
idly forget their initial velocities through successive colli-
sions. For soft-penetrable collisions, postcollision velocities
�or, equivalently, the colliding particle trajectories� are rela-
tively correlated with their own initial values. In agreement
with this, the normalized VACFs for the systems with ��

=0.5 exhibit similar exponentially decaying behaviors for
different densities, since the soft-penetrable collision process
is dominant in this case. As a consequence the areas below
the curves are hardly dependent on �, which implies D
��HS��−1. In the case ��=3.0 the resulting VACF for �
=0.1 exhibits a decaying exponential behavior similar to that
of the system with ��=0.5 and the same density, except that
now the decay is much more rapid due to the prevalence of
hard collisions. For higher densities, the development of
cluster-forming structure significantly influences the collec-
tive motion of penetrable particles by retardation �for incom-
ing particles� or acceleration �for outgoing particles� of the
velocities of colliding pairs. Under those conditions the re-
sulting VACFs exhibit a nonexponential behavior. Further-

FIG. 7. �Color online� Reduced soft-penetrable collision fre-
quency �s

�=�s� /�kBT /m and �b� reduced hard-reflective collision
frequency �h

�=�h� /�kBT /m as functions of the packing fraction �.
The symbols �with lines to guide the eye� represent MD data for
several values of ��. The dashed line in �b� corresponds to the HS
system, i.e., ��HS= �48 /�	��.

FIG. 8. �Color online� Normalized VACF as a function of the
reduced time in units of �HS for �a� ��=0.5 and �b� ��=3.0. The
curves correspond to �=0.1 �solid lines�, 0.3 �dashed lines�, 0.5
�dash-dotted lines�, 0.7 �dash-dot-dot lines�, and 0.9 �dotted lines�.
Note the different horizontal scales in both panels.
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more, the trajectories of colliding particles are largely re-
stricted by backscattering or cage effects between clusters in
the higher-density regime ���0.6 and ��=3.0�, as shown in
Fig. 8�b�.

As displayed in the log-log plot of Fig. 9, trends similar to
the ones mentioned above for the VACF can be observed
from the MD results for the MSD curves. At very short
times, before hardly occurring particle collision, the MSD
curves changes more rapidly than in longer times. This is due
to the ballistic motion of particles until they collide with
their neighbors, resulting in �r2�t��� t2. Subsequent colli-
sions make trajectories resemble a random-walk diffusion
process, so that, after a certain transition period, the diffusive
regime defined by Eq. �19� is established. These behaviors
are clearly illustrated in Figs. 9�a� and 9�b�, except that the
MSD curve for �=0.9 and ��=3.0 presents a transient
anomalous subdiffusive behavior where �r2�t��� t�, with �
�1. This signals a hindrance of the diffusion process by
obstruction or trapping phenomena. Once the diffusive re-
gime ��=1� is reached for longer times, it is characterized by
a very low value of the self-diffusion coefficient, as shown in
Fig. 3.

G. Discussion on the Boltzmann kinetic theory

Before concluding this section, it is of interest to return to
one of the observations made earlier to explain some relevant

shortcomings involved in the Boltzmann theoretical approxi-
mation. As illustrated in Fig. 3, together with Figs. 8 and 9,
the failure of the Boltzmann kinetic approximation for the PS
model fluid becomes more important as the density in-
creases. This is not surprising: one may recall that the Bolt-
zmann kinetic theory is based on the high-dilution limit. A
key element related to this kinetic theory is the molecular
chaos assumption, known as “Stosszahlansatz,” in which the
precollision velocities of two colliding particles are assumed
to be totally uncorrelated. In addition, regardless of a given
model potential, the Boltzmann kinetic theory deals with
only binary collision effects by totally neglecting multiple
collisions. As observed in MD simulations for the PS model
potential in this work, the deviation between our MD diffu-
sion data and the Boltzmann predictions can be largely due
to the neglect of such spatiotemporal correlations in the PS
collision dynamics, particularly in dense system with cluster-
forming structures. For example, a simple conjectural argu-
ment will intuitively give, in analogy with the HS relation
DHS��HS, that particles with larger mean free paths become
more diffusively dispersed �larger diffusion coefficients�, and
vice versa. However, for the dense PS fluid with the highest
repulsive barrier ���0.6 and ��=3.0�, our MD results
clearly manifest contradictions against this simple conjec-
ture: similar values of the mean free path �Fig. 6� yield a
significant reduction in the corresponding self-diffusion co-
efficient �see Fig. 3�. This partly explains that the Boltzmann
kinetic theory does not take proper account of the conse-
quences of correlated collisions on the self-diffusion coeffi-
cient in the PS system, as investigated in this work. More
detailed MD simulation studies can be very helpful to enable
qualitative predictions of the underlying behavior of the PS
interaction systems together with statistical-mechanical ap-
proaches, which will be one of our current research topics for
further theoretical and simulation work.

V. CONCLUDING REMARKS

In this work, as an intermediate between theory and ex-
periment, MD simulations have been carried out to investi-
gate the detailed diffusion behavior of PS model fluids. The
self-diffusion coefficient has been calculated from its related
time-dependent properties of the VACF and the MSD. The
resulting simulation data have been used to assess theoretical
predictions by the Boltzmann kinetic equation and an
Enskog-like correction. Detailed insights involved in the
cluster formation for penetrable spheres have been observed
from the effective particle volume fraction, the mean free
path, and the collision frequency for both the soft-type pen-
etrable and the hard-type reflective collisions.

A reasonable good agreement with Boltzmann and En-
skog theoretical approximations is found in the cases ��

=0.2, 0.5, and 1.0. On the other hand, for the dense PS fluid
with the highest repulsive barrier ���0.6 and ��=3.0�, sev-
eral distinct evidences of the cluster-forming structure are
exhibited from static structural and dynamic collisional prop-
erties. In that case, a poor agreement between theory and
simulation is observed due to those effects, especially corre-
lated collision processes. Under those conditions, the indirect

FIG. 9. �Color online� Log-log plot of the MSD �in units of �2�
as a function of the reduced time in units of �HS for �a� ��=0.5 and
�b� ��=3.0. The curves correspond to �=0.1 �solid lines�, 0.3
�dashed lines�, 0.5 �dash-dotted lines�, 0.7 �dash-dot-dot lines�, and
0.9 �dotted lines�.
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virial route and the direct contact-value route to obtain the
Enskog-type correction factors yield inconsistent results.
This indicates that for ��=3.0 and ��0.6 the states reached
in our MD simulations are not of strict thermodynamic equi-
librium but are long-lived metastable states. We are currently
examining such cluster-formation conditions with larger
numbers of penetrable spheres to check the number depen-
dence of transport properties including the self-diffusion, the
shear viscosity, and the thermal conductivity coefficients.
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