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We derive general properties of the linear-response functions of nonequilibrium steady states in Langevin
systems. These correspond to extension of the results which were recently found in Hamiltonian systems �A.
Shimizu and T. Yuge, J. Phys. Soc. Jpn. 79, 013002 �2010��. We discuss one of the properties, the sum rule for
the response function, in particular detail. We show that the sum rule for the response function of the velocity
holds in the underdamped case, whereas it is violated in the overdamped case. This implies that the over-
damped Langevin models should be used with great care. We also investigate the relation of the sum rule to an
equality on the energy dissipation in nonequilibrium Langevin systems, which was derived by Harada and
Sasa.
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I. INTRODUCTION

Responses to weak perturbations contain important infor-
mation on the physical properties of systems and are often
used to characterize their states. General properties of the
response function are useful in investigating the consistency
of obtained results both in theories and in experiments and in
making prediction from them. For equilibrium states many
general properties are well known, which are based on the
linear-response theory �1�. Much interest has been devoted
recently to extending the properties to nonequilibrium steady
states �NESSs� �2–12�. Several properties of the linear-
response function of NESSs were found by Shimizu and the
author in general Hamiltonian systems �12�. These properties
consist of experimentally measurable quantities only, which
is a distinguished feature from the formal results in many
other works. One of the general properties is the sum rule for
the response function �12�:

�
−�

�

Re �̃B
A��;F�

d�

�
= ��B,A�P	F,0, �1�

where A is a physical observable, −B is a perturbation poten-

tial, and �̃B
A is the Fourier-Laplace transform of the linear

response function of A. �¯ 	F,0 represents the average in a
NESS with a driving force �pump field� F and without the
perturbation �probe force�, and �• , •�P the Poisson bracket in
classical systems �or the commutator divided by i� in quan-
tum systems�, which often reduces to an easily measurable
quantity.

In Ref. �12� they derived these properties assuming that a
large system �which is composed of the system of interest, its
environments and a driving source� is a �deterministic�
Hamiltonian system. The applicable range of the properties
is quite large since almost no assumptions were imposed. It
is not trivial, however, that the properties hold in stochastic
systems. There are two points to examine the validation in
such systems. One is that explicit derivation of the properties
in stochastic systems extends the universality of the proper-

ties. The other is as follows. Some classes of stochastic sys-
tems may be regarded as approximate models of certain large
Hamiltonian systems, where the degrees of freedom in the
environments are eliminated �although in some cases the
connections between these models are not sufficiently clear�.
Therefore the validation is utilized as a criterion for effec-
tiveness of the approximate models because the properties
should remain valid if the approximations in reducing the
original Hamiltonian models to the stochastic models are
good.

In this paper we show that the sum rule holds in the sto-
chastic systems described by the Langevin equations. It is
valid in highly nonequilibrium steady states as well as in
equilibrium states. Here, “highly nonequilibrium” is used in
the following two senses: �1� the driving force may be arbi-
trarily large and �2� the intensity of the Langevin noise is
allowed not to satisfy the second fluctuation-dissipation rela-
tion �as in the case of nonequilibrium process in laser phys-
ics �13��. We also derive the asymptotic behavior, another
general property shown in Hamiltonian systems �12�, of re-
sponse function in the Langevin systems. Furthermore we
show that the sum rule for the velocity response function is
violated in the overdamped cases. This implies that the over-
damped model sometimes gives results inconsistent with
those in larger Hamiltonian systems especially when they are
related to small time scale phenomena �which are correctly
described by the Hamiltonian systems�. We also discuss a
relation between the sum rule and the Harada-Sasa equality
�2,3�, which is an expression of the energy dissipation in the
Langevin models.

II. MODEL

We define a general form of the Langevin model. The
examples are shown in Sec. IV.

We consider a system the state of which is specified by a
set of n stochastic variables denoted by �= ��1 ,�2 , . . . ,�n�
�called system variables hereafter�. The dynamics of the sys-
tem is assumed to be characterized by the following stochas-
tic differential equation �14� of a general form:*yuge@m.tains.tohoku.ac.jp

PHYSICAL REVIEW E 82, 051130 �2010�

1539-3755/2010/82�5�/051130�7� ©2010 The American Physical Society051130-1

http://dx.doi.org/10.1143/JPSJ.79.013002
http://dx.doi.org/10.1103/PhysRevE.82.051130


d�i�t� = Mi„��t�;F…dt + 

j=1

n

Nij„��t�;F… · dWj�t�

+ �f i
p�t�Ki„��t�…dt . �2�

The first two terms in the right-hand side describe the unper-
turbed dynamics of the system. F represents a pump field,
which determines the degree of nonequilibrium of the system
�e.g., an external driving force or a temperature difference�.
The first term is a deterministic part �Mi is a certain known
function of � and F�. The second one represents the noise
term, where Wi�t� is a Wiener process. We assume that the
mean of Wi�t� is zero for any i and that Wi�t� and Wj�t� are
uncorrelated if i� j. The symbol “·” implies the multiplica-
tion in the sense of Itô. The noise intensity is determined by
Nij �which is a known function of � and F�. The third term
represents the probe force �perturbation� the response to
which is of our interest �f i

p and Ki are known functions of t
and of �, respectively�. We assume that in the unperturbed
system �i.e., in the case of �=0� is realized a certain steady
state which is stable against perturbations.

A situation to be supposed is as follows. The system of
our interest is driven to a NESS by the pump field F. The
steady state may be in a nonlinear response regime, in a
linear-response regime, or an equilibrium state, because F is
allowed to be arbitrary �may be very large� and the noise
intensity is arbitrary. To measure the response of the NESS,
the probe force �f j

pKj is applied to the system in addition to
F. �This is sometimes called pump-probe experiment.� The
linear-response function to the perturbation �f j

pKj is defined
by

�Kj

A �t − s;F� =�	�A„��t�…	F,�

�	f j
p�s�

�
�=0

. �3�

Here A is a physical observable which is a function of the
system variables �, and �¯ 	F,� represents the average in a
state with the parameter F and the perturbation. It should be
noted that the response function thus defined is that of a
NESS which may be in a nonlinear response regime because
F is allowed to be large �irrespective of ��. �The meaning of
“linear” in the linear-response function of the NESS is the
linear order in �f j

pKj �not F�.�

III. GENERAL RESULT

A. Sum rule for response function

We now show the sum rule for the response function in
the Langevin system. For this purpose we consider the sto-
chastic differential equation for the observable A. This is
given by the Itô formula �14�:

dA„��t�… = 
̂A„��t�…dt + 

i=1

n



j=1

n

Nij„��t�;F…
�A

��i
„��t�… · dWj�t�

+ ��
i=1

n

f i
p�t�Ki���t��

�A

��i
„��t�…dt , �4�

where the backward operator 
̂ is defined by


̂ = 

i=1

n

Mi��;F�
�

��i
+

1

2

i=1

n



j=1

n



k=1

n

Nik��;F�N jk��;F�
�2

��i � � j
.

�5�

Employing a method similar to that in Ref. �3�, we transform
this differential equation into an integral form:

A„��t�… = e�t−t0�
̂A„��t0�…

+ 

i=1

n



j=1

n �
t0

t

Nij„��t��;F…
�

��i
e�t−t��
̂A„��t��… · dWj�t��

+ �

i=1

n �
t0

t

f i
p�t��Ki„��t��…

�

��i
e�t−t��
̂A„��t��…dt�, �6�

where t0 is an initial time. For completeness we provide the
detail of the transformation in the Appendix.

The average of the second term in the right-hand side of
Eq. �6� vanishes because the integrand is a nonanticipating
function �the mean value formula of the Itô stochastic inte-
gral� �14�. Taking the average of Eq. �6�, we thus obtain

�A„��t�…	F,� = e�t−t0�
̂A„��t0�… + �

i=1

n �
t0

t

f i
p�t��

��Ki„��t��…
�

��i
e�t−t��
̂A„��t��…

F,�
dt�.�7�

By a functional differentiation of Eq. �7� with respect to
f j

p�s�, an expression of the response function is derived:

�Kj

A �t − s;F� = �Kj„��s�…
�

�� j
e�t−s�
̂A„��s�…

F,0
, �8�

for t�s ��t0�, and �Kj

A �t−s ;F�=0 otherwise. Note that the
Langevin system satisfies the causality condition. If s t0,
this expression does not depend on s but on t−s only because
a steady state is realized in the unperturbed system. Thus we
finally obtain the sum rule:

�
−�

�

Re �̃Kj

A ��;F�
d�

�
= �Kj

A �+ 0;F� = �Kj���
�A

�� j
���

F,0
,

�9�

where �̃Kj

A �� ;F� is the Fourier-Laplace transform of

�Kj

A �� ;F� and where we have used �−�
� Im �̃Kj

A �� ;F�d�=0
�this is because �Kj

A �� ;F� is a real-valued function�. This is
the main result of the present paper.

B. Asymptotic behavior

In Ref. �12�, in addition to the sum rule, an asymptotic

behavior of �̃Kj

A �� ;F� was derived. We here show another
derivation of it using the sum rule. We first note that the
response function satisfies a dispersion relation if the system
satisfies the causality condition;

TATSURO YUGE PHYSICAL REVIEW E 82, 051130 �2010�

051130-2



Im �̃Kj

A ��;F� = − P�
−�

� 1

�� − �
Re �̃Kj

A ���;F�
d��

�
,

�10�

where P denotes the principal value. By multiplying � to the
both sides of this equation and by taking the �→� limit, we
obtain the asymptotic behavior:

lim
�→�

� Im �̃Kj

A ��;F� = �
−�

�

Re �̃Kj

A ���;F�
d��

�

= �Kj���
�A

�� j
���

F,0
, �11�

where we have exchanged the integration and the limit pro-
cedure in the first equality and have used the sum rule in the
second equality. Hence the asymptotic behavior is valid in
the systems �including the Langevin systems� where the sum
rule and the dispersion relation hold. The asymptotic value is
the same as the sum value in the sum rule.

C. Remarks

Here we make remarks on the results.
First, Eq. �9� should be interpreted as a prediction on the

sum value �integral value� of �̃Kj

A �� ;F� at many different

values of � �therefore Eq. �9� is called sum rule�. �̃Kj

A �� ;F�
for each � is easily measured by experiments or numerical
simulations, e.g., in the following way: apply a sinusoidal
probe force with frequency � �i.e., fp�t�=sin �t�, measure
the observable A for sufficiently long time �1 /��, and cal-

culate the Fourier component �Ã�	F,� at � from the time-

series data of A ��̃Kj

A �� ;F�=lim�→0�Ã�	F,� /��. The sum rule
�Eq. �9�� states that the sum value measured in the system
with a small perturbation equals the average value of S���
�Kj����A��� /�� j measured in the system without the pertur-
bation. In many cases S is a quantity that is easy to measure.
Therefore it is possible to test the sum rule in experiments
and simulations. �In Ref. �12� we demonstrated the validity
of a sum rule by a numerical simulation.�

Equation �9� also seems to be a prediction on the value of
the response function immediately after the probe force is
applied, as seen in the middle of Eq. �9�. In contrast to the

measurement of �̃Kj

A �� ;F�, however, it is very difficult to
measure �Kj

A �+0;F� in experiments and numerical simula-
tions. Therefore it is more natural to interpret Eq. �9� as a

sum rule for �̃Kj

A �� ;F�.
Second, the sum rule holds for any steady states �if they

are stable� including the states in a nonlinear response re-
gime �at large F� as well as an equilibrium state �F=0�.
Although the form of the rule is the same for all the states,
the value of the sum may vary as F is changed. This is
because the steady state distribution function, which appears
in averaging S��� in Eq. �9�, is dependent on F.

Third, the expression of the response function �Eq. �8�� in
more concrete examples was derived in some literatures
�9,11�, although they did not derive the sum rule from it. The

expression itself is not so useful because it is hard to calcu-
late in analytic way unless one knows the explicit form of the
steady-state distribution function and because it is hard to
measure in experiments and numerical simulations due to the

complicated factor e�t−s�
̂. In contrast, the rightmost side of
Eq. �9� is much easier to measure since it does not contain
such factors, and tests of the validity of Eq. �9� are possible
as mentioned in the first remark.

Fourth, the sum rule is different from the moment sum
rule �e.g., Ref. �5��. The statement of the moment sum rule is

that the sum value of �̃Kj

A �� ;F� �and ���̃Kj

A �� ;F�� con-
verges to a certain value. However, the dependence of this
value on F and the other parameters is not given by it, al-
though the dependence on F is most interesting point in non-
equilibrium statistical mechanics. In contrast, the statement
of the sum rule is not only the convergence of the sum value
but also its equivalence to the average value of S���, which
gives the dependence of the sum on several parameters �in-
cluding F�.

S is independent of the state and the system �without
probe�. �It depends on the probe force and the observable of
our interest, both of which may be chosen irrespective of the
state and the system.� Therefore there are no differences in S
between equilibrium states and NESSs and between nonin-
teracting systems and interacting systems. The dependence
on the state and the system appears only in averaging it,
which leads to the dependence of the sum on F in general.
When S is independent of �, in particular, this dependence
disappears and the sums are the same for any steady states
and for any systems. This fact cannot be predicted by the
moment sum rule.

IV. EXAMPLES

In this section we describe some examples of the Lange-
vin model defined in the general form �Eq. �2�� in Sec. II,
and see the concrete forms of the sum rule in the examples.
It should be noted that in Eq. �2� the relevant quantities to the
sum rule are Kis.

Furthermore we show that the sum rule for the velocity
response function is violated in the overdamped case.

A. Underdamped case

One of the simplest examples is the single-particle under-
damped Langevin model in one dimension which is de-
scribed by the following equations:

dp�t�
dt

= −
�

m
p�t� −

�U

�x
„x�t�… + F + ��t� + �fp�t�

�B

�x
„x�t�… ,

�12�

dx�t�
dt

=
p�t�
m

. �13�

Here, p, x, m, and � are the momentum, position, mass, and
friction coefficient of the particle, respectively. U�x� is a po-
tential, F is an external driving force, and −B�x� is a pertur-
bation potential of the probe. ��t� is a white Gaussian noise
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with zero mean and satisfies ���t���t��	=2D	�t− t��. F is al-
lowed to be arbitrarily strong. A nonequilibrium steady state
in the nonlinear response regime is realized for large F,
while an equilibrium state is realized for F=0.

More precise forms of Eqs. �12� and �13� are given by Eq.
�2� where n=2, �1= p, and �2=x, and where

M1�p,x;F� = −
�

m
p −

�U

�x
�x� + F, M2�p,x;F� =

p

m
,

N11�p,x;F� = �2D, Nij�11�p,x;F� = 0,

K1�p,x� =
�B

�x
�x�, K2�p,x� = 0.

In this case the sum rule reads

�
−�

�

Re �̃B
A��;F�

d�

�
= � �B

�x
�x�

�A

�p
�p,x�

F,0
. �14�

This form is the same as that in the classical Hamiltonian
models where the systems of interest are single-particle sys-
tems. In particular, when considering the momentum re-
sponse to the spatially homogeneous probe force �i.e., A= p
and B=x�, we have the F-independent sum value:

�
−�

�

Re �̃x
p��;F�

d�

�
= 1. �15�

The second example is a three-dimensional many-particle
underdamped Langevin model described by

dp���t�
dt

= −
��

m�

p���t� −
�U

�r�
�r���t�� −

�V

�r��

��r���t��� + F� + ����t�

+ �fp�t�
�B

�r�
�p���t�,r���t�� , �16�

dr���t�
dt

=
p���t�
m�

− �fp�t�
�B

�p�
„p���t�,r���t�… , �17�

for �=1,2 , . . . ,N. Here, a� = �a1 ,a2 ,a3� represents a three-
dimensional vector. p��, r��, m�, and �� are the momentum,
position, mass, and friction coefficient of the �th particle,
respectively. U�r�� is a single-particle potential and V��r���� is
an interparticle potential. F� is an external driving force, the
strength of which is arbitrary. −B�p� ,r�� is a probe potential
�perturbation� which is assumed to depend on a momentum
as well as on a position. �An example is an interaction of an
electron with an electromagnetic field.� ����t� is a white

Gaussian noise with zero mean and satisfies ���
��t����

���t��	
=2D	���	���	�t− t�� �� ,��=1,2 ,3�. More precise forms of
these equations are given by Eq. �2� with n=6N, �6�−6+�

= p�
�, and �6�−3+�=r�

� ��=1,2 ,3�. The relevant quantities Kis
to the sum rule are written as

K6�−6+���p��,r���� =
�B

�r� �p��,r��� ,

K6�−3+���p��,r���� =
�B

�p� �p��,r��� .

We thus obtain the sum rule for the response function �B
A�t

−s ;F�=	�A��p���t� ,r���t���	F,0 /�	fp�s� ��=0

�
−�

�

Re �̃B
A��;F�

d�

�
=�


�,�
� �B

�r�
� ��p��,r����

�A

�p�
� ��p��,r����

−
�B

�p�
� ��p��,r����

�A

�r�
� ��p��,r�����

F,0

.

�18�

This form is the same as that in the classical Hamiltonian
models �Eq. �1��. This reduces to Eq. �14� if N=1, �B /�p
=0 and the motion is restricted to one dimension.

In Langevin models the noise intensity D is usually as-
sumed to be equal to �kBT �which is called the second
fluctuation-dissipation relation �FDR� �1��, where T is the
temperature of the environment and kB is the Boltzmann con-
stant. However, as seen in the general result and in the above
two examples, this assumption is not necessary for the valid-
ity of the sum rule because the noise intensity does not ex-
plicitly contribute to the rule. This indicates that the sum rule
holds in a very wide range of systems from highly nonequi-
librium systems �in the sense that the second FDR is vio-
lated� to purely deterministic systems �D=0�. The violation
of the second FDR is often seen in the treatment of nonequi-
librium process �far from equilibrium� in light-emitting de-
vices by quantum Langevin equation �13�.

For the same reason the noise intensity D may depend on
F. Therefore the treatment in the present paper is applicable
also to the systems in which the second FDR is gradually
violated as F increases. Also D may depend on the position
of the particles in the two examples and on � and � in the
second example. One of the consequences from this fact is
that the sum rule is valid also in heat conducting nonequilib-
rium systems driven by temperature difference. It should be
noted that the validity of the sum rule is independent of the
noise intensity whereas the value of the sum depends on it
because the steady states depend on it in general.

Finally we make a brief comment. In some Langevin sys-
tems the natural interpretation of the Langevin equations
used in physics is the Stratonovich-type stochastic differen-
tial equations �15�. In such cases we should first interpret the
given Langevin equations to the corresponding Stratonovich-
type equations, then transform them into the Itô-type equa-
tions �Eq. �2��, and finally apply the general form of the sum
rule. Note that the form of the sum rule is identical irrespec-
tive of the interpretations, although the value of the sum
depends on them because the steady states may be different
in different interpretations. In the above examples �with
position-independent D�, the values as well as the forms of
the sum rules are independent of the interpretations because
the forms of the Stratonovich-type and Itô-type equations are
the same except for the senses of the multiplications in these
cases.
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B. Overdamped case

In this subsection we discuss the sum rule in the over-
damped case. For simplicity we consider a single-particle
model �the extension to many-particle models is straightfor-
ward�. We consider the single-particle overdamped Langevin
model in one dimension which is described by

�
dx�t�

dt
= −

�U

�x
�x�t�� + F + ��t� + �fp�t�

�B

�x
„x�t�… . �19�

Here the notations are the same as those in Eqs. �12� and
�13�. ��t� is a white Gaussian noise with zero mean and sat-
isfies ���t���t��	=2D	�t− t��. A more precise form of Eq.
�19� is given by Eq. �2� where n=1 and �1=x and where

M1�x;F� = −
1

�
� �U

�x
�x� + F� ,

N11�x;F� =
�2D

�
,

K1�x� =
1

�

�B

�x
�x� .

Even in this model the sum rule is valid if the observable A
is a function of only x;

�
−�

�

Re �̃B
A��;F�

d�

�
=

1

�
� �B

�x
�x�

�A

�x
�x�

F,0
. �20�

One sometimes considers as an observable of interest the
velocity v, which is defined by v�t�dt=dx�t� in the over-
damped model. Because we have not derived the sum rule in
the cases that the observable is a function of the differentials
of the system variables, the general result �Eq. �9�� does not
ensure that the sum rule holds for the response function �B

v

of the velocity in this model. However, from the viewpoint
that the overdamped model is regarded as a coarse-grained
model of the underdamped one, �B

v must satisfy the sum rule
if the coarse-graining procedure is good.

To investigate this point we again consider the under-
damped model described by Eqs. �12� and �13�. Because the
momentum of the particle is included in the system variables
in the underdamped model, we can safely consider the sum
rule for the response function of the velocity p /m, which
reads

�
−�

�

Re �̃B
p/m��;F�

d�

�
=

�

m

1

�
� �B

�x


F,0
. �21�

The right-hand side diverges in the overdamped limit �m /�
→0�. Therefore a necessary condition for the validity of the
sum rule for �B

v is that �B
v�+0;F� is divergent in the over-

damped model. We next examine this condition directly in
the overdamped model. �B

v is calculated by averaging Eq.
�19� and by functionally differentiating the result with re-
spect to f�s�:

�B
v�t − s;F� =� 	

�	f�s�� dx�t�
dt


F,�
�

�=0

=
1

�2� �B

�x
�x�s��

�

�x
e�t−s�
̂�U

�x
�x�s��

F,0

+
1

�
� �B

�x
�x�

F,0
	�t − s� , �22�

where we have used the expression �Eq. �8�� in the first term
in the rightmost side. Owing to the second term, �B

v�+0;F� is
divergent �16�. Thus the sum rule for �B

v seems to be valid in
the overdamped model in the sense that the both sides of it
are divergent. More careful analysis, however, reveals that
the diverging behaviors are different between Eq. �22� and
the overdamped limit of Eq. �21�. The diverging behavior of
Eq. �22� is dominated by the delta function in the second
term in the rightmost side. This comes from the functional
derivative 	f�t� /	f�s�, the order of which is estimated as
O�1 /�t�. Here �t is the smallest time scale of our observa-
tion on the system. On the other hand, the diverging behavior
of the overdamped limit of Eq. �21� is dominated by the
factor � /m in the right-hand side. Since the overdamped
Langevin model should be interpreted as an effective de-
scription of the underdamped one in the time scale �t
m /�, one must first take the m /�→0 limit and then take
the �t→0 limit to have continuous time limit of the over-
damped model. Therefore the diverging behavior is stronger
in the overdamped limit of Eq. �21� �O�� /m�� than in Eq.
�22� �O�1 /�t��. In this sense the sum rule for �B

v is violated
in the overdamped model. This is consistent with the fact
that the overdamped Langevin model is valid �as a coarse-
grained model of the underdamped one� only in the fre-
quency range of ��� /m �which would result in an incorrect
contribution to the sum from the higher frequency region�.

V. RELATION TO THE HARADA-SASA EQUALITY

In Refs. �2,3�, Harada and Sasa derived an equality �the
Harada-Sasa equality� on the energy dissipation rate in non-
equilibrium Langevin systems. We here discuss the relation
between this equality and the sum rule.

For simplicity we consider the single-particle under-
damped Langevin model described by Eqs. �12� and �13�. In
this model the energy dissipation rate J from the system to
the environment is defined by �18,15�

J�t�dt = � �

m
p�t� − ��t�� � dx�t� , �23�

where the symbol “�” represents the multiplication in the
sense of the Stratonovich interpretation. The Harada-Sasa
equality is an expression of the average of J:

�J	F,0 =
�

m2 �p	F,0
2 +

�

m2�
−�

�

�C̃p��;F�

− 2mkBT Re �̃x
p��;F��

d�

2�
, �24�

where the usual assumption �the second FDR� D=�kBT on
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the noise intensity is imposed. C̃p�� ;F� is the Fourier trans-
form of the time-correlation function Cp�� ;F� of the momen-
tum; Cp�� ;F�= ��p���− �p	F,0��p�0�− �p	F,0�	F,0.

We show that this equality is derived with the help of the
sum rule. First we note that Eq. �23� is rewritten in the Itô
type: J�t�dt= ��p2�t� /m2−D /m�dt− ��2D /m�p�t�dW�t�. This
is derived by substituting “��t�=�2DdW�t� /dt” and dx�t�
= p�t�dt /m into Eq. �23� and by using the Stratonovich-Itô
transformation �14�. Since the average of the last term van-
ishes due to the mean value formula, the average dissipation
rate is written in a simple form �19,15�:

�J	F,0 =
�

m2 �p2	F,0 −
D

m
. �25�

By multiplying �−�
� Re �̃x

p�� ;F�d� /�, which is equal to 1
owing to the sum rule �see Eq. �15��, to the last term, and by

noting �p2	F,0= �p	F,0
2+�−�

� C̃p�� ;F�d� /2�, we obtain

�J	F,0 =
�

m2 �p	F,0
2 +

�

m2�
−�

� �C̃p��;F�

−
2mD

�
Re �̃x

p��;F��d�

2�
. �26�

This becomes the Harada-Sasa equality if D=�kBT �20�.
As seen in the above derivation, the validation of the

Harada-Sasa equality requires that Eqs. �15� and �25� hold.
The former holds in a wide range of nonequilibrium systems
�even in systems other than Langevin systems� because it is
a specific form of the sum rule. In contrast, the validity range
of the latter is not so large. The meaning of Eq. �25� with
D=�kBT is that the ratio of the average dissipation rate and
the difference between the kinetic energy of the system and
the environment temperature, �J	F,0 / ��p2	F,0 /m−kBT�, is a
constant, � /m, which is independent of F. In some systems
other than Langevin systems, however, this does not hold,
especially in states far from equilibrium. For example, in a
numerical simulation of a model of electrical conduction
�21,22�, it is clearly seen that �J	F,0 / ��p2	F,0 /m−kBT� does
depend on F �23�. In this sense the validity range of the
Harada-Sasa equality is restricted to the systems in which the
ratio is constant. A sufficient condition for this might be the
distinct separation of time scales, as they mentioned in Ref.
�3�. It should be noted, however, that even when the ratio is
not constant there remains another possibility. That is, it
might be possible that one can define an F dependent ��F� in
a certain way and that ��F� /m equals the ratio
�J	F,0 / ��p2	F,0 /m−kBT� in the steady state at each F.
Whether this is true or not should be tested in systems �e.g.,
in the model in Refs. �21,22�� which cannot be described by
Langevin equations.

VI. SUMMARY

In this paper we extended the validity range of the sum
rule �and the asymptotic behavior� for the linear-response
function of steady states to a class of stochastic models de-
scribed by a general form of the Langevin equations. This

holds for a wide range of the steady states �if they are stable�
including highly nonequilibrium states as well as equilibrium
states because the driving force is allowed to be large �e.g.,
to be in a nonlinear response regime� and the noise intensity
may be arbitrary �e.g., not to satisfy the second fluctuation-
dissipation relation�. The sum rule is a property which nor-
mal nonequilibrium models should have and therefore is
used as a touchstone to examine the correctness of results in
experiments and theories of NESSs. In the overdamped
Langevin model the sum rule for the velocity response func-
tion does not hold, which suggests that results in the over-
damped model should be treated with care if they are con-
cerned with small time scales.

We also showed the relation of the sum rule to the
Harada-Sasa equality. The equality is reduced to a simpler
form when one uses the sum rule with a specific choice of
observable.

Further extension of the validity range of the sum rule
remains as theoretical issues. Extension to time-dependent
case where Mi and Nij in Eq. �2� explicitly depend on t is
straightforward. It would be also interesting to examine the
validation of the sum rule in non-Markovian models. It is
easily extended to the non-Markovian models which become
Markovian if appropriate dynamical variables are added to
the original system variables. For other non-Markovian mod-
els, the method used in Refs. �24,25�. to generalize the
Harada-Sasa equality to non-Markovian cases might give
hints. Finally, it is also important to investigate higher-order
responses of NESSs in stochastic systems as studied in
Hamiltonian systems recently �26�.
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APPENDIX: DERIVATION OF EQ. (6)

We introduce the time-evolution operator �̂�t� corre-
sponding to Eq. �4�; for an arbitrary function C of �, the

value at ��t� is given by C(��t�)=�̂�t�C(��t0�), where t0 is

the initial time and �̂�t0�=1. Then Eq. �4� is rewritten as

d�̂�t�A„��t0�… = �̂�t��
̂A�„��t0�…dt

+ 

i=1

n



j=1

n

�̂�t��Nij
�A

��i
�„��t0�… · dWj�t�

+ �

i=1

n

f i
p�t��̂�t��Ki

�A

��i
�„��t0�…dt . �A1�

Because A is arbitrary the above equation is regarded as a

stochastic differential equation for �̂. In order to transform
this equation into an integral equation, we introduce an op-

erator, �̌�t�=�̂�t�e−�t−t0�
̂. From Eq. �A1� the differential

equation for �̌ is given by
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d�̌�t� = 

i=1

n



j=1

n

�̂�t��Nij
�

��i
e−�t−t0�
̂� · dWj�t� + �


i=1

n

f i
p�t��̂�t�

��Ki
�

��i
e−�t−t0�
̂�dt . �A2�

Then formally integrating this equation from t0 to t with the

initial condition �̌�t0�=1 and multiplying e�t−t0�
̂ from the
right, we obtain

�̂�t� = e�t−t0�
̂ + 

i=1

n



j=1

n �
t0

t

�̂�t���Nij
�

��i
e�t−t��
̂� · dWj�t��

+ �

i=1

n �
t0

t

f i
p�t���̂�t���Ki

�

��i
e�t−t��
̂�dt�. �A3�

Acting this equation on A(��t0�), we finally get Eq. �6�.
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