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Quantum diffusion in a fermionic bath
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We propose a scheme for quantum Brownian motion of a particle in a fermionic bath. Based on the spin
coherent-state representation of the noise operators and a canonical thermal distribution of the associated ¢
numbers, we derive a quantum analog of generalized Langevin equation for quantum-mechanical mean posi-
tion of the particle subjected to an external force field. The approach allows us to map the quantum problem on
a classical setting. The quantum dispersion around the mean can be estimated order by order by a set of
quantum correction equations up to a desired degree of accuracy for a given nonlinear potential. We derive a
quantum diffusion equation for free particle and show that quantization, in general, enhances the mean-square
displacement. Increase in temperature leads to suppression of mean-square displacement. The method is based
on canonical quantization procedure and may be used for understanding diffusive transport and thermally

activated processes in a fermionic bath.
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I. INTRODUCTION

The irregular movement of a particle immersed in a heat
bath forms the basic paradigm of quantum Brownian motion
[1]. The reservoir constitutes of a very large number of in-
dependent degrees of freedom which interact with the par-
ticle. Traditionally, the reservoir is considered to be a set of
harmonic oscillators with characteristic frequencies. Al-
though, in general, the Hamiltonian for the system-reservoir
model is simple, the dynamical evolution of the system after
appropriate elimination of the reservoir degrees of freedom
poses serious problems for an exact solution. Depending on
the issue, various approximations have been introduced to
extract out the nature of underlying quantum stochastic pro-
cesses that govern the dynamics of the system. In general,
two distinct situations pertaining to the strength of coupling
between the system and the reservoir arise. First, in the field
of quantum optics and laser physics, various relaxation pro-
cesses involving excited atomic states or cavity modes can
be described successfully within weak-coupling approxima-
tion [1,2], in which the reservoir behaves almost like a free
field. On the other hand, the treatment of back reaction of the
reservoir on the system which may lead to drastic modifica-
tion of the dynamics of the system is necessary in polaron
theories in condensed-matter physics and Kramers’ theory in
chemical physics, within the framework of strong-coupling
approximation [3-6]. Over the years the system-reservoir
model and its variants have been extended in various direc-
tions. All these developments have been the part of a large
body of literature. We refer to [1-7] for further details.

In this paper we consider a system-reservoir model where
the bosonic reservoir is replaced by a fermionic one. The
model is a simple generalization of a system of harmonic
oscillator plus a reservoir of two-level systems, used many
years ago by Sargent et al. [2] for description of the dynam-
ics of a cavity mode damped by an atomic beam reservoir.
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Our generalization concerns the reduced stochastic dynamics
of the system under the influence of an arbitrary external
potential field and governed by fermionic noise. The stochas-
tic noise force is related to dissipation by the fluctuation-
dissipation relation, which ensures that the overall system is
thermodynamically closed. Since the fermions follow anti-
commutation rules and have no classical analog, two distinc-
tive features of the fermionic bath are quite imperative. First,
the fluctuation-dissipation relation does not reduce to the
usual classical fluctuation-dissipation relation. Second, since
the temperature dependence of the fermionic bath with infi-
nite degrees of freedom is different from that of its bosonic
counterpart, one may encounter anomalous temperature de-
pendence of the diffusive behavior of the particle. The be-
havior of fermionic reservoir thus makes the quantum sto-
chastic dynamics of the particle quite conspicuous in its own
way, particularly at finite temperature. Fermionic bath has
attracted considerable attention over several issues. For ex-
ample, Guinea et al. [8] examined three different fermionic
Hamiltonians several years ago in connection with the phe-
nomenon of quantum coherence in presence of dissipation. A
two-level system strongly interacting with a degenerate
Fermi gas has been treated to deal with spontaneous and
electron-assisted tunneling [9]. Shao and Hinggi [10] inves-
tigated the dynamics of a two-level system coupled to a sea
of spin—% particles to show that the behavior of spin-spin bath
model is similar to that of the spin-boson model at zero
temperature and that increasing temperature favors coherent
dynamics. Dissipative quantum systems modeled by two-
level reservoir coupling have also been analyzed within the
framework of the Feynman-Veron theory [11]. The effective
potential generated by the system-reservoir interaction leads
to “dynamical” localization [12] of the particle at low tem-
perature and within sub-Ohmic regime. The optical conduc-
tivity and direct current resistivity have been computed [13]
for charge carriers in an external electric field to demonstrate
a non-Drude optical conductivity. Fermionic reservoirs are
therefore useful for description of the realistic physical situ-
ations, such as magnetic relaxation [10,14] of molecular
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crystals of Mn;, and Feg, interacting nanomagnets and a spin
interacting with effectively independent spin modes or in iso-
lated quantum dot induced by hyperfine interaction with nu-
clei [15], and ions in normal liquid *He [16]. We refer to
Rosch [17] for a comprehensive review.

Our aim in this paper is to derive the quantum stochastic
dynamics of a particle in contact with a fermionic bath.
Based on the coherent-state representation of the fermionic
noise operator and a canonical thermal distribution of the
associated ¢ numbers of the noise operators comprising the
bath, we develop a scheme for quantum Brownian motion in
terms of Langevin equation for quantum-mechanical mean
position of the particle. The quantum dispersion around the
mean can be taken into account by solving a set of correction
equations developed order by order depending on the nature
of the potential and memory kernel. An important offshoot of
this scheme is the derivation of quantum diffusion equation
for free particle in a fermionic bath. We show how the in-
crease in temperature suppresses the mean-square displace-
ment of the particle. The present formulation relies on ca-
nonical quantization procedure and allows us to implement
the classical techniques of nonequilibrium statistical me-
chanics without much difficulty.

The paper is organized as follows. In Sec. II, the basic
model Hamiltonian for the system and the fermionic bath
and the operator Langevin equation are introduced. The spin
coherent states are used for realizing c-number noise for the
bath and the Langevin equation for the quantum-mechanical
mean position of particle is derived. In Sec. III, an equivalent
description of the quantum stochastic process is formulated
in terms of probability distribution function. We have derived
the quantum diffusion equation for a free particle. In Sec. IV,
the quantum mean-square displacement of the particle in
contact with fermionic bath is explored. The paper is con-
cluded in Sec. V.

II. QUANTUM BROWNIAN MOTION FOR A FERMIONIC
RESERVOIR

A. Model and the operator Langevin equation

We consider a particle of unit mass coupled to set of
spin-; fermions with characteristic frequencies wy. This is
represented by the following Hamiltonian:

+ V() + 12 066, +h 2, g1G(6+ 6y,
k k

(2.1)

where ¢ and p are coordinate and momentum operators of
the particle. &Z (7) is the creation (annihilation) operator for
kth fermion. The potential-energy operator V(g) is due to an
external force field acting on the particle. g, is the coupling
constant between the kth fermion and the particle. § and p
follow the usual commutation relation [§,p]=i. The fermi-
ons obey the anticommutation rule {G;,4,}=1 and the fol-
lowing algebra:
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6’1% = &;2 =0, [&Zvﬁk] == &Zv [&kﬁk]

=6y, and [6],6]= 6y, (2.2)
where the number operator for the fermions is defined as
ﬁk=&,1'6'k. Furthermore it follows from the above relations
that &Zk=2ﬁk_ 1.

The Heisenberg equations of motion for the particle and
the fermions can be written down from Hamiltonian as fol-

lows:

g=p, (2.3)

p==V'(§) -h> guld] + 6, (2.4)
i

Gy = — i Oy + 18,644, (2.5)

1= w6, — ig16 44, (2.6)

G =2igi( G- 6)q. (2.7)

The operator Langevin equation for the particle can be
obtained by eliminating é',z and &; from Eq. (2.4) after for-
mally integrating Egs. (2.5) and (2.6) and using the results in
Eq. (2.4) to yield

G==V'"(§) -1 gl 5{(0)e’ + G (0)e™¥]
k

t
-2h2 g f dr'§(1")G,4(t )sin w(r—1).  (2.8)
k 0

The third term of the right-hand side contains the bath op-
erators under time integral and therefore makes it nonlinear
and practically untractable for an exact approach. A simpli-
fication can, however, be made at this stage by noting the
time scale of evolution of the polarization operators 6',1 and
0y as compared to that for ¢-,. Equations (2.5)—(2.7) suggest
that while the polarization operators are governed by the
characteristic time scale of free evolution (wy), the energy
operators follow the slower time scale of system-bath inter-
action (g;). It is therefore useful to approximate &,(¢')
~d,4(0) in Eq. (2.8). Furthermore, we rewrite d,(0)
=21i,(0)—1 and note that to enable the set of fermions to act
as a reservoir which is assumed to be uncorrelated from the
system at r=0, we may set .,(0)=—1. This implies that the
system starts interacting with the bath through the ground
levels of most of the fermions. The underlying approxima-
tion of very weak excitation (at r=0) therefore entails an
effective linearization of the nonlinear damping term in Eq.
(2.8).

Based on these considerations, we are therefore led to the
expression for the third term 243,g2[hdr’ q(t')sin w(t—1"),
which after direct integration by parts reduces Eq. (2.8) to
the following form:
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+ Verdq) == 12 gl Si(0)e™ + S7(0)ei ]
. -

t 2
- ZﬁJ dr'§(1") >, Bk o5 wt—1'),
Wy

0 k
(2.9)
where we have defined
2
o o 8k A
V@) = V(@) - h 2 “5G%(0). (2.10)
k Wk
o ~ 8k A
51(0) = 6,(0) + ==4(0), (2.11)
Wy
& A 8k .
50 =50+ L400). @.12)
k

Here Eq. (2.10) denotes the effective potential due to system-
reservoir interaction which is expected to give rise to a small

frequency shift. $,(0) and S'Z(O) are the shifted bath opera-
tors. The modification of the potential arises because of the
absence of any counterterm in the Hamiltonian. The counter-
term of the Zwanzig form [6] is particularly well known in
chemical physics literature (although there are exceptions)
while this is absent in system-reservoir models in quantum
optics [1] and condensed-matter physics.

We may therefore write down the operator equation for
the particle in the following form:

5+J di' 4"kt~ 1) + Vi §) =f(0). (2.13)
(

0

Here the noise operator and the memory kernel are given
by

70 == 1 gi[S,00) 7 + S[(0) ] = F(o) + F'(1)
k
(2.14)
and

2
&cos wi(t—1"),
Wy

k(t—1) =2k, (2.15)
k

respectively. The noise properties of the operator f‘(t) can be
derived by using a suitable canonical thermal distribution of
bath operators at =0 as follows:

A

(f(1))ys =0, (2.16)
Re{(F(F (") - FI(DF(1")) .}
:hzg g,% tanh(%)cos wp(t—1"). (2.17)

Here (--+)
defined as

¢s implies quantum statistical average and is

PHYSICAL REVIEW E 82, 051125 (2010)

N Tr Ae_Hbath/kT

(A) = (2.18)

Tr e_Hbalh/kT

for any bath operator A, where I:Iba,h=ﬁ2kwk&£&k at t=0. In
defining Eq. (2.16), it is necessary to set the quantum-
mechanical mean position (§(0))=0, without any loss of gen-
erality. This allows further simplification,

(S(0))ys = (G4(0)) s (2.19)
(81(0))45 = (G(0))s- (2.20)

Equation (2.17) is the fluctuation-dissipation relation ex-
pressed in terms of noise operators appropriately ordered.
The negative sign in the left-hand side of Eq. (2.17) carries
the signature of anticommutation relation for fermionic bath
operators in contrast to the positive sign for the correspond-
ing bosonic case. The origin of the temperature-dependent

L % .
contribution tanh(%) can be traced to the following aver-
ages:

E nke—nkﬁwk/kT
m=0,1 1
E e—nkﬁwk/kT - eﬁwk/kT+ 1

m=0,1

= np(wy)

<nAk>qs =

(2.21)

and

(0= 20— 1 == tanh 2 (222)

2KT

Here i1y can be identified as the Fermi-Dirac distribution
function denoting the average thermal excitation number of
the bath. This distribution does not contain any chemical-
potential term. The absence of this term implies that our
stating Hamiltonian (2.1) does not conserve fermion number.
Ideally the typical system-fermionic bath model for dissipa-
tion, we have in mind, for realization of the present theoret-
ical scheme is a single system, e.g., an ion, in a suitably
designed environment of quantum dots with characteristic
size distribution.

Since quantum dots are known to serve as “artificial” two-
level atoms in several situations [18,19] and the varying sys-
tem size results in a distribution of frequencies, we believe
that a reservoir of two-level quantum dots can be used for
studying quantum dissipation in a fermionic bath at low tem-
perature. When the number density of dots, say, is on the
order of 10° cm™ as often found in experiments, the system
experiences practically a Fermi sea with infinite degrees of
freedom. The large number is an essential requirement to
preclude the possibility of any recurrence and to ensure irre-
versibility associated with the notion of dissipation.

B. Quantum Langevin equation with c-number fermionic noise

Our object in this section is to construct a quantum
Langevin equation with c-number fermionic noise. To this
end, we proceed as follows. We return to Eq. (2.13) and, as a
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first step, carry out its quantum-mechanical average,

(@) + f dr' (G R(E= 1)) + (V@) = (F),

0
(2.23)

where the quantum-mechanical average is taken over the ini-
tial product separable quantum states of the particle and the
fermions at t=0, |p)|&)|&)- | &y). Here |¢) denotes any ar-
bitrary initial state of the particle and |&,) corresponds to the
initial coherent state of the kth fermion. Existence of such
coherent states which are analogous to harmonic-oscillator
coherent states had been proved a couple of decades ago by
Radcliffe [20]. Typically for a spin—% system, such a state is
generated by the action of creation operator on vacuum as
|y =(1+|u*)""? exp(ud7)|0), where w is a number. Appli-
cations of the formalism of spin coherent states are well
known in the context of ferromagnetic spin wave, phase tran-
sition in Dicke model of super-radiance, equilibrium statisti-
cal mechanics of radiation-matter interaction, and so on. For
details we refer to [21].

The main purpose of using these spin coherent states for
quantum-mechanical averaging of the bath operators is to
formulate Eq. (2.23) as a classical-looking Langevin equa-
tion for quantum-mechanical mean position of the particle.
We then denote the following quantum-mechanical averages
as

(q(1)=q(), (2.24)
(F0)y = (1), (2.25)
where
(1) =~ ﬁg (S 0)e ¥ + (S(0))e '} =
(2.26)

_» gd&(0)e™ ™ + £(0)e"x'}.
k

The last equality follows from Egs. (2.19) and (2.20), and

(84(0))=(64(0))=§(0) and (S}(0))=(6}(0))=&(0). Here
£/(0) and &;(0) are the associated ¢ numbers [note that we
have set (§(0))=0] for the fermionic bath operators. Equa-
tion (2.23) may then be rewritten as

é]'+f G(t")k(t=1")dt" + (Vo d§)) = n(r).  (2.27)
0

Now to realize 7(¢) as an effective c-number noise, we in-
troduce the ansatz that &(0) and & (0) are distributed accord-
ing to a thermal canonical distribution of Gaussian form as
follows:

0 2
PLEO).EO0)]=N eXp{- %}

(2.28)

where N is the normalization constant. The width of the dis-
tribution is defined by tanh(fiw;/2KT). For any arbitrary

quantum-mechanical mean value of a bath operator, (Ak)
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which is a function of &(0), &(0), its statistical average can
then be written down as

(A= f (ADPL£(0),£(0)1dE(0)dE(0). (2.29)

The ansatz [Eq. (2.28)] and the definition of statistical aver-
age [Eq. (2.29)] can be used to show that c-number noise
7(t) satisfies the following relations:

(n(1)s=0, (2.30)

2KT
(2.31)

(p(O)n(t"))s= ﬁ22 g,% cos ay(t— t’)tanh(@> .
k

Equations (2.30) and (2.31) imply that c-number noise
n(t) is such that it is zero centered and follow the
fluctuation-dissipation relation as expressed in Eq. (2.17).
Therefore, Eqs. (2.17) and (2.31) are equivalent. However,
the decisive advantage of the formulation of c-number noise
is that one can bypass the operator ordering prescription for
deriving the noise properties of the bath. We also point out
that the temperature dependence exactly like the one found
here for noise correlation function was obtained for spectral
function in earlier work [11-13]. This confirms the validity
of the present formulation of quantum noise process for fer-
mionic bath. The quantum Langevin equation [Eq. (2.27)]
with c-number noise 7(r) as defined by Egs. (2.30) and
(2.31) is classical looking in form but quantum mechanical
in its content. Therefore, the formulation allows us to imple-
ment the techniques of classical nonequilibrium statistical
mechanics for various purposes. It is pertinent to digress a
little bit at this point to note that for a traditional harmonic-
oscillator heat bath, i.e., the bosonic reservoir, one can pro-
ceed exactly in a similar fashion and use harmonic-oscillator
coherent states [22]. The canonical thermal distribution func-
tion for bosonic c-number noise corresponding to its fermi-
onic counterpart is the Wigner thermal distribution function
[23]. This has been extensively used [24-28] in several ear-
lier occasions.

In order to quantify the properties of the thermal bath, it is
convenient to introduce, as usual, a spectral density function
J(w) associated with system-bath interaction,

2
J(w) = 72—72 i—kka(w —wy). (2.32)
k

With the help of J(w) one may rewrite the expression for
memory kernel [Eq. (2.15)],

k(1) = ﬁf“’ dwJ(w)cos wt (2.33)
m™Jo

and the fluctuation-dissipation relation [Eq. (2.31)]
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(n(0)9(t"))y = Re{(F(FT(¢") = FT(0) (1)) s}

4h ho how
=— | dwJ(w)—|tanh—— |cos w(t—1").
2 2KT

m™ Jo
(2.34)

The relaxation induced by the bath is determined by the
properties of the spectral density function. For example, a
Lorentzian bath is characterized by J(w)=v*/(y*+w?),
where vy is a constant. The Langevin equation [Eq. (2.27)]
may be expressed in a more convenient form for interpreta-
tion. We add the force term V,.(q) on both sides of Eq.
(2.27). The resulting equation is given by

é+f gt ) k(t=1")dt' + Vo q) = (1) + 0, (2.35)
0

where

0= V;ff(q) - <Véff(6?)> (2.36)

represents the quantum correction due to the system poten-
tial. Equation (2.35) thus describes the motion of a particle
(quantum-mechanical mean position) in a force field simul-
taneously driven by c-number quantum noise of a fermionic
bath and quantum dispersion Q, characteristic of nonlinearity
of the potential. Q may be expressed in a more explicit and
useful form by recognizing the operator nature of the system
variables ¢ and p as

q(1)=q(1) + 54(1), (2.37)

pt)=p(t) + op(1), (2.38)

where g(=(g)) and p(=(p)) are quantum-mechanical mean
values and 6 and 8p are the corresponding fluctuation op-
erators. By construction, (8§)=(8p)=0 and [ 84, 5p]=if. Us-
ing Eq. (2.37) in V,;(g) and a Taylor-series expansion
around g, we may express Q as

1
0=~ 2 — Vi (g)eq' ).

n=2"t-

(2.39)

Here Vg’;}(q) is the nth derivative of the potential V,{q) with
respect to g. For example, the lowest-order correction (n
=2) is given by Q=—%Vg}f(q)(5éz(t)>. The determination of
QO to be used in quantum Langevin equation [Eq. (2.35)]
therefore depends on (84%(f)) which may be estimated by
solving quantum correction equations [29,30] as discussed
below and in Sec. III. We now return to quantum operator
equation [Eq. (2.13)] and put Egs. (2.37) and (2.38). Further-
more, using Eq. (2.35) in the resulting equation, we obtain

§c§+f dt' k(t—1")6q(t") + Vy:q) 6G + > —Vg_;.;”(q)
n=2

0 I’l'
X[8§"(t) = (64" (1))] = 67)t),

where 87(r)=1(t)— 5(1).

Equation (2.40) forms the basis for calculation of
quantum-mechanical correction Q. However, this is analyti-
cally untractable for an exact solution. Depending on the

(2.40)
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nonlinearity of the potential and memory kernel, systematic
approximation schemes may be adopted. A typical case will
be discussed in Sec. III.

It is thus evident that the quantum Brownian motion of a
particle in a fermionic bath may be calculated, in principle,
as a stochastic process by solving the Langevin equation [Eq.
(2.35)] for quantum-mechanical mean values, simultaneously
with quantum correction equations which describe quantum-
mechanical fluctuation or dispersion around them. Before
closing this section, we mention that an essential element of
the present approach is to express a quantum statistical av-
erage as a sum of statistical averages over a set of functions
of quantum-mechanical mean values and dispersion. To illus-
trate, we calculate, for example, the quantum statistical av-
erages (§),, and (§%),,. Making use of Eq. (2.37), we write

(Dgs=(q+ 69)gs ={q)s +(IG))s=(q);,  (2.41)
and
(075 = (g + 80)*) s =(q)s + (0G4 ={q")s + {(8G"))s.
(2.42)

Thus, care must be taken to distinguish between the
quantum-mechanical mean of an operator A expressed as

(A)(=A) from the statistical average of the quantum-
mechanical mean A expressed as (A), and from quantum

statistical average of A, denoted as (A)qs.

The definition of statistical average of a quantum-
mechanical mean and the usual quantum statistical average
of an operator are given in Egs. (2.18) and (2.29), respec-
tively. Another note of caution is pertinent here. It is neces-
sary to distinguish between the quantum-mechanical averag-
ing, averaging by quasiclassical distribution function [1,23]
like the Wigner function W(g,p), and quantum statistical av-
eraging by the present method. For example, we may note
(GP)gs=ap)s # [qpW(q,p)dqdp but (gp)=[qpW(q,p)dqdp.

The quantum nature of the dynamics manifests in two
different ways. First, the fermionic reservoir is quantum me-
chanical in character whose noise properties are expressed
through quantum fluctuation-dissipation relation. Second, the
nonlinearity of the system potential gives rise to quantum
correction terms.

III. QUANTUM DIFFUSION EQUATION

The Langevin equation [Eq. (2.35)] describes the stochas-
tic dynamics of a particle with quantum-mechanical mean
position ¢ and mean momentum p, where the properties of
c-number noise force #7(tr) are given by Egs. (2.30) and
(2.31). An equivalent description of the stochastic process
can be formulated in terms of equation of motion for prob-
ability density function P(q,p,t). This probability function is
distinctly different from the quasiclassical probability func-
tion of the c-number widely used for studying of quantum-
classical correspondence [1,2]. In what follows we derive a
quantum diffusion equation for a free particle in contact with
a fermionic bath.

To begin with, we consider the particle to be free from
external force field so that V,;{¢)=0. The c-number Lange-
vin equation [Eq. (2.35)] then reduces to
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G(t) + f dt' k(t—1")q(t") = n(t),

0

(3.1)

where k() is the dissipative memory kernel given by Eq.
(2.15) and 7(z) is a zero centered stationary c-number noise
whose time correlation is given by Eq. (2.31).

The general formal solution of Eq. (3.1) is given by

q(t)=<q(t)>s+f dt'H(t—t")n(t'), (3.2)
0
where

(q(1));=q(0) + p(0)H(r) (3.3)

and ¢(0) and p(0) are the initial values of the quantum-
mechanical mean position and momentum of the particle,
respectively. H(r) is expressed as the inverse Laplace trans-
form of

m. (3.4)

H(s) = f : dte™"H(t) =
0

Here k(s) is the Laplace transform of (). The time de-
rivative of Eq. (3.2) yields

p(0) ={p(t), + f dt'h(t—1")n(t'), (3.5)
0
where
(p(t));=p(0)h(1) (3.6)
and
h(r) = %H(t). (3.7)

It is easy to identify H(z) and Ah(z) as the relaxation functions.
To proceed further we now make use of the symmetry prop-
erty of the correlation function (#(¢)5(¢'))[=C(t—¢")] and
the solutions for g(r) and p(f) to define the following vari-
ances:

02, (1) = {[q(0) ~ )P,

=2 fot H(e,)dr, fotl Ht)Clt, - t)dty,  (3.8)
(1) = ([p(1) = (p(1),]),
=2 f(: h(t))dt, fo e)Clt - ), (3.9)
and
7,0 = g0~ GO Jp O~ )] = 5 7,
- Jot Ht,)dr, Jot 6)Clt - t)dn. (3.10)

Assuming now the statistical distribution of c-number noise
7(t) to be Gaussian, we define the joint characteristic func-
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tion in terms of standard mean values and variances (these
mean and variance are not to be confused with quantum-
mechanical mean of an operator and its dispersion) as fol-
lows:

Py, p,1) = explisdg), + ipp)s

~ Ho2 (2 + 202, (Dpup+ o2, (0P} ].
(3.11)

Using standard procedure [31], we write down below the
Fokker-Planck equation obeyed by joint probability distribu-
tion function P(q,p,r) which is the inverse of characteristic

function ﬁ(,u,p,t). The recipe for calculation is the follow-
ing: the first step is the calculation of the expressions for
%Zf,%% and %% from the expression for ﬁ(,u,p,t) [Eq.
(3.11)]. All these expressions contain ¢(0),p(0) which are to
be eliminated to obtain the equation for Fourier transform of
Eq. (3.11),

s
(i +pi>P(q,p,t) =A(1) ipP(q,p,t) + ¢(t)—P(q.p.1)
t ap ap

17 dq
) i P( (3.12)
+ e 407 4-p>1), -
where
Alr)=- ) (3.13)
$(1) = D)oy, (1) + 357,(0). (3.14)
and
Wt =-o,()+ Ao, () +05,(0). (315

Equation (3.12) is the quantum analog of non-Markovian
classical Fokker-Planck equation for the fermionic bath. We
require that in the long-time limit the coefficients of Eq.
(3.12), A(1), (1) and i(r). must reach steady-state values for
physically allowed relaxation functions. Furthermore, the
stationary solution of the Fokker-Planck equation [Eq.
(3.12)] is given by

B S B '}
Pst(p()) - (27TA0)1/26XP|:_ 2A0:| s (316)
where
_ ¢()
Ag= A (3.17)

In the stationary state the system, as expected, therefore
reaches a Gaussian distribution whose half-width is deter-
mined by A,. Our next task is to construct a quantum diffu-
sion equation for the particle. Following Mazo’s procedure
[31] for derivation of classical diffusion equation, we set p
=0 and consider the Gaussian distribution P,(p,) of initial
momentum p, to take average over the characteristic func-
tion as follows:
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ﬁwﬁ=JﬁWﬁhﬁm@o
1
=“4}5“%@@+”WJ

X f expliupoH (1) 1P, (po)dpy.  (3.18)

Using Eq. (3.16) in Eq. (3.18) and after performing the
inverse Fourier transform and proceeding as before we arrive
at the following diffusion equation:

aP(q.t) PP
Pl

, 3.19
e (3.19)

where the quantum diffusion coefficient Dr) for the fermi-
onic bath is given by

DA(1) =, (1) + AgH(1)h(1).

The expression for quantum diffusion coefficient is char-
acterized by the nature of relaxation function H(z) and h(z),
as well as the characteristic correlation function of c-number
noise for the fermionic bath through oép(t). Since the key
quantity that determines the variances is the relaxation func-
tion H(¢), it is necessary to incorporate correct well-behaved
relaxation functions to be obtained from appropriate spectral
density function. For a typical choice of the Lorentzian dis-
tribution of frequency, we assume a spectral density J(w) of
the form

(3.20)

J(w) = (3.21)

v
Y+ o*

By virtue of Eq. (3.4) the relaxation function H(7) is given by

1
H()=1- {——]
Vy(y—4)
y M2y (y—4)r? =2 =\ = TV (\ = 2)]
2Vy-4) ’
(3.22)
which yields
Y2\ YD 4 4 — [y
ho) = e (e | VY \7)’ (3.23)
2\!’ ‘y - 4
where
N=y+Vvy-4). (3.24)

The time dependence of diffusion coefficient Df(t) owes
its origin to the characteristic relaxation functions H(¢) and
h(t) and the correlation function for the Lorentzian bath.
These functions govern the short-time behavior of D(t). To
illustrate, the plot of Df(t) vs time for different temperatures
is shown in Fig. 1. It is apparent that while the short-time
regime is characterized by a sharp increase, Dy settles down
to a constant value in the asymptotic limit. An important
inference of the present analysis is the temperature depen-
dence of the steady-state diffusion coefficient D;. This is
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FIG. 1. (Color online) Variation of quantum diffusion coefficient
vs time at different temperatures for y=4.52 (scale arbitrary).

shown in Fig. 2. It is evident that increase of temperature
impedes diffusive motion of the particle. The diffusion coef-
ficient decreases by more than a factor of 6 between 0 and 80
K. The nature of this temperature dependence of diffusion
constant for fermionic bath may be attributed to the width of
thermal distribution. We note in passing that the anomalous
decrease of diffusion constant with increase in temperature
had been observed earlier [32] in positron diffusion in Ge-
single crystal in one dimension. This is also consistent with
the observation [12] that an effective system-reservoir inter-
action may result in dynamical localization of the particle in
the sub-Ohmic regime at low temperature for a two-level
reservoir. The basic difference between the behavior of the
system-fermionic bath model and the standard system-boson
model at finite temperature owes its origin to the restricted
possibilities of thermally induced excitations of the bath de-
grees of freedom since only a single level of each fermion
can be excited. Thus, in contrast to crossover from coherent
to incoherent quantum tunneling characteristic of excitation
of many levels of single degree of freedom in a bosonic
reservoir, increase of temperature favors the coherent dy-
namics in a fermionic reservoir [10,17].

The suppression of diffusion at higher temperature as ob-
served in the present study also points toward this coherence
as a result of severe restriction on the excitations in fermi-
onic bath degrees of freedom. This is in conformity with
earlier studies [17] based on path-integral approach to quan-
tum transport of heavy particle in fermionic bath.

150

100

Dy(T)

50 1

0 T T T T T
0 20 40 60 80 100

Temperature

FIG. 2. Variation of steady-state diffusion coefficient as a func-
tion of temperature for y=4.52 (scale arbitrary).
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IV. QUANTUM MEAN-SQUARE DISPLACEMENT

In this section, we calculate the quantum mean-square
displacement of the particle in contact with the fermionic
bath. From Eq. (2.42), we have the expression

(G(0)gs = (a7 + (8 (1)) gy

where g[=(4(¢))] is the quantum-mechanical mean value and
84 is the correction operator. {g*); can be calculated as an
usual statistical average of ¢> with the probability density
function P(q,t) as follows:

4.1)

()= f q°P(g,1)dg=25(1). (4.2)
Here P(q,1) is the solution of the quantum diffusion equation
[Eq. (3.19)] subject to initial condition P(g,7=0)=&(q) and
is given by P(q,t)=[1/4mS(t)]exp[—q>/4S(t)] with S(r)
= f)dt’Df(t’). Now the quantum correction over the mean-
square displacement <5c}2)q3 can be calculated for the free
particle using Eq. (2.40) which assumes the following form:

&7+f: di' k(1 —1")6q(1") = 87)(r). (4.3)
Solving Eq. (4.3) by Laplace transform leads to
3G(t) = 54(0) + H(1)6p(0) + j[ dt'H(t—1")67(t"),
0 (4.4)

where H(r) is given by Egs. (3.4) and (3.22). After squaring
(5@2(t)>qs can be written as

(6G7(1)) 45 = (6G°(0)) + H*(1)(8p*(0)) + H(1)(5(0) 55(0)
+ 5p(0)84(0)) +2ffdt'fldt"H(t—t’)H(t— ")
0 0

X7t ) STt")) 4s-

We now choose the initial conditions corresponding to
minimum uncertainty state [29,30] so that (56}2(0»:%,
(6p*(0))=%, and (83(0)85(0)+ 85(0)83(0))=A. The double
integral in Eq. (4.5) can be evaluated numerically to calcu-

(4.5)

10°

o« 3
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4 o v i »
104 o« v = >
P 4 -
v »
Ag' N : »> g
= i [ ] »
T 10 ¥ ’
v y KT= o 1.0
1021 d kT = 10.0
Jy kT= » 1000
v
1
105 |
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Time

FIG. 3. (Color online) Variation of quantum mean-square dis-
placement (4%(7)),, vs time at different temperatures for y=4.52
(scale arbitrary).
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FIG. 4. (Color online) Variation of quantum mean-square dis-
placement (c}z(t)>qs vs time in the short-time limit at different tem-
peratures for y=4.52 (scale arbitrary).

late (54}2(t)>qs. We are therefore in a position to estimate the
quantum mean-square displacement (qu(t)>qS. The result as a
function of time is shown in Fig. 3 at several temperatures.
The detailed nature of time dependence of quantum mean-
square displacement in short- and long-time limits is shown
in Figs. 4 and 5, respectively. It is apparent that in the bal-
listic region, the rise is faster than quadratic while the mean-
square displacement is superdiffusive in the asymptote re-
gime. In order to allow ourselves a fair comparison with the
“classical” result (i.e., without quantum correction term), we
have compared the mean-square displacement of the particle
in Fig. 6 for the classical and quantum cases at two different
temperatures. The quantum nature manifestly influences the
displacement, particularly, in the long-time limit. In general,
one observes that quantization enhances the mean-square
displacement, whereas higher temperature leads to suppres-
sion of the displacement.

V. CONCLUSIONS

The main purpose of this paper is to introduce a canonical
quantization procedure for treatment of quantum Brownian
motion of a particle moving in a potential field and in contact
with a fermionic bath. Based on the initial coherent-state
representation of the fermions and an equilibrium thermal
canonical distribution of fermionic ¢ numbers, we have de-
rived a generalized quantum Langevin equation for quantum-

12
..
..:Vv
104 kT= e 10 ..;:"
kT= v 100 o v’ N
e kT= » 1000 v
» 8- v >
% i X
\"J ¥ »
EG- [ >
v
>
44 >
i 4
24 »

T T

05 00 05 10 15 20
In(Time)

FIG. 5. (Color online) Variation of log, of quantum mean-square
displacement vs log, of time in the long-time regime at different
temperatures at y=4.52 (scale arbitrary).
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FIG. 6. (Color online) Comparative variation of mean-square
displacement vs time at 1.0 and 100.0 kT at y=4.52 for classical
and quantum cases (scale arbitrary).

mechanical mean value of the position of the particle. The
fermionic ¢ numbers satisfy the essential properties of noise
of the bath degrees of freedom. The main conclusions of this
study are the following:

(i) Our emphasis has been to look for a natural extension
of the classical theory of the Brownian motion to quantum
domain. The generalized c-number Langevin equation and
the diffusion equation for free particle for the fermionic bath
that we derived are the quantum analogs of their classical
versions. The probability distribution functions bear the true
notion of probability rather than quasiprobability employed

PHYSICAL REVIEW E 82, 051125 (2010)

for describing Wigner, Glauber-Sudarshan, or Q functions.

(i1) The behavior of the diffusion constant and the mean-
square displacement of the particle as a function of tempera-
ture significantly differ from their classical counterparts. The
generic consequence due to restricted options for thermal
excitations in a fermionic bath is that the temperature favors
suppression of diffusive motion, although quantization, in
general, enhances mean-square displacement.

(iii) Since fermions have no classical analog, the
fluctuation-dissipation relation connecting fermionic noise
and dissipation does not assume the usual classical limiting
form obtained for the bosonic case.

(iv) The present scheme is equipped to deal with non-
Markovian features of the dynamics for a wide range of
noise correlation and temperature. Since the formulation al-
lows us to map the quantum stochastic dynamics on a clas-
sical setting, it is amenable to theoretical analysis using the
methods of classical nonequilibrium statistical mechanics.

We conclude with a note that the present approach is
promising for application of the c-number Langevin equation
and diffusion equation for thermally activated processes and
quantum transport in thermodynamically closed and open
systems. A suitably designed assembly of quantum dots may
serve as a good testing ground for the present theory. The
method is also expected to be useful for studying of
quantum-classical correspondence in stochastic processes
and other related issues.
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