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In this paper we present an approach to anomalous diffusion based on subordination of stochastic processes.
Application of such a methodology to analysis of the diffusion processes helps better understanding of physical
mechanisms underlying the nonexponential relaxation phenomena. In the subordination framework we analyze
a coupling between the very large jumps in physical and two different operational times, modeled by under-
and overshooting subordinators, respectively. We show that the resulting diffusion processes display features
by means of which all experimentally observed two-power-law dielectric relaxation patterns can be explained.
We also derive the corresponding fractional equations governing the spatiotemporal evolution of the diffusion
front of an excitation mode undergoing diffusion in the system under consideration. The commonly known
type of subdiffusion, corresponding to the Mittag-Leffler �or Cole-Cole� relaxation, appears as a special case of
the studied anomalous diffusion processes.
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I. INTRODUCTION

Anomalous diffusion is conventionally described by two
popular stochastic models in the scientific literature. The first
of them is the fractional Brownian motion �FBM� introduced
by Kolmogorov in 1940 �1� and further studied by Yaglom
�2�. The FBM is a generalization of the ordinary Brownian
motion and it is characterized by the Hurst exponent
0�H�1 in the mean-squared displacement �x2�� t2H of dif-
fusing particles. For H�1 /2 the anomalous diffusion dem-
onstrates the superdiffusion dynamics, whereas for H�1 /2
it is subdiffusive. This study was motivated by Hurst’s analy-
sis of annual river discharges �3� and the observations of
economic time series �4�. In 1968 Mandelbrot and van Ness
developed a stochastic integral representation of the FBM as
a fractional integral of the mean-zero Gaussian process �5�.
Now the FBM is widely used in many fields �see, for ex-
ample, �6,7��. However it should be noted that the FBM does
not satisfy an important property: it is not a semimartingale;
i.e., the FBM cannot be uniquely decomposed into a local
martingale �sum of fair-game increments with the zero ex-
pectation value� and a finite variation process �drift part� �8�.
Nevertheless, many significant processes, including the
Brownian motion, Poisson, and Lévy processes, are semima-
rtingales. The important role of semimartingales in descrip-
tion of the anomalous diffusion processes has been shown
recently �8�.

The second commonly used model of anomalous diffu-
sion is the continuous time random walk �CTRW� and the
corresponding fractional generalization �for subdiffusion� of
the Fokker-Planck equation. The CTRW formalism has been
introduced by Montroll and Weiss in 1965 �9� to describe

further the transport of an electric charge in a disordered
medium �anomalous diffusion in an amorphous semiconduc-
tor� �10�. The approach considers random walks in space and
time by means of independent and identically distributed
�iid� couples of space and time random steps �Ri ,Ti�. The
simplest decoupled CTRW considers independent time and
space steps. The decoupled CTRWs can be described in
terms of a waiting time probability density function. If it is a
suitable Mittag-Leffler function, as shown by Hilfer and An-
ton �11�, the time-fractional diffusion equation is obtained.
The CTRW model involves stable distributions, and it shows
various anomalous behaviors such as subdiffusion �diffusion
slower than the normal one�, Mittag-Leffler relaxation, and
fractional diffusive equations �12–14�. The stochastic behav-
ior of the CTRWs is just a semimartingale. The information
that a given physical process belongs to the family of semi-
martingales permits one to distinguish between different sto-
chastic schemes of subdiffusion �i.e., between the CTRW,
FBM, and a fractional Lévy-stable motion� from experimen-
tal data �trajectories� �15,16�. As it has been recently shown,
this holds also for diffusion in confined media �17�. That is
why the notion of the semimartigale to anomalous diffusion
is important. By a passage from the discrete �temporal and
spatial� steps to a continuous limit, the CTRW description
leads to a subordination of one random process by another. It
should be pointed out that the idea of the subordination of
one process or system by another is not new. Many years ago
it was known �and now rather forgotten� under the name of
“slaving principle” in synergetics �18�. In the context of sto-
chastic processes the subordinated process Y�t�=X�St� con-
sists of the parent random process X��� and the directing one
St. Here X��� and St are assumed to be independent, and the
subordinator St should be a nondecreasing process in time
�recall the deterministic array of time increasing as t�. If one
takes a strictly increasing �-stable Lévy process U���� �with
Laplace transform �e−kU�����=e−�k�

and 0���1�, the pro-
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cess St is defined as the inverse-time �-stable subordinator
St=inf�� 	U����� t
. In this case the resulting process X�St�
becomes subdiffusion characterized by a power mean-square
displacement in time and leading to the Mittag-Leffler �Cole-
Cole� relaxation response. The important role of Mittag-
Leffler type functions for anomalous relaxation has been rec-
ognized in �19,20�. The physical properties, numerical
simulation methods, and interpretation of the inverse-time
�-stable subordinator are studied in physical literature for
almost one decade �21–23�. However, this type of the opera-
tional time �subordinator� does not exhaust all possible
sources of anomalous diffusion.

A more complex CTRW model accounts for coupling be-
tween time and space steps. The coupled CTRWs were con-
sidered in the context of anomalous diffusion and nonexpo-
nential relaxation �24–26�. In this case the anomalous
diffusion evolution is much richer. Sub- and superdiffusion
�faster than normal� may be modeled. However, the analysis
is rather exotic for the research, and it is in progress. In
particular, the anomalous subdiffusive behavior attracts a
great attention in modeling of subdiffusion in space-time-
dependent force fields beyond the fractional Fokker-Planck
equation �27,28�. This approach uses the subordination tech-
niques to represent the force depending on a compound sub-
ordinator. It is coupled because of the �-stable Lévy process
directed by its inverse. The fractional two-power-law relax-
ation can also be described in the framework of coupled
CTRWs based on subordination of a stochastic process with
the heavy-tailed distribution of the waiting times by its in-
verse �29,30�. Although the papers have a different physical
background, they intersect into the application of the cou-
pling between the �-stable Lévy process and its inverse. The
main feature of the coupled CTRWs is that it permits one to
study physical processes with different power dependencies
for short and long times. Undoubtedly, this new random pro-
cess �subordinator� is of an essential interest for understand-
ing of the anomalous relaxation phenomena and was inves-
tigated insufficiently yet. In this paper we are going to make
up for the deficiency.

We summarize here our main results, which are fivefold:
�i� we introduce in Sec. II notion of the compound subordi-
nator and we show that from the �-stable Lévy process
U���� and its inverse St two different compound subordina-
tors can be realized to under- and overestimate the real time
t; �ii� following the concept �30� in Sec. III we develop com-
prehensively a model of anomalous diffusion based on the
compound subordinators; �iii� the undershooting subordina-
tion leads to subdiffusion, and the overshooting subordina-
tion demonstrates a superdiffusive behavior; �iv� we derive
diffusion equations corresponding to each case separately;
and �v� in Sec. IV we establish that the studied anomalous
diffusion is a semimartingale. Section V sums up our inves-
tigations.

II. COUPLING BETWEEN THE VERY LARGE JUMPS IN
PHYSICAL AND OPERATIONAL TIMES

The probability density of the position vector rt=BSt
�where B� is the standard Brownian motion� can be found

from a weighted integration of the joint probability density
of the couple �R� ,T�� over the internal time parameter � by
subordination. The stochastic time evolution T� and its �left�
inverse process St permit one to underestimate or overesti-
mate the physical time t.

The sum of iid heavy-tailed random variables Ti

Prob�Ti � t� � � t

t0
�−�

as t → � , �1�

with 0���1 and t0�0 converges to a stable random vari-
able in distribution as the number of summands tends to
infinity. Let Un=
i=0

n Ti with T0=0. The counting process
Nt=max�n�N 	Un� t
 is inverse to Un which can be defined
equivalently as the process satisfying

UNt
� t � UNt+1 for t � 0, �2�

which follows directly from its definition. In fact, the two
processes, UNt

and UNt+1, correspond to underestimating and
overestimating the real time t from the random time steps Ti
of the CTRWs.

In terminology of Feller’s book �31� the variable
Zt=UNt+1− t is the residual waiting time �lifetime� at the ep-
och t and Yt= t−UNt

is the spent waiting time �age of the
object that is alive at time t�. The importance of these vari-
ables can be explained by one remarkable property. For
t→� the variables Yt and Zt have a common proper limit
distribution only if their probability distributions F�y� and
F�z� have finite expectations. However, if the distribution
F�x� satisfies 1−F�x�=x−�L�x�, where 0���1 and
L�xt� /L�t�→1 as x→�, then according to �32�, the probabil-
ity density function �pdf� of the normalized variable Yt / t is
given by the generalized arc sine law,

p��x� =
sin����

�
x−��1 − x��−1, �3�

while Zt / t obeys

q��x� =
sin����

�
x−��1 + x�−1. �4�

Since 	Nt
= t−Yt and 	Nt+1=Zt+ t, the distributions of 	Nt

/ t
and 	Nt+1 / t can be obtained from Eqs. �3� and �4� by a
simple change of variables 1−x=y and 1+x=z, respectively.

We now return to the processes UNt
and UNt+1 introduced

above. Recall that Ti are iid positive random variables with
long-tailed distribution �1�. In this case UNt

/ t tends in distri-

bution �→
d

� in the long-time limit to random variable Y with
density

pY�x� =
sin����

�
x�−1�1 − x�−�, 0 � x � 1 �5�

and UNt+1 / t→
d

Z with the pdf equal to
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pZ�x� =
sin����

�
x−1�x − 1�−�, x � 1. �6�

The functions pY�x� and pZ�x� correspond to special cases of
the well-known beta density. It should be noticed that the
density pY�x� concentrates near 0 and 1, whereas pZ�x� does
near 1. Near 1 both tend to infinity. This means that in the
long-time limit the most probable values for UNt

occur near 0
and 1, while for UNt+1 they tend to be situated near 1.

As a consequence, the random variable Y has finite mo-
ments of any order. They can be calculated directly from
density �5� and take the form

�Y� = �, �Y2� =
��1 + ��

2
, . . . , �Yn�

=
��1 + �� ¯ �� + n − 1�

n!
,

where n�N while even the first moment of Z diverges. The
divergence of UNt+1 results from the long-tail property �Eq.
�1�� of the time steps Ti ��Ti�=��, yielding too long overshot
above t.

Nonequality �2� can also be represented in a schematic
picture of time steps, namely, T�

−�
��=U��/
�� and
T�

+�
��=U��/
��+1, where �x� indicates the integer part of the
real number x so that �x��x� �x�+1. The inverse process of
T�

+�
�� is St
+�
��=inf���0 	T�

+�
��� t
 or equivalently
St

+�
��=
�Nt. Therefore, in the limit 
�→0 the processes
UNt

and UNt+1 can be expressed through the stochastic pro-
cess T��� subordinated by its inverse,

UNt
→

d

TSt
− and UNt+1→

d

TSt
+,

where St
− and St

+ are the limiting processes to St
−�
�� /
�

=Nt−1 and St
+�
�� /
�=Nt, respectively. A passage from the

discrete process Ti to the continuous one T� allows one to
reformulate inequality �2� as

TSt
− � t � TSt

+ for t � 0, �7�

underestimating or overestimating the real time t. From
Theorem 1.13 in �33� the joint probability density p�y ,z� of
TSt

− and TSt
+ with 0�TSt

− � t�TSt

+ takes the form

p�y,z� =
� sin����

�
y�−1�z − y�−1−� �8�

for 0�y� t�z. After integrating Eq. �8� with respect to z in
the limits �t ,�� �or with respect to y in the limits �0, t�� we
obtain the densities of TSt

− and TSt
+, respectively,

p−�t,y� =
sin ��

�
y�−1�t − y�−�, 0 � y � t , �9�

p+�t,z� =
sin ��

�
z−1t��z − t�−�, z � t , �10�

valid at all times t�0 �see Fig. 1�. The moments of TSt
− and

TSt
+ can be calculated directly from the moments of Y and Z

by using relations

TSt
−=

d

tY and TSt
+=

d

tZ ,

where =
d

means the equality in distribution. Thus, the process
TSt

− has finite moments of any order, while TSt
+ gives us even

no finite the first moment. The overshot of TSt
+ � t is

too long also in the limit formulation. Notice that
p+�t ,y�=y−2p−�t−1 ,y−1�. At this point we should mention that
compound subordinators and, in particular, the subordination
by an inverse Lévy-stable process via a Lévy-stable process
were considered already in �34�. However, the construction
of compound subordinators has been based on the statisti-
cally independent stochastic processes. This leads to quite
different results in comparison with ours. In our construction
of the compound subordinators TSt

− and TSt
+ the processes Ut

and S�t� are clearly coupled.

III. ANOMALOUS DIFFUSION WITH UNDER- AND
OVERSHOOTING SUBORDINATION

According to �30�, the widely observed fractional two-
power relaxation dependencies

���� � �i�/�p�n−1 for � 
 �p �11�

and


���� � �i�/�p�m for � � �p �12�

of the complex susceptibility ����=�����− i�����, where

����=��0�−����, the exponent n and m fall in the range
�0,1�, and �p denotes the loss peak frequency, are closely
connected with the under- and overshooting subordination,

Z�,�
U �t� � S��t� � Z�,�

O �t� for t � 0,

where Z�,�
U �t�=X�

U(S��t�) and Z�,�
O �t�=X�

O(S��t�). Here the
processes X�

U�t� and X�
O�t� are nothing else as TSt

− and TSt
+

with the index �. They are subordinated by an independent
inverse �-stable process S��t� forming the compound subor-
dinators Z�,�

U �t� and Z�,�
O �t�, respectively. The approach en-

larges the class of diffusive scenarios in the framework of the
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FIG. 1. �Color online� The probability density p−�y� with sup-
port on 0�y� t and the density p+�y� with support on y� t for
different values of the index �.
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CTRWs. This new type of coupled CTRWs follows from the
clustering-jump random walks idea �35�. As it has been rig-
orously proved �36�, the clustering with finite-mean-value
cluster sizes leads to the classical decoupled CTRW models,
but assuming a heavy-tailed cluster-size distribution with the
tail exponent 0���1, the coupling between jumps and in-
terjump times tends to the compound operational times
Z�,�

U �t� and Z�,�
O �t� as under- and overshooting subordinators,

respectively.
It should be noticed that the physical mechanism under-

lying the anomalous two-power-law relaxation can be de-
scribed as a diffusive limit of CTRWs. The resulting relax-
ation patterns are connected not only with stochastic features
of the jumps and the interjump times themselves but also
with a stochastic dependence between them. In the frame-
work of linear response theory the temporal decay of a given
mode k, representing excitation undergoing diffusion in the
system under consideration, is given by the inverse Fourier
transform of the diffusion front �37�.

On the other hand, the relaxation evolution of complex
materials is realized on structural different levels �relaxing
entities, e.g., dipoles, clusters, and cooperative regions�. The
levels can interact between each other, as well as the time
evolution toward equilibrium of each of them can be gov-
erned by different random processes. To obtain any fractional
two-power relaxation law, the diffusion scenario should uti-
lize such a mathematical tool �i.e., the subordination ap-
proach� by means of which we are able to incorporate the
above. The simplest subordination of a Brownian motion by
an inverse �-stable process accounts for the amount of time
when a relaxator �dipole� does not participate in a motion,
i.e., the motion of relaxators to equilibrium is not uniform.
This scenario leads to the Mittag-Leffler �Cole-Cole� relax-
ation only. The more general Havriliak-Negami �HN� relax-
ation law, fitting most of the empirical relaxation data, fol-
lows, however, from compound subordination. In this case,
the anomalous diffusion process combines coupling between
the stable process as the real time and its inverse as an op-
erational time. Such a compound subordination helps us to
present relaxation in complex systems as a random process
in which the interacting dipoles, clusters, and cooperative
regions participate at the same time.

The overshooting subordinator yields the anomalous dif-
fusion scenario leading to the well-known HN relaxation pat-
tern �38�, and the undershooting subordinator leads to a new
relaxation law given by the generalized Mittag-Leffler relax-
ation function �29,30�. These results are in agreement with
the idea of a superposition of the classical �exponential� De-
bye relaxations. Thus, the stochastic mechanism underlying
the anomalous relaxation is quite clear, but the corresponding
diffusion analysis requires some additional clarity. Let B�t�
be the parent process that is subordinated either by Z�,�

U �t� or
Z�,�

O �t�. Then the subordination relation, expressed by means
of a mixture of pdfs, takes the form

pr�x,t� = �
0

� �
0

�

pB�x,y�p��y,��pS��,t�dyd� , �13�

where pr�x , t� is the probability density of the subordinated
process B(Z�,�

U �t�) �or B(Z�,�
O �t�)� with respect to the coordi-

nate x and time t, pB�x ,�� is the probability density of the
parent process, p��y ,�� is the probability density of TSt

− and
TSt

+, respectively, and pS�� , t� is the probability density of
S�t�. Recall that for the subdiffusion B(S�t�), by taking the
Laplace transform from the corresponding subordination re-
lation, we can derive the celebrated fractional Fokker-Planck
equation �37�. It is therefore reasonable to ask is it possible
to find a diffusion equation corresponding to relation �13�. In
the Laplace space

f̄�u� = �
0

�

e−utf�t�dt

we obtain

p̄r�x,u� = u�−1�
1

�

p̄B�x,u�/z�p0
+�z�

dz

z
, �14�

with p0
+�z�=sin����z−1�z−1�−� /� for z�1, as well as

p̄r�x,u� = u�−1�
0

1

p̄B�x,u�/z�p0
−�z�

dz

z
, �15�

with p0
−�z�=sin����z�−1�1−z�−� /� for 0�z�1. The Laplace

image of the pdf of the subordinated process B(S�t�) can be
simply expressed in terms of an algebraic form with the
Laplace image of the parent process pdf. This allows one to
get the fractional Fokker-Planck equation driving the spa-
tiotemporal evolution of the propagator of the anomalous
diffusion underlying the Mittag-Leffler relaxation �14,26,37�.
However, expressions �14� and �15� are not similar to the
latter. They have an integral form. Nevertheless, derivation
of the corresponding Fokker-Planck equation is also pos-
sible.

If we take the Laplace transform with respect to t and the
Fourier transform with respect to x for pr�x , t� in Eq. �13�,
the Fourier-Laplace �FL� image reads

IFL�pr��k,s� = s�−1�
0

� �
0

�

e−��k�yp��y,��e−�s�
dyd� ,

�16�

where ��k� is the logarithmic-Fourier transform of the parent
process pdf pB�x ,y�. Consider the case of p−�y ,��. After
changing variables y=z� we take the integral

�
0

�

e−�„s�+��k�z…d� =
1

s� + ��k�z
.

Next, the change of variables t=z / �1−z� maps �0,1� onto
�0,��. This helps us to derive

IFL�pr��k,s� =
s�−1

������1 − ���0

� t�−1dt

„s� + ��k�…t + s� .

The last expression can be easily calculated from the integral
�39�
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�
0

� t�−1

t + 1
dt = ������1 − �� .

The FL image of pr�x , t� with the undershooting directing
process Z�,�

U �t�=X�
U(S��t�) is of the form

IFL�pr��k,s� =
s��−1

„s� + ��k�…� . �17�

Finally, we invert the Fourier and Laplace transforms to get
the pseudodifferential diffusion equation

� ��

�t� + LFP�x���

pr�x,t� = ��x�
t−��

��1 − ���
, �18�

where LFP�x� is the Fokker-Planck operator, ��x� is the Dirac
function, and �� /�t� denotes the Riemann-Louiville deriva-
tive. The corresponding Fokker-Planck equation can also be
obtained in the case when the overshooting directing process
Z�,�

O �t�=X�
O(S��t�) is taken into account. Unfortunately, the

derivation is more complicated as we present below.
In the case of p+�y ,��, after the substitution y=z�, we map

�1,�� onto �0,1� by the change of variables z=1 /x. Then we
obtain the corresponding FL image,

IFL�pr��k,s� =
s�−1

������1 − ���0

1 x�−1�1 − x�−�dt

s� + ��k�/x
.

The mapping t=x / �1−x� transforms the latter expression to
the form

IFL�pr��k,s� =
s�−1

������1 − ���0

� t�dt

�1 + t��„s� + ��k�…t + ��k��
.

This integral can be calculated exactly,

�
0

� t�

�t + 1��at + b�
dt =

������1 − ��
�a − b�

�1 − �b/a��� .

As a result, the FL image of pr�x , t� with the directing pro-
cess Z�,�

O �t�=X�
O(S��t�) can be written as

IFL�pr��k,s� =
1

s
�1 − � ��k�

s� + ��k��
�� . �19�

Now we invert the Fourier and Laplace transforms to get the
pseudodifferential diffusion equation,

� ��

�t� + LFP�x���

pr�x,t� = f�,��x,t� , �20�

where

f�,��x,t� = �� ��

�t� + LFP�x���

− „LFP�x�…����x�

is a function depending on the probability density pB�x ,y�.
The exact form of f�,��x , t� is quite different from the right-
side term of Eq. �18�. In this connection it should be pointed
out the work �40� where the derivation of a fractional
Fokker-Planck underlying the HN type of relaxation is based
on the entirely phenomenological approach in �41�. How-
ever, the stochastic background leading to the anomalous dif-

fusion yielding the HN pattern has remained behind these
works.

To calculate the moments of the processes B(Z�,�
U �t�) and

B(Z�,�
O �t�), assume for simplicity that the parent process B is

a one-dimensional Brownian motion. Its moments are writ-
ten as

I2n�t� =
1

�4�Dt
�

−�

�

x2n exp�−
x2

4Dt
�dx =

�2n�!
n!

�Dt�n,

where D is the diffusion coefficient. If the subordinator
Z�,�

U �t� governs the Brownian motion, then the moment inte-
gral reads

�x2n� = �
−�

�

x2npr�x,t�dx

= Bn�
0

1

znp0
−�z�dz�

0

�

�npS��,y�d�

=
�2n�!

n!
Dn ��,n�

n!

tn�

��1 + n��
, �21�

where �� ,n�=���+1���+2�¯ ��+n−1� is Appell’s symbol
with �� ,0�=1. When another subordinator Z�,�

O �t� is used,
even the first moment of the subordinated process B(Z�,�

O �t�)
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FIG. 2. �Color online� Propagator pr�x , t� of the under- and over-
shooting anomalous diffusion with a constant potential, �=2 /3 and
�=2 /3, drawn for consecutive dimensionless instances of time
t=1,3 ,10. The cusp shape of the pdfs appears.
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diverges because the probability density p0
+�z� gives no finite

moments. Thus, the process B(Z�,�
U �t�) is a subdiffusion and

B(Z�,�
O �t�) is a superdiffusion. In Fig. 2, as an example, the

propagator pr�x , t� for the under- and overshooting anoma-
lous diffusion with �=2 /3 and �=2 /3 is drawn.

It should be noticed that the ordinary subdiffusion
B(S��t�) takes an intermediate place between the under- and
overshooting anomalous diffusion B(Z�,�

U �t�) and B(Z�,�
O �t�).

The feature is illustrated in Fig. 3. This allows one to com-
pare an asymptotic behavior of the temporal evolution of
diffusion fronts. From that one can see that the diffusion
front of B(Z�,�

U �t�) is more stretched than the front of
B(S��t�), whereas the diffusion front of B(Z�,�

O �t�) is more
contracted in comparison with the front of B(S��t�).

One of interesting questions is what interpretation can be
assigned to the subordinators Z�,�

U �t�=X�
U(S��t�) and

Z�,�
O �t�=X�

O(S��t�). As the processes X�
U��� and X�

O��� are in-
dependent on S��t�, they can be considered separately. The
inverse Lévy-stable process S��t� accounts for the amount of
time when a walker does not participate in motion. The pdf
of the subordinated process B(X�

U���) is a special case of the
Dirichlet average, namely,

F��,x,�� =
sin ��

�
�

0

1

pB�x,�z�z�−1�1 − z�−�dz .

Recall that many of important special and elementary func-
tions can be represented as Dirichlet averages of continuous
functions �see more details in �42��. The Dirichlet average
includes the well-known means �arithmetic, geometric, and
others� as special cases. The process X�

U�t� evolves to infinity
like time t. Its contribution in the subordinated process
B(X�

U�t�) is taken into account by the Dirichlet average of the
probability density of the parent process B. The similar rea-
soning can be developed for the process X�

O�t�.

IV. LANGEVIN EQUATION WITH COMPOUND
SUBORDINATORS

Description of the anomalous diffusion with under- and
overshooting subordination in the forms of Eqs. �18� and
�20� is not unique. These diffusion processes can be repre-

sented equivalently in the language of Langevin equation. As
it is well known, the ordinary Brownian motion satisfies the
stochastic differential equation �called the Langevin equa-
tion�,

dR��� = F„R���,�…d� + G„R���,�…dB�,

where R��� describes the space position of a diffusing par-
ticle and F and G are some functions. The Brownian diffu-
sion with a drift is a semimartingale, where the first term
describes a local martingale, and the second one a finite
variation process �8�. It is interesting that the subordination
operation can save the property. Really, the process subordi-
nated to the Brownian motion R�St�=BSt

is a semimartingale
and obeys the following equation:

drt = F�rt�dSt + G�rt�dBSt
,

where rt is the position vector with t�0. From the fact that
the processes Z�,�

U �t� and Z�,�
O �t� bound the subordinator St,

i.e., Z�,�
U �t��S��t��Z�,�

O �t�, the Langevin equation frame-
work holds also for the compound subordinators studied in
the present work. This means that the corresponding Lange-
vin equation reads

drt = F�rt�dZ�,�
U �t� + G�rt�dBZ

�,�
U �t�, �22�

and the similar equation can also be written for the case of
Z�,�

O �t�. Since the mathematical theory of semimartingales is
well developed, it can help us to understand better various
properties of the anomalous diffusion. In particular, the tra-
jectories of semimartingales are always of finite quadratic
variation. If, e.g., Y�t� is a stochastic process observed on
time interval t� �0,T�, then the quadratic variation V�2��t�,
corresponding to Y�t�, is defined as V�2��t�=limn→� Vn

�2��t�,
where Vn

�2��t� is the partial sum of the squares of increments
of the process Y�t� given by

Vn
�2��t� = 


j=0

2n−1

	Y�T�j + 1�/2n ∧ t� − Y�Tj/2n ∧ t�	2,

with a∧b=min�a ,b
.
According to �30�, using the self-similar properties of the

subordinators and their independency from the parent pro-
cess B���, we have

B„Z�,�
U �t�…=

d

„Z�,�
U �t�…1/2B�1�=

d

t�/2
„L��1�…−�/2

„X�
U�1�…1/2B�1� ,

B„Z�,�
O �t�…=

d

„Z�,�
O �t�…1/2B�1�=

d

t�/2
„L��1�…−�/2

„X�
O�1�…1/2B�1� ,

where the Brownian motion B��� is 1/2-self-similar �and

hence B���=
d

�1/2B�1��, the �-stable Lévy motion L���� yields

L����=
d

�1/�L��1�, and X�
O�1�=

d

1 /X�
U�1�. Thus, both processes

B(Z�,�
U �t�) and B(Z�,�

O �t�) are semimartingales. The result is
very important because the different behavior of quadratic
variations can be used to construct efficient statistical tests
which distinguish different types of anomalous dynamics in
experimental data �15–17,28�.
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FIG. 3. �Color online� Left panel: the propagator pr�x , t� of
under- �a� and overshooting �b� anomalous diffusion with �=2 /3
and �=2 /3 for t=1. The line �c� displays the propagator of ordinary
subdiffusion with �=2 /3 and �=1 for t=1. Right panel: diagram
shows the interrelation between B(Z�,�

U �t�), B(S��t�), and B(Z�,�
O �t�).

Here m and 1−n denote the power-law exponents defined in formu-
las �11� and �12�.
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V. CONCLUSIONS

The paper introduces an approach to study the coupling
between the very large jumps in physical and operational
times. It is based on the compound subordination of a
Lévy-stable process T��� by its inverse S�t�. The inverse
Lévy-stable process is actually the left-inverse process of the
Lévy-stable one. In fact, we have S(T���)=�, while
T(S�t�)� t holds. In the framework of CTRWs the compound
subordinator provides a direct coupling of physical and op-
erational times. The subordination scenario leads to two
types of the operational time: the spent lifetime and the re-
sidual age. In the first random process all the moments are
finite, whereas the second process has no finite moments. We
have shown that the approach is useful for analysis of
anomalous diffusion underlying all empirical fractional two-
power-law relaxation responses. Due to the two types of the
operational time the diffusion can display as well the subdif-
fusive and superdiffusive characters. The anomalous diffu-
sion with under- and overshooting subordination discovers a
novel law of relaxation accompanied by the well-known HN
function �43�. The point is that the original HN relaxation
�38� with exponents 0�� , ��1 satisfies m�1−n. Its

modified version �44�, proposed to fit relaxation data with
power-law exponents satisfying m�1−n, assumes
0�� , ���1. Unfortunately, the HN function with ��1
cannot be derived within the framework of diffusive relax-
ation mechanisms. The problem succeeds in overcoming by
the undershooting subordination �30�. The difference in
physical mechanisms underlying the typical �m�1−n� and
the less typical �m�1−n� sets of the two-power-law relax-
ation responses is clearly seen in behavior of the correspond-
ing operational times. In the language of subordinators the
process X�

U�t� makes a rescaling for small times resulting in
“compressing” the operational time characteristic for the
Mittag-Leffler relaxation �i.e., the inverse Lévy-stable pro-
cess S��t�� while the process X�

O�t� turns on a similar rescal-
ing for long time “stretching” hence S��t�.
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