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Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model
with the square symmetric substrate potential. It is found that as the driving force increases, the system

transfers from the locked state to the sliding state where the motion of particles is in the direction different
from that of driving force. With the further increase in driving force, at some critical value, the particles start
to move in the direction of driving force. These two critical forces, the static friction or depinning force, and
the kinetic friction force for which particles move in the direction of driving force have been analyzed for
different system parameters. Different scenarios of phase transitions have been examined and dynamical phases

are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force

have been obtained.
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I. INTRODUCTION

A chain of interacting particles subjected to an either ran-
dom or periodic substrate potential represents one of the
most tractable models for studying the nonequilibrium be-
havior and dynamical phase transitions in a wide variety of
condensed matter systems such as vortex lattices in super-
conductors [1,2], Josephson junction, charge-density waves
[3], colloids [4], Wigner crystals [5], metallic dots [6,7],
magnetic bubble arrays [8], and systems in tribology [9,10].
In both theoretical and experimental studies of these systems,
the attention has been always focused on the behavior, mo-
tion, dynamical phases, and the structure of the lattice when
the external driving force is varied. The results have shown
that the system parameters such as winding number, external
driving force, pinning, interaction between atoms, damping,
and geometry of the substrate play the crucial role in the
scenarios of the transition phenomena and properties of dy-
namical phases.

Due to significance for the studies of vortex dynamics in
superconductors, the overdamped motion of an array of in-
teracting particles over a random substrate potentials has
been studied extensively during past several years. In an ar-
ray of vortices, dynamical phases have been classified and
their dependence on the elastic constant and the external
driving force has been examined [11-13]. The phase transi-
tion from the locked state to an ordered sliding state has been
observed experimentally in superconducting flux lattices
[14-17].

The locked-to-sliding phase transition in the overdamped
driven two-dimensional Frenkel-Kontorova (2DFK) model
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with different symmetries (square or triangular) of the peri-
odic substrate potential has been studied by Reichhardt ef al.
for the system of vortices in superconductors [18-21]. The
system behavior depends on the dimensionless concentra-
tion, which is defined as the ratio between the number of
atoms and the number of minima of the substrate potential.
In the commensurate case, the critical depinning force is
larger than in the incommensurate case, and transition from
an ordered locked phase to the sliding state that corresponds
to the moving crystal or the “elastic flow phase” appears
[19].

Direction of the external driving force may also strongly
influence the behavior of system. In an overdamped system
with repulsively interacting atoms on the triangular substrate,
when direction of driving force was varied, an interesting
phenomenon has been observed [22]. The atomic flow was
not in the direction that was aligned with the external driving
force, but in one of the symmetry axes of the substrate.

Contrary to the numerous studies of the overdamped FK
model, a relatively small number of studies have been dedi-
cated to driven underdamped 2DFK model [one-dimensional
(ID) underdamped FK model has been extensively studied
due to its applications in different branches of science]
[23-31]. Several authors have previously studied the 2D
elastic lattice under periodic substrate potential and the ran-
dom impurity potential by using the 2DFK model [32-36].
Teki¢ et al. studied the locked-to-sliding transition in the
underdamped isotropic 2DFK model with the triangular sub-
strate potential [36]. They have found that when the driving
force increases, the system transfers from a disorder locked
state to an ordered sliding state that corresponds to a moving
crystal. Depending on the system parameters, during this
transition, different scenarios and intermediate phases my ap-
pear.
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Recently, in the experimental studies in nanotribology, in
the measuring of the friction force between two contacting
layers, strong influence of the misfit angle on the friction
force has been observed. According to results, superlubricity
(the state of vanishing friction) may appear for certain values
of misfit angle [37,38]. In such contact, the ratio between the
lattice units of the surfaces must be irrational along the slid-
ing direction so that each individual atom receives different
amount of force from different directions. These forces con-
sequently offset each other resulting in superlubricity. This
offsetting of forces appears due to the continuous motion of
atoms that may be the basic principle of the superlubricity.
These results are in great analogy with the results found in
superconductivity [19-22] what motivates further theoretical
studies since an understanding of the origin of the friction
force at the microscopic level could represent a theoretical
guidance for the designing of smart materials for both indus-
trial and biomedical applications [39,40].

Motivated by the above-mentioned theoretical [36] and
experimental [14,15] studies, in this paper, we will study the
locked-to-sliding phase transition in 2DFK model. Our focus
was on the examination of different scenarios and properties
of dynamical phases as the system parameters change. It was
found that as the driving force increases, the system transfers
to the sliding state where the motion of particles is in the
direction different from that of driving force. With the further
increase in driving force, at some critical value, the particles
start to move in the direction of driving force. Dynamical
phases have been classified and the properties of critical
forces at which these transitions appear have been studied in
detail. These critical forces, the static friction force or the
depinning one, and the kinetic friction force or the one for
which particles start to move in the direction of driving force
depend on the direction and the magnitude of external driv-
ing force, the magnitude of adhesive force, the interaction
strength between two atoms in the upper layer and, in par-
ticular, on the misfit angle 6. For the case of zero misfit angle
0=0°, their analytical expressions have been obtained.

The paper is organized as follows. In Sec. II, the model is
proposed. Numerical results and discussions are presented in
Sec. III. Finally, Sec. IV, concludes the paper.

II. MODEL

We consider the two-dimensional lattice of particles with
harmonic interaction (upper layer) coupled to a static pinning
potential (lower layer). The upper layer has a square period-
icity where the neighbors of each particle are fixed, and it is
driven by an external driving force F,,. The square symmet-
ric substrate potential is given as follows [41,42]:

27T ~ 21T I
Vb (X,y) =— %[cos(;ﬂx) + cos(;\’Zy)]. (1)

Equation (1) represents the first term of the Fourier series of
2D substrate potential with square periodicity such as the
substrate surface of NaCl. In Refs. [41,42], its expression is
given in the form: Vi, /(x, y):—%cos(zfx cos(zfy). How-
ever, by the coordinate transformation of x+y=x",x—y=y’,
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it becomes Eq. (1). The position vector r,, ,, of an arbitrary
(n,m)th atom satisfies the following equation of motion:

(g(vint + Vsub) _

Mn,mfn,m + 7Mn,mfn,in + - Fextv (2)

Iy m

where for the diatomic molecular system, M, ,=M, is the
mass of the atom if n+m is an odd number and M, ,,=M, if
n+m is an even number. For the monatomic molecular sys-
tem, we assume M ;=M,=1. y is damping coefficient where
in our work the simulations have been performed for y
=0.1. Throughout the paper, we will use dimensionless vari-
ables, where b/+\?2 is the lattice constant, we take b=1, F,
=(Fey cOs a, Fy sin @) is the external driving force, and «
is the angle between the directions of F,, and the unit vector
of x axis. Vj, is the interaction potential between particles of
the upper layer that has the following harmonic form: V;,
:g[(r—lo)z] for small amplitude waves, with a strength K.
Equilibrium distance is /y=a between the nearest neighbors
and I;=12a between the next nearest neighbors, where a is
defined as a=L,/N=L,/M. L, and L, are the length in the x
and y directions of the 2D system, N and M are the number
of minima in the substrate potential in the x and y direction,
respectively. a is the substrate periodicity, we take a=1 and
only consider the interactions among the nearest and the next
nearest neighbors.

Underdamped regime correspond to the situation when

y2—4w(2)<0, where wozz\% represents characteristic fre-
quencies of the system. The range of f we choose in
this paper is 0.1 <f<1.5, then the minimum value of char-
acteristic frequency is about 1.1. The damping term we
choose in this paper is y=0.1 which is much smaller than the
characteristic frequencies. Therefore, all the situations we
study in this paper are in the underdamped regime.

In general, for the systems in which the orientations of
the two layers do not match, we rotate the lower layer

respect to x axis by an arbitrary misfit angle 6. Then (;)
=(5 ﬁg‘: ;)(i ). The periodic boundary condition is imposed
for misfit angle @ to enforce a fixed density condition for the
system. the density p is defined as particle numbers per pe-
riodicity of lower layers, namely, p=>b/a. In this paper p
=1. Meanwhile, the neighbors of each particle are indepen-
dent of the misfit angle.

The numerical procedure used for solving the above equa-
tions was the same as in the previous works [23,35]. We
considered the atomic layer of N X M =12 X 12 atoms placed
onto substrate. The velocity and position of each particle are
in their equilibrium position before rotating the lower layer
with respect to x axis by misfit angle. The boundary condi-
tions do not create a defect. then the dc force was adiabati-
cally increased from zero with the step AF=0.005. Equation
(2) has been integrated using the fourth-order Runge-Kutta
algorithm. For every value of F, the time interval of T
=1200 was used as a relaxation time to allow the system to
reach the steady state, with the time step Ar=0.003. The
averaged velocity defined as
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FIG. 1. (Color online) (a) The average atomic velocity v as a
function of driving force F,,. (b) Intersection angle 3 as a function
of driving force Fg,, for the case of 6=0°.
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where () denotes the time average has been analyzed for
different values of the system parameters.

ITI. NUMERICAL RESULTS
A. Definition of two critical forces F and F,

In Fig. 1(a), the variation in the average atomic velocity
of the upper layer with the driving force F.,, for 6=0°, f

=%, K=1, and different values of the direction of the exter-
nal driving force @=0°,20°,45° is presented.

As we can see, there exist a critical depinning force at
which the system transfers from locked to a sliding state. We
define the static friction force F as the external driving force
at which the average atomic velocity reaches nonzero value
[35]. F, depends on the direction of the external driving
force, what is in a good agreement with some results ob-
tained in the studies of superconductors [22].

Variation in the intersection angle B (angle between the x
axis and the average atomic velocity or the velocity of the
center of mass) with the magnitude of the external driving
force is presented in Fig. 1(b). Position of angles « and B is
clearly shown in Fig. 2.

The value of the external driving force strongly influences
the angles S or the direction in which particles will move. If
F.<F,, the average velocity of particles is zero. In the
region where F,<F,.,<F. B is a constant, meanwhile (3
# «a. In this case, the atoms of the upper layer depin from the
substrate and start to move in the direction that is different
from that of the external driving force.

However, if F, > F., 8 becomes equal to a. We could
then define another critical force F as a kinetic friction force
at which « changes from a# B to a=p [see Fig. 1(b)].
Therefore, we may conclude that when F > F,. the upper
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X

FIG. 2. Definitions of « and B. « is the intersection angle be-
tween the direction of the external driving force and the x axis, B is
the intersection angle between the direction of the average velocity
of atoms and the x axis.

begins to slide exactly in the direction of the external driving
force. It is important to note that F, depends on the system
parameter «, i.e., it depends on the direction of the external
driving force.

In Fig. 3 the same variation in U with F,, as in Fig. 1 but
for #=20° is presented. Comparing the results in Figs. 1 and
3, we can see that F; and F,. are strongly dependent on the
misfit angle 6.

For the symmetrical case of #=0° and b/a=1 (see Fig. 1),
the switching events can be explained analytically in the fol-
lowing section. In Fig. 3 #=20° which is asymmetric case,
the switching events are much more complex than those in
Fig. 1. When each atom of the system is driven by external
driving force, each atom will be forced by three kind of
forces. First is the external driving force. Second is the force
from the substrate of the lower layer, but the force of each
atom is different since 8+ 0°. In Fig. 1, the second force is
same to each atom. The third force is the interaction forces
from neighbors in upper layer which is also different for each
atom since the distance between two neighbors is usually not
same for the case of §+ 0°. But the third force to each atom
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FIG. 3. (Color online) (a) The average atomic velocity v as a
function of driving force F,y,. (b) Intersection angle 3 as a function
of driving force Fy, for the case of 6=20°.
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FIG. 4. (Color online) Dependence of the F; and F. on the
magnitude and the direction of the external driving force where f
=%, K=1, and #=0°. In the region AA the velocity is zero, in the
region CAI B=90°, in the region CAIl B=0°, in the region SA 8
= . Analytical results are presented by the solid line. The numerical
results for F; are presented by the inverted triangles, while those for
F. by the regular triangles.

in Fig. 1 is also same. The moving direction of the system is
determined by the direction of the sum of this three forces
which depend on the external driving force, 6, «, winding
number b/a, stiffness of the upper layer K, particle number
(or system size) and the substrate potential of the lower layer.
Therefore it is too complex to give the analytical result. Usu-
ally as the external driving force increases the direction of
the sum of the three forces varies, so we can observe the
switching events as in Fig. 3.

B. Dependence of F and F, on the external driving force

When 6#=0°, the system is equivalent to the commensu-
rate case [35]. In order to understand how both F; and F,
depend on the system parameters, their variations with the
magnitude and the direction of the external driving force
(|F, see, the parameter
space can be divided into three different regions:

(1) Region AA (arbitrary angle) where F.<F, and the
average atomic velocity v=0.

(ii) Region CA (constant angle) where F,<F. <F, and
B is a constant while 8# a.

(iii) Region SA (same angle) where F.,,>F, and B=a.

Similar diagram has been obtained in some studies of su-
perconductors [13].

In the region AA (0=0), the mass center of the upper
layer are motionless. In the region CA, v has the nonzero
value, however the atoms move in the direction different
from the direction of the external driving force. According to
the direction of the average velocity of the upper layer, re-
gion CA can be divided into two different parts CAI and
CAIL In the region CAI, =90°, and the atoms move in the
direction of the y axis, meanwhile in the region CAIl S
=0°, the atoms move in the direction of the x axis. This
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result is similar to that observed in previous works on driven
vortices in a periodic potential [43,44]. In the region SA, 8
=a, the atoms move in the direction of the external driving
force.

When a=45°, it was found that the static friction force F,
reaches its maximum while F, reaches its minimum value.
At this point, the CA region disappears, and F.=F,. The
atoms of the upper layer are either motionless or move in the
direction of the external driving force.

In order to explain the numerical results in Fig. 4 and to
understand further the properties of the two critical depin-
ning forces F and F,, in Eq. (2), summation over all N
X M atoms in the system when the system is pinned has been

performed: M= 2 dr““b) (NX M)F,,,. For large K, the atoms
are nearly equally separated, namely, x,,=na+A,, y,.,
=ma+A,, where A, <a and A, <a are uniform shifts for all
atoms. When 6+ 0°, for the most values of system param-
eters, the sum will be equal to zero if N and M are large
enough. In that case, there is no possible stable solution for
F..>0 and the static friction force will vanish, and there-
fore, superlubricity may take place, as it was observed in
some experiments [37,38]. However, in the case when 6
=0°, the sum will not vanish and static friction force will be
different from zero. The external driving force acting on each
atom i8 (Foy cos a, Fyy sin a), Whlle the force from the sub-
strate is [\2f sin 2\27T(n+Ax) \2f sin 2\27T(m+A )]. The
maximum force from the substrate acting on each atom in
the x and y directions is \Zf If the upper la layer is motion-
less, the condmons _Fey cos a= \2f sin 2\27(n+A,) and
Foy sin a= \2f sin 2 277(m+A ) are  satisfied, where
sin 2\2m(n+A,)=<1 and sin 2\27T(m+AV)Sl. A, and A,
can be determined from these equations. - '

As the external dr1v1ngL force increases until F, cos a
= \2f while Fey, sin @<\2f, in the region 0° = a=45°, the
component of the external driving force in the x direction is
larger than that of the depinning force, while its component
in the y direction is smaller, _and atoms will move in the x
direction. When F,, cos a=v2f, we define critical depinning
force F, as the value of F,, at which the upper layer starts to

move in the x direction. Therefore, we obtain F,= ;La As
the external driving force continues to increase until
F.y, sin @=2f, the external driving force in the y directions
will also become larger than its corresponding depinning
force and the atoms will start to move in the direction of the

external driving force. At this point, when F, sin a= \Ef,
we define another critical force F. where F .= =-2L

sin a*
Since the system is symmetric around a=45°, in the re-
gion 45° = @<<90°, the analytical results can be obtained in
a similar way. Therefore, the results for F; and F,. can be

given as follows:

F,= , (4)

Fe=— &)

in the region 0° <@=45° and
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FIG. 5. (Color online) Dependence of the F, and F, on the
magnitude and the direction of the external driving force where f
=%, K=1, and #=20°. In the region AA, the velocity of the center
of mass is zero, in the region SA B=c.

_
”2
=2 (6)
Sin «
E
Fo= (7)
COS

in the region 45° = a«<<90°

The analytical results in Egs. (4)—(7) are presented in Fig.
4 by solid line, while the numerical results for F and F,
from Eq. (2) are presented in the same figure by black in-
verted triangle and red triangle, respectively. As we can see
there is an excellent agreement between results. For the case
6+ 0°, the results are similar.

A special case for #=20° is shown in Fig. 5. There are
also three regions of AA, CA, and SA that correspond to
F <Fo Fy<F<F,. and F.<F_, respectively. In Fig. 5,
we note that the curve of F, vs a for =20° have peaks at
the points of approximately a=65° and a=75°. We find that
both critical forces of F; and F.. depend on the misfit angle 6.
F, is much smaller in the case of §#+ 0° than that of 6=0°. It
is also noted that it is too complex for the general case of
0#0 and a#0. In the following we will note that the de-
pendence of F on the 6 is fractal structures. Therefore, the
variations of F; and F, versus 6 and « are very complex. In
this paper we will mainly focus on the simple cases of 6
=0, a#0or 6#0, «a=0.

In the following section we will study the dependence of
F and F. on the misfit angle @ in detail.

C. Dependence of F; and F, on the misfit angle 6

Variations of the F; and F, with the magnitude of the
external driving force |F,,| and the misfit angle 6 are pre-
sented in Fig. 6. As in Fig. 4, we can distinguish three re-
gions AA, CA, and SA for F<F,, F,<F.,<F. and
F.>F,, respectively.
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FIG. 6. (Color online) Dependence of the F on the misfit angle
6 for fzf, K=1, and a=0°.

In the region AA, the velocity of particles is zero, mean-
while in the region CA, it has a finite value, but it is in
different direction from that of the external driving force. In
the region SA, particles move in the direction of driving
force. As we can see in Fig. 6, both critical forces, F; and F.,
strongly depend on the misfit angle 6. F reaches its maxi-
mum value when 6=0° or 90°, while F, reaches its mini-
mum at #=45° and maximum at #=0° or 90°. The numerical
analysis have been also performed for other values of «
#0°, and the obtained results are qualitatively similar with
the presented one. One of these results, the special case for
a=20° is presented in Fig. 7, in which we note that the curve
of F. vs 0 for «=20° have peaks at the points of approxi-
mately #=65° and 6=75°.

In order to better understand the dependence of the F; on
the 6, variation in F; with 6 for two regions of 6, 42.0°
< 0<48.0° and 46.5° < 6<<47.5° is presented in Figs. 8 and
9, respectively. Remarkably, the dependence of F and F.. on
0 looks like a fractal structure. To verify this conclusion, we
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FIG. 7. (Color online) Dependence of the F, on the misfit angle
o for f=7, K=1, a=20°.
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FIG. 8. Dependence of the F on the misfit angle 6 for f=%
K=1, «a=0° in the region of 42.0° < #<<48.0°.

have studied the dependence of F; on the # on much smaller
scale within our degree of the computer accuracy. We found
the fractal structure in the dependence of F; on the 6. The
corresponding dimension of the fractal structure is obtalned
by the equatlon of d=1- log,L , where L=2X; 62+F2

s
=3 6?2+F2 /N, Ly=L when dimension d=1. We use 5f
=0. 0001 and F=Fy+ioF. i=1,...,50. The fractal dimen-
sion as a function of 6 is shown in Flg. 10. It indicates that
the fractal dimension is not a constant, but it is a function of
the misfit angle 6.

D. Dependence of F; and F, on interaction
strength between atoms K

The dependence of F, and F, on the strength of the inter-
atomic interaction K for four different values of 6 and « is
shown in Fig. 11. For #=0° and «=0° in Fig. 11(a), F,=F.,
and they are independent of the K. This result is equivalent
to the result obtained in one-dimensional case [35]. In this
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FIG. 9. Dependence of the F; on the misfit angle 6 for f=%,
K=1, «a=0° in the region of 46.7° < §<<47.5°.
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case, there are only two regions: AA and SA. In the region
AA, the particles are motionless. In region SA, they move in
the direction of external driving force. The analytical form
for F in this case can be given as F —\2f what is in good
agreements with the numerical results. In Fig. 11(b), the re-
sults for #=0° and @=20° are presented. In this case, F, and
F, are different but still independent of the parameter K.
There are three regions of AA, CA, and SA that correspond
to the Fo, <F,, F{<F<F, and F. > F, respectively. The
analytical results for both F, and F, can be given as: F|
= o 200, and F, C_Ez%’ what is in good agreements with the
numerical ones. After performing simulations for other val-
ues of a at 6=0°, we came to the conclusion that two critical
depinning forces F and F, are independent of the parameter
K. Their analytical form can be obtained from Egs. (4)—(7).
However, if 6+ 0°, the results are quite different, as we
can see in Figs. 11(c) and 11(d) for #=20°, a=0° and @
=20°, a=20°, respectively. As the parameter K increases,
F decreases until K reaches a critical value K.;=~2. When
K>K,, F, remains approximately independent of the K. It
becomes as small as about the order of 1072, in which case
superlubricity may take a place. Meanwhile F.. first decreases
with the increase in K until K=K, = 1, and then it increases
as K continues to increase.

E. Dependence of F and F, on the magnitude
of the adhesive force from substrate f

In Fig. 12, the numerical results for F; and F, as a func-
tions of the adhesive force from substrate are presented for
four different cases: (a) #=0°, a=0°, (b) 6=0°, a=20°, (c)
0=20°, a=0°, and (d) #=20°, a=20°. As we can see, in Fig.
12(a), there are only two regions: AA and SA. The analytical
result for F; has the form F,=\2f, and it is in a good agree-
ment with the numerical one. For other cases shown in Figs.
12(b)-12(d), we can see that there are three regions AA, CA,
and SA that correspond to Fo < F, F{<F <F,. Fo > F,,
respectively. As f increases both F and F. increase. For 6
=0° and @=20°, the analytical results for F; and F are given
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as follows: Fy:q)—i%, and FF%’ which are in a good that in 1D case, this suggest that in a more real 2D case, the

agreement with the numerical ones, as can be seen in Fig.
12(b). We have to note that when 6+ 0°, the static friction
force is much smaller. As f goes to zero the static friction
force also goes to zero, as it is shown in Figs. 11(c) and
11(d).

In Fig. 13, the numerical results for F and F, as a func-
tions of the adhesive force from substrate are also presented
in which we take parameter K=1 which is different from Fig.
12 (K=12). We note the similar results between two. How-
ever, for smaller K in Fig. 13 when 6=20° and a=20° there
are only two regions of AA and SA if external driving force
is large enough. In other word, For smaller K when external
driving force large enough F,=F..

According to the above results, we may conclude that in
order to obtain superlubricity, materials with smaller f and
larger K have to be used. Though this result is similar with

same results is found. Meanwhile the misfit angle has to be
chosen in a suitable way in order to obtain smaller friction
force.

IV. CONCLUSION

The locked-to-sliding phase transition for certain materi-
als with square lattice symmetry has been studied in the
2DFK model. With the increase in external driving force, at
some critical value the system transfers from the lock to the
sliding state where the particles move in the direction differ-
ent from that of driving force. With the further increase in
external force, at some critical value, the motion of particles
becomes aligned with the direction of driving force. The val-
ues of external driving force at these two critical points have
been defined as two different friction forces. They both de-
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AA+’ A F K Y:' CA A’I --- F, of 6 and a: (a) 6=0°, @=0°, (b) #=0°, a=20°,
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pend on the direction and the value of external driving force,
the magnitude of adhesive force and the interaction strength
between two atoms in the upper layer and especially on the
misfit angle 6. For some values of misfit angle, the friction
force is very small what is in a good agreement with some
recent experimental results [37,38]. The phase diagram of the
system with three different regions (AA, CA, and SA) that
correspond to different dynamical behavior has been ob-
tained. For zero misfit angle, the analytical expressions for
two critical forces F and F,. are obtained which are in agree-
ment with the numerical ones. If the misfit angle 6+ 0°, it
was found that dependence of static friction force F; on the
misfit angle 6 was in fractal structure, where dimensions of
the fractals have been given.

Since the system is driven by an external driving force,
the damping term play a crucial role to let the system reach
steady state or equilibrium in a short period. Otherwise, the
system cannot reach the equilibrium state which is not the
real case. Therefore, in our simulation of this paper, damping
term play an important role. However, it is different from the
overdamped case. For overdamped case the system can reach
steady state in a shorter period than that in the underdamped
case. The larger the damping term, the shorter period needed
to reach steady state for the system. Moreover, in the over-
damped case the average particle velocity or other system
variables at the critical point are continuous or nearly con-

tinuous, but in the underdamped case they are discontinuous.
The inertia term of the particle for the overdamped case can
be neglected, however, in the underdamped system the iner-
tia term cannot be neglected.

In order to obtain superlubricity between two layers, we
will choose the materials with the larger interatomic interac-
tion strength of the upper layer, and the smaller magnitude of
adhesive force of the lower layer. This conclusion is similar
with that found in 1D case. Meanwhile, the suitable misfit
angle had to be chosen in order to obtain smaller friction
force.

For the smaller size the time for simulation is shorter, so
we get the results for the relatively small system of 12X 12
particles. The results actually depends on how many particles
of the system, but the results are qualitatively same. How the
results depends on the system size is also a problem which
will be solved in the future.
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