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In this work, it is shown that the detailed fluctuation theorem for the total entropy production of a charged
particle in a two-dimensional harmonic trap under the action of an electromagnetic field is valid in two physical
situations. The proof of the theorem is achieved if the particle is initially distributed with a canonical distri-
bution at equilibrium with the thermal bath. The two examined cases are the following: in the first case, the
charged particle in the harmonic trap is subjected to an arbitrary time-dependent electric field; in the second
one, the minimum of the harmonic trap is arbitrarily dragged by such an electric field. The theoretical frame-
work is developed within the context of stochastic thermodynamics and the Langevin dynamics for the charged
particle.
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I. INTRODUCTION

The fluctuation theorems �FTs� are topics of current inter-
est to the scientific community and continue to be applied to
nonequilibrium thermodynamics of small systems in which
thermal fluctuations play a very important role �1�. In this
context, the study of the FTs for thermodynamic quantities
such as work, heat, and entropy production produces essen-
tial results for the understanding of nonequilibrium phenom-
ena. It is well known that the second law of thermodynamics
states that the entropy of a macroscopic isolated system al-
ways increases. The entropy and the entropy production are
quantities associated to macroscopic systems and they have a
clear physical sense as properties of ensembles. However,
when such concepts are applied to small systems and in
short-time intervals, it becomes clear that there exists a prob-
ability to find situations which do not match the ensemble
averages. The FTs offer a way to quantify such deviations,
which in fact becomes important for such small systems
within short times �2,3�. In general, FTs relate probability
distribution functions along forward and backward trajecto-
ries for a small system. In the case of the entropy this state-
ment suggests a definition of the entropy along a stochastic
trajectory. This and other thermodynamic concepts, such as
the first-law-like energy balance involving applied or ex-
tracted work, exchanged heat, and changes in internal en-
ergy, were consistently defined along a single stochastic tra-
jectory in the context of stochastic thermodynamics by
Seifert �4,5�. Stochastic thermodynamics has been developed
for mesoscopic systems such as colloidal particles or single
�bio�molecules driven out of equilibrium by time-dependent
forces but still in contact with a heat bath of well-defined
temperature. The main results reported in �4,5� are the fol-
lowing: the total entropy production �TEP�, denoted as �stot,
along a single stochastic trajectory, which involves both the
particle entropy and entropy production in the surrounding
medium, satisfies the integral fluctuation theorem �IFT�. It is
expressed as �e−�stot�=1 for any initial condition when the

particle is arbitrarily driven by time-dependent external
forces over a finite time interval �the transient case�. It is
also shown that in the nonequilibrium steady state over a
finite time interval, a stronger fluctuation theorem, called the
detailed fluctuation theorem �DFT�, holds, that is,
P��stot� / P�−�stot�=e�stot, where P��stot� is the probability
of entropy generating trajectory and P�−�stot� is that of an-
nihilating trajectory.

Last year, Saha et al. �6� used the concepts of stochastic
thermodynamics and the definition of the entropy along a
single stochastic trajectory to prove that even in the transient
case the DFT for a Brownian particle in a harmonic trap also
holds for two exactly solvable models, namely, �i� the
Brownian particle is in a harmonic trap and it is subjected to
an external time-dependent force and �ii� the minimum of the
trap potential is arbitrarily dragged with a time-dependent
protocol. They also showed that the average entropy produc-
tion over a finite time interval gives a better bound for the
average work performed on the system than that obtained
from the Jarzynski equality. Perhaps, it would be pertinent to
comment here that in the conclusions of Ref. �6� the follow-
ing sentence is remarked: “Analysis of the total entropy pro-
duction in presence of magnetic field is carried out sepa-
rately. The results will be published elsewhere.” However,
such an analysis has not yet been reported.

The purpose of the present paper is to prove, also in the
transient case, the validity of the DFT for the total entropy
production for the case of a Brownian harmonic oscillator in
the presence of an electromagnetic field in two physical situ-
ations for arbitrary time-dependent electric field driven over
a finite time interval: �i� the charged Brownian particle in a
two-dimensional harmonic trap is subjected to the action of
an arbitrary time-dependent electric field and �ii� the mini-
mum of the harmonic trap is arbitrarily dragged by the elec-
tric field. The goal is achieved by means of the explicit so-
lution of the Smoluchowski equation �SE� associated with
the Langevin equation for the charged particle under the as-
sumption of an initial canonical distribution at equilibrium
with the thermal bath. It will be shown that this solution is
essential for the calculation of the particle entropy along a
single stochastic trajectory. The calculation of the explicit
solution of the SE is not an easy task. Furthermore, it will be*ines@xanum.uam.mx
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better calculated by means of a mathematical strategy con-
sisting in two transformations �7,8�: one is given in terms of
a stochastic variable X�t� and the other corresponds to a
time-dependent rotation of this variable. In this scheme of
solution, the DFT is proved in a very simple and effective
way.

The structure of the work is as follows: in Sec. II, the
two-dimensional �on the x-y plane� Langevin equation for
the charged harmonic oscillator in the presence of the elec-
tromagnetic field is introduced. The process along the z axis,
which is independent of the planar process, has already been
studied in �6�, so it is not considered here. The concepts of
stochastic thermodynamics and the definition of the
trajectory-dependent entropy are given to establish the TEP.
The TEP requires the calculation of the charged particle joint
probability density giving the initial condition. This calcula-
tion is done with an initial canonical distribution. In Sec. III,
the DFT is proved for the above two mentioned physical
situations. The concluding remarks are given in Sec. IV.

II. LANGEVIN DYNAMICS AND STOCHASTIC
THERMODYNAMICS

Let us consider a particle of charge q trapped in a har-
monic potential which experiences Brownian motion in a
thermal bath at temperature T; also, it is in the presence of an
electromagnetic field. The magnetic field is a constant vector
given by B= �0,0 ,B� and the electric field is an arbitrary
time-dependent vector defined as E�t�. Due the orientation of
the magnetic field, the motion can be split into two indepen-
dent processes: one on the x-y plane, perpendicular to the
magnetic field, and the other parallel to this field. We are
interested only in the x-y plane on which all the other vectors
except the magnetic field lie, so that the two-dimensional
harmonic trap reads as V�x�= �k /2��x�2, where x= �x ,y� is the
position vector on the plane and k is a constant. The external
time-dependent electric force is then Fe�t�=qE�t�. The over-
damped approximation of the planar Langevin equation for
the charged harmonic oscillator in this case can be written as

dx

dt
= − �x + k−1�Fe�t� + k−1�g�t� , �1�

where � is the matrix

� = � �̃ �̃

− �̃ �̃
	 . �2�

In terms of the dimensionless parameter C=qB /c�, where �
is the friction coefficient, the elements of matrix � are de-

fined as �̃=k /��1+C2� and �̃=kC /��1+C2�. The vector g�t�
is the fluctuating force with zero mean value �gi�t��=0 and
correlation function �gi�t�gj�t���=2��ij��t− t��, with i , j=x ,y
and � is the noise intensity which according to the
fluctuation-dissipation relation satisfies �=�T, where the
Boltzmann constant kB has been absorbed in the temperature
T.

According to stochastic thermodynamics �4,5,9�, the first-
law-like balance between the applied work W, the change in

internal energy �U, and the dissipated heat Q to the bath can
be calculated along a trajectory x�t� over a finite time inter-
val t. This first-law-like reads as

Q = W − �U , �3�

where the work can be calculated from the relation �6,10,11�

W = 

0

t �U�x,t��
�t�

dt�. �4�

On the other hand, the change in the medium entropy �sm
over the time interval is �sm=Q /T and the nonequilibrium
Gibbs entropy S of the system in the present problem is
defined as

S�t� = −
 f�x,t�ln f�x,t�dx = �s�t�� . �5�

This definition suggests the definition of a trajectory-
dependent entropy for the particle as

s�t� = − ln f�x�t�,t� , �6�

where the probability density f�x , t� is obtained through the
solution of the SE and it is evaluated along the stochastic
trajectory. For a given trajectory x�t�, the entropy s�t� de-
pends on the given initial data f�x0�� f�x0 ,0�, where f�x0� is
the probability density of the particle at initial time t=0 and
thus contains information about the whole ensemble. The
change in the system entropy for any trajectory of duration t
is then

�s = − ln� f�x,t�
f�x0�  . �7�

Now, the change in TEP along a trajectory over a finite time
interval t is shown to be �4,5�

�stot = �sm + �s . �8�

Using this definition, Seifert derived the IFT, �e−�stot�=1,
where the angular brackets denote average over the statistical
ensemble of realizations or over the ensemble of finite time
trajectories �4,5�. Also, he showed that in the nonequilibrium
steady state over a finite time interval, the DFT holds. The
latter is stated as

P��stot�
P�− �stot�

= e�stot. �9�

This theorem has also been proved, even in the transient
case, for a Brownian particle in a harmonic trap only if the
system is initially prepared in equilibrium �6�.

In what follows, it will be shown that this is also the case
for a charged Brownian particle in an electromagnetic field.
For this purpose it is necessary to calculate the joint prob-
ability density �JPD� f�x , t� as required by Eq. �7�. Let us
first proceed to solve the SE for the transition-probability
density �TPD� P�x , t �x0� associated with Eq. �1�. The SE is
given by �8,12�
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�P

�t
+ b�t� · �xP = �x · ��xP� + �̃�x

2P , �10�

subject to the initial condition P�x ,0 �x0�=��x−x0�. Besides

it has been defined b�t�=k−1�Fe�t� and �̃=� /�2�1+C2�, both
are magnetic-field dependent. The solution for f�x , t�, assum-
ing the initial condition f�x0�=��x0�, has been given in �8�.
Now, the function f�x , t� will be calculated assuming an ini-
tial canonical distribution for f�x0�. Thus, it is convenient to
give briefly the algebraic steps leading to the solution. The
strategy of solution relies upon two transformations: the first
one is the change of variable X=x− �x� and the other is the

transformation X�=eW̃tX, such that �x� is the deterministic
solution of Eq. �1� and the other coordinates X� and X satisfy
the following differential equations:

d�x�
dt

= − ��x� + b�t� , �11�

dX

dt
= − �̃X − W̃X + G�t� , �12�

dX�

dt
= − �̃X� + G��t� , �13�

where G�t�=k−1�g�t�, G��t�=R�t�G�t�, and �= �̃I+W̃, with

I representing the unit matrix and W̃ representing the anti-

symmetric matrix which satisfies R�t�=eW̃t. R�t� is an or-

thogonal rotation matrix with the property R−1�t�=e−W̃t, and

W̃ = � 0 �̃

− �̃ 0
	, R�t� = � cos �̃t sin �̃t

− sin �̃t cos �̃t
	 . �14�

The solution of Eq. �10� is attained by solving the SE asso-
ciated with Eq. �13� which is very similar to the ordinary
Brownian motion. Thus, the solution of this SE is well
known �12,13� and it is given by

P��X�,t�X0�� =
k

2�T�1 − e−2�̃t�
exp�−

k�X� − e−�̃tX0��
2

2T�1 − e−2�̃t� � .

�15�

Coming back to the original variable x, it can be shown that
the solution of SE �10� is then �8�

P�x,t�x0� =
k

2�T�1 − e−2�̃t�
exp�− k�x − e−�t�b̄�t� + x0��2

2T�1 − e−2�̃t�
	 ,

�16�

where b̄�t�=�0
t e�sb�s�ds. Having obtained the TPD �Eq.

�16��, a more general JPD f�x , t� can be calculated from the
integral

f�x,t� =
 f�x0,0�P�x,t�x0�dx0. �17�

In particular, if we assume that f�x0 ,0� is canonically distrib-
uted at equilibrium with the thermal bath at temperature T,
then

f�x0� =
k

2�T
exp�−

k�x0�2

2T
	 . �18�

By substituting Eq. �18� into Eq. �17�, it can be shown after
some algebra that

f�x,t� =
k

2�T
exp�−

k�x − �x��2

2T
	 , �19�

with �x�=e−�tb̄�t�=k−1e−�t�0
t e�s�Fe�s�ds, which, by means

of a partial integration, can also be written as

�x� = k−1Fe�t� − k−1R−1�t�

0

t

e−�̃�t−t��V�t��dt�, �20�

where it has been taken into account that �x0�=0, the vector

V�t��R�t�ve�t�, and ve�t�=dFe�t� /dt� Ḟe�t�. The JPD for
the X variable can then be easily obtained from Eq. �19� to
yield

f�X,t� =
k

2�T
exp�−

k�X�2

2T
	 , �21�

which is clearly stationary and, therefore, the initial distribu-
tion satisfies f�X0�= �k /2�T�exp�−k�X0�2 /2T�. For the pur-
poses required in Sec. III, we write the solution of Eq. �12�,
which reads

X�t� = e−�̃tR−1�t�X0 + R−1�t�

0

t

e−�̃�t−t��G�t��dt�. �22�

III. DETAILED FLUCTUATION THEOREM

Let us now proceed to prove the DFT for the two physical
situations considered in Sec. I of this work.

A. Particle in a harmonic trap subjected to a time-dependent
electric field

For this physical situation one has the effective potential
U�x , t�= �k /2��x�2−x ·Fe�t�. In this case the thermodynamic
work is

W = 

0

t �U�x,t��
�t�

dt� = − 

0

t

x�t�� · ve�t��dt�, �23�

and the internal energy change reads

�U =
k

2
�x�2 − x · Fe�t� −

k

2
�x0�2, �24�

where Fe�0�=0 is assumed for simplicity. On the other hand,
�s̄tot is calculated from Eqs. �3�, �18�, �19�, and �24�, and it is
�see Appendix C�
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�s̄tot =
W − �U

T
− ln� f�x,t�

f�x0� 
=

1

T
�W +

k

2
��x��2 + x · Fe − kx · �x� . �25�

Equations �23� and �25� show that the work and the change
in entropy are linear functions of x�t� and since x is also a
linear function of the Gaussian random variable g�t� �as can
be easily seen from the solution of Eq. �1��, �s̄tot is also a
Gaussian random variable whose probability density satisfies
the Gaussian distribution function,

P��s̄tot� =
1

�2�	̄s
2
exp�−

��s̄tot − ��s̄tot��2

2	̄s
2 	 . �26�

Here 	̄s
2���s̄tot

2 �− ��s̄tot�2 is the entropy variance and ��s̄tot�
is the entropy mean value. This last quantity satisfies

��s̄tot� =
1

T
��W� −

k

2
��x��2 + �x� · Fe , �27�

and �W� is the work mean value given by

�W� = − 

0

t

�x�t��� · ve�t��dt�, �28�

where the mean value �x� is given by solution �20�. It can be
checked from Eq. �25�, after a long but straightforward alge-
bra, that the entropy variance can be written as

	̄s
2 =

1

T2 �	w
2 + ��Wx� − �W��x�� · �2Fe − 2k�x�� + Fe · � · Fe

− 2k�x� · � · Fe + k2�x� · � · �x�� , �29�

where 	w
2 ��W2�− �W�2 is the variance of the work and �

���xx�− �x��x�� is a tensor. It is shown in Appendix A that
the work mean value takes the form

�W� =
1

k



0

t

dt�

0

t�
e−�̃�t�−t��V�t�� · V�t��dt� −

�Fe�t��2

2k
,

�30�

and the variance of the work the expression

	w
2 =

2T

k



0

t

dt�

0

t�
e−�̃�t�−t��V�t�� · V�t��dt�. �31�

Upon comparison of Eqs. �30� and �31�, one sees that

	w
2 = 2T��W� + ��Fe�2/2k�� . �32�

This result is similar to that calculated in Ref. �6� in the
absence of magnetic field. Therefore, result �32� represents a
generalization when an electromagnetic field is present. In
this latter result, the effect of the electromagnetic field ap-
pears in the expression of the work mean value given by Eq.

�28�, through V�t�=R�t�Ḟe�t�, which is explicitly written as

V�t� = q� cos �̃t sin �̃t

− sin �̃t cos �̃t
	Ėe�t� . �33�

As it can be seen, this expression accounts for a time-
dependent rotation of the electric field rate of change due the
magnetic field.

On the other hand, the tensor � can be calculated most
efficiently in terms of the X variable, showing that �
= �xx�− �x��x�= �XX�. This correlation function is calculated
with the help of Eq. �21�, giving as a result �= �XX�
= �X0X0�= �T /k�I. In a similar way, it can be shown that
�Wx�− �W��x�= �WX�, where

�WX� = −��

0

t

ve�t�� · x�t��dt�	X�t��dt�. �34�

Again, according to Appendix A, Eq. �34� reduces to

�WX� =
T

k
�k�x�t�� − Fe�t�� . �35�

Upon the substitution of the term � �Eqs. �32� and �35�� into
Eq. �29�, the total entropy variance becomes

	̄s
2 =

2

T
��W� −

k

2
��x��2 + �x� · Fe = 2��s̄tot� . �36�

This result implies the validity of the DFT, in the transient
case, for the total entropy production in an electromagnetic
field when the initial state of the system is canonically dis-
tributed at equilibrium with the thermal bath, thus

P��s̄tot�
P�− �s̄tot�

= e�s̄tot. �37�

B. Dragging of the harmonic trap

Let us now consider the physical situation for which the
minimum of the harmonic trap is arbitrarily dragged by the
time-dependent electric field. In this case the effective poten-
tial reads U�x , t�= �k /2��x− �Fe�t� /k��2, and the thermody-
namic work will be

Ŵ = 

0

t �U�x,t��
�t�

dt� = − 

0

t

x�t�� · ve�t��dt� +
�Fe�2

2k
.

�38�

The change in the internal energy during a time t is now

�Û =
k

2
�x −

Fe�t�
k
�2

−
k

2
�x0�2. �39�

To calculate the change in the total entropy production de-
fined in this case as �ŝtot, a similar procedure to that em-
ployed in Sec. III A will be used �see Appendix C�. For the
present case
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�ŝtot =
1

T
�Ŵ +

k

2
��x��2 + x · Fe − kx · �x� −

1

2k
�Fe�2 .

�40�

Again Ŵ and �ŝtot are linear functions of the Gaussian vari-
able x, thus P��ŝtot� satisfies the same Gaussian distribution,
the one given in Eq. �26�. The mean value for the total en-
tropy production becomes

��ŝtot� =
1

T
��Ŵ� −

k

2
��x��2 + �x� · Fe −

1

2k
�Fe�2 , �41�

and the work mean value is now

�Ŵ� = − 

0

t

�x�t��� · ve�t��dt� +
�Fe�2

2k
. �42�

The total entropy variance defined as 	̂s
2���ŝtot

2 �− ��ŝtot�2

becomes

	̂s
2 =

1

T2 �	̂w
2 + ��Ŵx� − �Ŵ��x�� · �2Fe − 2k�x�� + Fe · � · Fe

− 2k�x� · � · Fe + k2�x� · � · �x�� , �43�

where 	̂w
2 ��Ŵ2�− �Ŵ�2 is the variance of the work. Check-

ing the calculation in Appendix B, the work mean value
takes the form

�Ŵ� =
1

k



0

t

dt�

0

t�
e−�̃�t�−t��V�t�� · V�t��dt�, �44�

and its variance becomes

	̂w
2 =

2T

k



0

t

dt�

0

t�
e−�̃�t�−t��V�t�� · V�t��dt�, �45�

and therefore 	̂w
2 =2T�Ŵ�. It is also clear that �Ŵx�− �Ŵ��x�

= �ŴX�, where now

�ŴX� =��− 

0

t

ve�t�� · x�t��dt� +
�Fe�2

2k 	X�t�� . �46�

As shown in Appendix B, this expression reduces to

�ŴX� =
T

k
�k�x�t�� − Fe�t�� . �47�

Upon substitution of the term �, the variance 	̂w
2 , and Eq.

�47� into Eq. �48�, it can be concluded that

	̂s
2 =

2

T
��Ŵ� −

k

2
��x��2 + �x� · Fe −

1

2k
�Fe�2 = 2��ŝtot� ,

�48�

and therefore the DFT for the total entropy production as
required by Eq. �37� holds. As can be checked from Eq. �37�,
it is now clear for both models �s= s̄ and s= ŝ� that �e−�stot�
=�e−�stotP��stot�d��stot�=�P�−�stot�d��stot�=1 because P
�−�stot� is normalized, and therefore the IFT holds.

IV. CONCLUDING REMARKS

The thermodynamic concepts applied to the study of the
Brownian motion have been used to prove the validity of the
transient DFT for an electrically charged Brownian particle
in a two-dimensional harmonic trap under the action of an
electromagnetic field. The proof of the theorem has been
given for two general physical situations when the system is
initially distributed with a canonical distribution at equilib-
rium with the thermal bath. In both cases, the relation 	s

2

=2��stot� is shown to be valid. As shown in Eqs. �27� and
�41�, the mean value of the total entropy production depends
on the influence of the electromagnetic field through the
work mean value, the mean value �x�, and Fe�t�. It must be
noted that all the results reported here have been achieved,
thanks to an effective mathematical tool capable to solve SE
�10� and calculate the mean value and the variance of the
total entropy production in a very simple way. Under these
conditions, the stochastic thermodynamics concepts have
consistently been applied at this level.

On the other hand, in a similar way shown in �6�, if the
initial distribution is different from the canonical one, DFT
in the transient case does not hold. For instance, consider a
charged particle in a magnetic field embedded in a thermal
bath at temperature T and in a harmonic trap V�x�
= �k /2��x�2, which is initially prepared in a nonequilibrium
state in the absence of any time-dependent perturbation or
protocol �Fe=0, W=0�. For this case, an athermal initial
distribution can be proposed as f�x0�= �k /2�	0

2�exp
�−k�x0�2 /2	0

2�, with 	0
2�T. The probability density defined

by Eq. �17� is now f�x , t�= �k /2�	2�t��exp�−k�x�2 /2	2�t��,
where 	2�t�=T+ �	0

2−T�e−2�̃t. It can be shown that the total
entropy production is a quadratic function of x and x0, which
is given by �stot= �
 /2��x0�2+ �� /2��x�2+�, where 
=k��	0

2

−T� /T	0
2�, �=k��T−	2�t�� /T	2�t��, and �=−ln�	0

2 /	2�t��;
hence, the probability density P��stot� is not Gaussian. Fol-
lowing the algebraic steps in Ref. �6�, it is also shown that
the DFT does not hold. In this respect, it is very important to
take into account the very recent contribution of Shargel �14�
in which some comments in Ref. �6� have been addressed,
namely, as proved by Saha et al., the transient fluctuation
theorem �TFT�, given by Eq. �37� for a Brownian particle in
a harmonic potential and driven by an arbitrary time-
dependent force, is only valid if the particle is initially in
thermal equilibrium. However, this is a surprising result be-
cause according to Shargel, Eq. �37� fails to distinguish be-
tween both the forward and backward path measures and the
forward and backward entropy productions, each of which is
distinct due to the time-dependent driving. Certainly, in the
paper of Saha et al. and also as shown in this work, the TFT
holds in a very particular case that strongly depends on the
form on which the initial distribution has been constructed.
The latter is constructed on the basis of a harmonic potential
�see Eq. �18��. For any other potential or initial distribution
the TFT breaks down. This is indeed the case for an athermal
initial distribution as commented in the beginning of this
paragraph. On the other hand, as shown in Ref. �15�, both the
Jarzynski relation and DFT for the applied work have been
verified for an overdamped colloidal particle in a time-
dependent nonharmonic potential in the context of the first-
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law-like balance. It is shown that the distribution of the work
is non-Gaussian, though the DFT holds for this quantity, con-
trary to what happens with the total entropy production as
shown in �6� and in the present work.

In the validity context of the DFT for the total entropy
production, it is also shown in �6� that Eqs. �45� and �46�
give a bound for the average work performed on the system
over a finite time interval , which seems to be better than
that obtained from the Jarzynski equality �11�. This statement
is explicitly shown in Fig. 3 of Ref. �6� for a particular pro-
tocol. It is also clear that the same statement must be valid
for the problem studied here due to the validity of the DFT
�16–25�.

Lastly, the theoretical demonstration of the transient DFT
in the absence of an electromagnetic field �6�, as well as in
its presence, may motivate the carrying out of new experi-
ments similar to those reported in Refs. �2,3�.
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APPENDIX A: EXPLICIT CALCULATIONS
FOR ŠW‹, �w

2 , AND ŠWX‹

To calculate the work mean value given by Eq. �30�, the
change of variable X=x− �x� is used. In this case Eq. �28�
does not change because �X�=0. So, upon the substitution of
Eq. �20� into Eq. �28�, one has

�W� = −
1

k



0

t

Fe�t�� · Ḟe�t��dt�

+
1

k



0

t

dt�ve · R−1�t��

0

t�
e−�̃�t�−t��V�t��dt�. �A1�

The second term of this equation can be further rewritten in
such a way that

�W� =
1

k



0

t

dt�

0

t�
e−�̃�t�−t��V�t�� · V�t��dt� −

�Fe�t��2

2k
.

�A2�

On the other hand, for the variance 	w
2 as given by Eq.

�31� is written as

	w
2 = 


0

t 

0

t

ve�t1� · �X�t1�X�t2�� · ve�t2�dt1dt2

= 2

0

t

dt�

0

t�
ve�t�� · �X�t��X�t��� · ve�t��dt�, �A3�

where the symmetry of the correlation function �X�t1�X�t2��
has been used. To evaluate the integral in Eq. �A3�, the sta-
tionary property of the process X�t� is used. Therefore, its
correlation function also satisfies that �X�t�− t��X0�. It can be
seen from the initial probability density f�X0� given in Sec.

II that �X0X0�= �T /k�I, where I is the unit matrix. By assum-
ing that �g�t�X0�=0, then from Eq. �22� it has

�X�t�X0� =
T

k
e−�̃tR−1�t�I , �A4�

which implies

�X�t� − t��X0� =
T

k
e−�̃�t�−t��R−1�t��R�t��I . �A5�

Upon the substitution of Eq. �A5� into Eq. �A3�, the variance
of the work is then

	w
2 =

2T

k



0

t

dt�

0

t�
e−�̃�t�−t��V�t�� · V�t��dt�. �A6�

The correlation function �Wx�− �W��x�= �WX� will be
calculated by making use of Eq. �23�. In this case

�WX� = −��

0

t

ve�t�� · x�t��dt�	X�t��
= − 


0

t

ve�t�� · �X�t�X�t���dt�. �A7�

According to Eq. �A5�, this correlation function now reads

�WX� = −
T

k



0

t

e−�̃�t−t��R−1�t�R�t��I · ve�t��

= −
T

k
R−1�t�


0

t

e−�̃�t−t��V�t��dt�. �A8�

Upon comparison of Eq. �A8� with Eq. �20�, then

�WX� =
T

k
�k�x�t�� − Fe�t�� . �A9�

APPENDIX B: EXPLICIT CALCULATIONS

FOR ŠŴ‹, �̂w
2 , AND ŠŴX‹

The mean value of work given by Eq. �38�, after substi-
tution of Eq. �20�, reads

�Ŵ� = −
1

k



0

t

Fe�t�� · Ḟe�t��dt�

+
1

k



0

t

dt�ve · R−1�t��

0

t�
e−�̃�t�−t��V�t��dt� +

�Fe�2

2k
.

�B1�

Upon elimination of the first and third terms, it reduces to

�Ŵ� =
1

k



0

t

dt�

0

t�
e−�̂�t�−t��V�t�� · V�t��dt�. �B2�

It is shown that the variance for the stochastic work �Eq.
�38�� can also be written as
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	̂w
2 = 


0

t 

0

t

ve�t1� · �X�t1�X�t2�� · ve�t2�dt1dt2

= 2

0

t

dt�

0

t�
ve�t�� · �X�t��X�t��� · ve�t��dt�. �B3�

This expression is the same as that given by Eq. �A3�, and
therefore it reduces to the same expression given by Eq.
�A6�, that is,

	̂w
2 =

2T

k



0

t

dt�

0

t�
e−�̃�t�−t��V�t�� · V�t��dt�. �B4�

Under these conditions it is shown that 	̂w
2 =2T�Ŵ�.

This correlation function can be written with the help of
Eq. �38� to give

�ŴX� =��− 

0

t

ve�t�� · x�t��dt� +
�Fe�2

2k 	X�t��
= − 


0

t

ve�t�� · �X�t�X�t���dt�, �B5�

which is the same as Eq. �A7�, so that

�ŴX� = −
T

k
R−1�t�


0

t

e−�̃�t−t��V�t��dt� =
T

k
�k�x�t�� − Fe�t�� .

�B6�

APPENDIX C: EXPLICIT CALCULATION
OF �stot AND �ŝtot

To obtain the total entropy production �s̄tot given by Eq.
�25�, we see from Eqs. �18�, �19�, and �24� that

�s̄tot =
W − �U

T
− ln� f�x,t�

f�x0� 
=

1

T
�W −

k

2
�x�2 + x · Fe +

k

2
�x0�2

+
k

2T
��x − �x��2 − �x0�2�

=
1

T
�W +

k

2
��x��2 + x · Fe − kx · �x� . �C1�

In a similar way, the total entropy production �ŝtot, given by
Eq. �40�, is obtained from Eqs. �18�, �19�, and �39�, yielding

�ŝtot =
Ŵ − �Û

T
− ln� f�x,t�

f�x0� 
=

1

T
�Ŵ −

k

2
�x − k−1Fe�2 +

k

2
�x0�2

+
k

2T
��x − �x��2 − �x0�2�

=
1

T
�Ŵ +

k

2
��x��2 + x · Fe − kx · �x� −

1

2k
�Fe�2 .

�C2�
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