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We have measured first and second order statistics of the velocity of phase singularities v in evolving
speckle patterns of microwave radiation transmitted through random quasi-1D samples as the frequency is
swept and relate these to global statistics of speckle evolution. When v is normalized by the standard deviation
of the fractional intensity change, the probability distribution and correlation function of v approach those for
random Gaussian fields even for localized waves. Analogous results are found for transmitted intensity nor-
malized by the total transmission. This provides a unified framework for the statistics of speckle evolution and
intensity.
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The study of enhanced mesoscopic fluctuations �1–3� has
unified the study of transport and provided precise indicators
of Anderson localization. In one respect, however, it misses
the forest for the trees. Studies of first and second order
statistics of transmitted flux density or intensity �2,4� for
monochromatic waves and their consequences for global
fluctuations �3� have largely been explored without reference
to the structure of the speckle pattern �5,6�, which, is built
upon a network of phase singularities �7–9�. These are lo-
cated at points of vanishing intensity at which the phase
cannot be defined since the in- and out-of-phase components
of the field both vanish. The phase changes by 2� around
these singularities. The intensity and phase variation in a
typical speckle pattern is shown in Fig. 1. The displacement
of singularities is a reliable measure of speckle change and a
sensitive probe of material defects and deformation �10�. The
structure of the speckle pattern at a given frequency is ge-
neric �7–9�. However, various statistical measures of changes
in the field speckle pattern with frequency shift are indicators
of mesoscopic correlation of multiply scattered waves within
random media �11–13�. A striking example of the mesos-
copic nature of changes in the speckle pattern with frequency
is the observation that the probability distribution of the av-
erage of velocity of phase singularities in a given speckle
pattern as the frequency is tuned have precisely the same
form of the distribution of total transmission and depend
upon a single parameter, the variance of the corresponding
distribution �13�. Other measures of the overall change of
speckle patterns with frequency shift relating to the changing
phase and intensity in the pattern have the same statistics
�13�.

The similarity in global statistics of speckle change and
transmission is puzzling since these spectra are qualitatively
different. The speckle pattern is relatively quiescent when
tuning through peaks in total transmission. Thus the values
of parameters reflecting the change in the speckle pattern are
low when the transmission reaches its maximum. The struc-
ture of the speckle pattern is relatively stable when the fre-
quency is tuned near resonance with quasimodes of the me-
dium since it is then dominated by the pattern for a single
mode of the medium. In contrast, speckle patterns changes
rapidly between resonances as the relative contributions of
different modes changes. Similarities between the statistics

of intensity and singularity velocity are further surprising
since intensity is a bounded continuous variable over space
in contrast to singularity velocity which is defined only at
singular points and diverges when singularities are created or
annihilated in pairs �7,8�.

In order to understand the similar statistics of total trans-
mission and speckle evolution, we consider here the statistics
of the corresponding local variables. We present the first
measurements of the first and second order statistics of the
velocity of phase singularities as the frequency of the inci-
dent wave is tuned, v=drs /dv, and compare these to corre-
sponding statistics of the intensity, I. Microwave measure-
ments are made in quasi-1D samples for diffusive and
localized waves. The cumulant spatial correlation function of
velocity, Cv��r�= �v�r�v�r+�r�� / �v�2−1 is decomposed into
short and long range components in analogy with the cumu-
lant intensity correlation function, CI��r�. The long range
correlator �v is nearly equal to the variance of the standard
deviation of fractional intensity change within the speckle
pattern, �, which characterizes the change of the speckle
pattern as a whole. This is similar to the near equality of the
degree of intensity correlation �I to the variance of total
transmission. However, due to the small number of singulari-
ties in the transmitted field, the variance of the average ve-
locity, var�va� can be significantly larger than �v. When v is
normalized by �, and I is normalized by the spatial average
of the intensity Ia, for an incident transverse mode or source

FIG. 1. �Color online� �a� Example of the intensity pattern of a
random wave field. The dots mark the location of the nulls of in-
tensity, i.e., the phase singularities. �b� The corresponding phase
pattern for the same field, where different colors �or grayscales�
represent different phase.
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position a, their corresponding statistics closely match those
for Gaussian random wave fields. These considerations pro-
vide a unified description of the statistics of transmission and
speckle evolution and elucidate the statistics in both realms.

We measured the microwave field transmitted through
samples of alumina spheres contained in a 61-cm-long cop-
per tube with a diameter of 7.0 cm. The sample is composed
of 0.95-cm-diameter alumina spheres with refractive index
3.14 embedded in Styrofoam shells of refractive index 1.04
to produce an alumina volume fraction of 0.068. The inten-
sity and phase of the polarization component of the transmit-
ted field along a 4-mm-long wire antenna are measured with
use of a vector network analyzer. The spatial distribution of
the transmitted field over a range of frequencies is obtained
by measuring field spectra at each point on a 1-mm-square
grid over the output surface of the sample. In Fig. 2�a�, we
show a schematic of the sample and the measured phase
pattern at the output of the sample at 10.085 GHz for one
configuration of disorder. Measurements are made over the
frequency ranges 14.7–15.7 GHz and 10–10.24 GHz, in
which waves are diffusive and localized, respectively.
Frequency steps are chosen to be approximately 1/7 of the
field correlation frequency. Measurements are made in 40
and 71 different configurations for diffusive and localized
waves, respectively. In order to accurately determine the po-
sitions of phase singularities, the 2D sampling theorem is
applied to the data to reconstruct the speckle patterns on a

50�50 �m2 grid. The sampling theorem is also used to
interpolate in the frequency domain, so that spectra with 120
kHz and 250 kHz frequency steps are obtained for localized
and diffusive waves, respectively. Singularities in phase are
seen at points surrounded by phase change over a full range
of 2�. The trajectories of phase singularities in the 3D space
of two spatial dimensions and one frequency dimension is
shown in Fig. 2�a�. Spectra of the speed of one of the singu-
larities ṽ=v / �v� and of the intensity Ĩ= I / �I� at the point in
the center of the pattern are shown in Figs. 2�b� and 2�c�,
respectively. We will use tilde to indicate the quantity that is
normalized by its ensemble average throughout the paper.
The velocity diverges when singularity lines are parallel to
the transverse plane. In the 2D space of the output plane, this
corresponds to points, at which a pair of singularities are
either created or annihilated �8�.

Probability distributions of velocity, P�ṽ�, are shown in
Fig. 3�a� for diffusive and localized waves. These results are
compared to simulations for Gaussian random waves gener-
ated by the superposition of 300 randomly phased plane
waves, E�x ,y ,z�=�iAi exp�i�kxx+kyy+kzz��. Each of the
components of the k-vector and the amplitude Ai are drawn
from a Gaussian distribution. The singularity velocity in the
x-y plane is tracked as z increases. The simulated distribution
is close to the measured P�ṽ� for diffusive waves, but are not
in good agreement with the theoretical formula, P�ṽ�
= 8�2ṽ

��2ṽ2+4�2 , derived from Gaussian random waves in �8�. P�ṽ�

FIG. 2. �Color online� �a� Schematic of the
experiment setup. �b� Example of a phase pattern
in the field at the output of the random quasi-1D
sample. The trajectories of singularities as the
frequency is tuned are shown in 3D. �c� Velocity
spectrum associated with the thick red singularity
line. �d� Spectrum of intensity at the point in the
center of the output plane.

ZHANG, LOCKERMAN, AND GENACK PHYSICAL REVIEW E 82, 051114 �2010�

051114-2



is noticeably broader for localized waves. Measurements of
Cv��r� for diffusive and localized waves are shown in Fig.
3�b�. Corresponding theoretical expressions have not been
reported to our knowledge. The high value of Cv�0� is con-
sistent with the divergence of the velocity of singularities as
�r→0 when singularities are created or annihilated �8�.
Cv��r� falls rapidly with �r and reaches a constant value
denote by �v, which is 0.039 for diffusive and 0.648 for
localized waves, respectively. Thus the correlation function
can be expressed as the sum of short-range and a constant
terms: Cv��r�=Cv,short��r�+�v.

The statistics of singularity velocity can be compared to
first and second order statistics of polarized intensity which
are plotted in Figs. 4�a� and 4�b�. Fluctuations of I are greatly
enhanced for localized waves. Similar to Cv��r�, the cumu-
lant correlation function for intensity, CI��r�, which is plot-
ted in Fig. 4�b� using the same data used in Fig. 3, may be
expressed as, CI��r�=CI,short��r�+�I. Here �I is the degree

of correlation, which is the value of CI��r� at points at which
the field correlation functions vanishes �14�. �I=0.12 for the
diffusive and 3.0 for localized waves. In quasi-1D samples
with a large number of transverse modes, the field in indi-
vidual speckle patterns can be assumed to be a Gaussian
random variable. Thus the probability distribution of polar-
ized intensity normalized by the average intensity within the
speckle pattern, I��r�= I�r� / Ia, is expected to be an negative
exponential distribution, i.e., P�I��=exp�−I��, and should be
statistically independent of the total transmission �3�. The
measured P�I��, however, can be seen in Fig. 4�c� to deviate
slightly from this prediction, because the number of trans-
verse waveguide modes is small; approximately 30 at 10
GHz and 50 at 15 GHz. Agreement with Gaussian statistics
is better for diffusive waves since the number of modes is

larger. Based on the assumption that Ĩ� and Ia are statistically
independent, we have �I��r�I��r+�r�Ia

2�= �I��r�I��r+�r���Ia
2�.

The cumulant intensity correlation function, CI=�I��r�
− �I�2, can then be expressed as

CI��r� = �CI���r� + 1��var�Ĩa� + 1� − 1 �1�

CI���r� and the square of the corresponding field correlation
function, F��r�, are calculated for diffusive and localized
waves and seen to be similar in Fig. 4�d�. Since CI���r�
→0 for large �r, Eq. �1� gives, �I=var�Ĩa�. This is roughly

consistent with the measured values of var�Ĩa� of 0.14 for
diffusive and 3.3 for localized waves �see Table I�. CI���r� is
closer to F��r� for diffusive waves than for localized waves
because field statistics are closer to Gaussian when the num-
ber of transverse modes is larger.

The character of speckle pattern change can be traced to
the combined factors of long-range correlation in speckle
change and the statistical independence of local and global
fluctuations as is the case for intensity. We consider the mo-
tion of phase singularities and assume that the global change
of speckle patterns, denoted by �, is statistically independent
of the velocity of individual singularities normalized by this
change, v�=v /�. Cv��r� can then be expressed as

Cv��r� = �Cv���r� + 1��var��̃� + 1� − 1 �2�

If the local changes in the speckle patterns were a Gaussian
random process, we would expect that Cv���r�→0 for large
�r, since the fields in distant regions would not be corre-
lated. In the limit of large �r, this would give �v=var��̃�.

Among the parameters, �, which can quantify the change
of the speckle pattern as a whole are: the average velocity of
phase singularities va; the standard deviation of phase
changes ��	; and the standard deviation of fractional inten-
sity change, ��I�, where �	=	�
+�
�−	�
�, �I�= �I�


FIG. 3. �Color online� �a� The probability distributions and �b�
cumulant spatial correlation functions of ṽ, for diffusive and local-
ized waves.

FIG. 4. �Color online� First and second order statistics of Ĩ and
I� for diffusive and localized waves. �a� Probability distributions of

Ĩ. �b� Probability distributions of I�. �c� Cumulant correlation func-

tions of Ĩ. The separations �r are normalized by the corresponding
correlation lengths Lc, which are the first zeros of the real part of the
field correlation functions. �d� Cumulant correlation functions of I�
and their comparison to the square of the field correlation functions.

TABLE I. Comparison of �I and �v to variance of global mea-
sures of intensity and speckle changes.

�I var�Ĩa� �v var�ṽa� var��̃�	� var��̃�I�� var�ṽa��

Diff 0.12 0.14 0.039 0.193 0.087 0.045 0.131

Loc 3.0 3.3 0.648 1.240 0.743 0.586 0.267
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+�
�− I�
�� / �I�
+�
�+ I�
��. The standard deviation is de-
fined over all measured points on the output surface. Spectra
of these quantities in one sample configuration are similar for
localized waves and their probability distributions have the
same functional form as the probability distribution of total
transmission, though the variances of the distributions differ
�13�. The measured variances of va, ��	 and ��I� together
with �v for both diffusive and localized waves are given in
Table I. We find that var��̃�I�� is closest to �v in both cases,
while var�ṽa� and var��̃�	� are higher. This is also reflected
in the smoother spectra of �̃�I� than for ṽa and �̃�	 �13�. In
the limit, �
→0, �I� /�
 does not diverge near singularities
as does �	 /�
 �8�. Thus, var���I�� more reliably reflects the
change of the speckle pattern as a whole, while ��	 is
strongly affected by the immediate region around singulari-
ties and va obviously depends only on the small numbers of
singularities. This suggests that �=��I� is a more practical
choice as an indicator of global speckle change.

When v is normalized by �=��I�, first and second order
velocity statistics for diffusive and localized waves collapse
to the results found in simulations for Gaussian waves �Fig.
5�, just as was found for statistics of the intensity normalized
by Ia, I�. Despite many similarities, there are key differences
in the relationships between global and local statistics for v
and I. Unlike intensity, which is defined at all points, there
are only a small number of singularities in the speckle pat-
tern; on average 15 for diffusive and 10 for localized waves.
This difference leads to a further difference between the sta-
tistics of v and I, that var�ṽa� is significantly greater than �v

whereas var�Ĩa� is only slightly larger than �I as can be seen
Table I. The source of this difference can be seen by first

considering the relationship of var�Ĩa� and �I. The variance
of total transmission can be expressed in terms of the spatial
correlation function of intensity,

var�Ĩa� =
1

A
�

A

CI��r�d�r2 =
1

A
�

A,short

CI,short��r�d�r2 + �I

= �I,short + �I, �3�

where, A is the total area of the output surface. The small

excess of var�Ĩa� over �I, indicates that the assumptions
made in Eq. �1� are not strictly valid. A quantitative measure
of the breakdown of independence of I� and Ia is the relative

magnitudes of the contributions to var�Ĩa� by the integral of
the short-range correlation function CI,short��r� over the out-
put surface and kI. Since CI,short��r� falls rapidly to 0 for
�r�LC and the correlation length LC is much smaller than
the diameter of the sample cross section, the integral over A,
giving �I,short=0.015 for diffusive and 0.088 for localized
waves, is significantly smaller than the corresponding values
of �I. Thus the assumptions made are approximately valid

and var�Ĩa�	�I, as expected from Eq. �1�. Using Eq. �1�, we
can approximate �I,short as

�I,short 	 �1 + �I�
1

A
�

A

CI�,short��r�d2��r� , �4�

in which, 1
A
ACI�,short��r�d2��r� corresponds to purely

Gaussian random fluctuation.
Equation �3� cannot be applied directly to v because the

singularities do not exist at every point as does the intensity.
Finding singularities separated by �r must be described as a
correlated random process with a probability which is not
uniform in �r. Thus var�ṽa� cannot be expressed simply as a
two-dimensional integral of Cv��r� as was the case for in-
tensity. However, the short-range contribution to var�ṽa� can
be evaluated using the measured values of var�ṽa��, which
corresponds to fluctuations for Gaussian waves, multiplied
by the mesoscopic enhancement factor �1+�v� as in Eq. �4�
for the intensity. Here va� is the average of the normalized
velocity v� over a full speckle pattern. We then expect that

var�ṽa� 	 �1 + �v�var�ṽa�� + �v. �5�

In the limit �v→0, var�ṽa� reduces to the Gaussian term
var�ṽa��. Using values of var�ṽa�� in Table I, Eq. �5� gives
var�ṽa�	0.175 and 1.09, for diffusive and localized waves,
which are in reasonable agreement with the corresponding
measured values, 0.193 and 1.24.

In conclusion, we have constructed a unified framework
for the statistics of transmission and speckle change. When
the local variable is normalized by a global variable reflect-
ing the speckle pattern as a whole, mesoscopic fluctuations
disappear. In the limit in which a large number of modes
contribute to the field, first and second order statistics of the
normalized local variable approach the statistics of a Gauss-
ian random process. We expect that the statistics of change in
the speckle pattern, which may arise from internal motion of
the sample, temperature change, time delay following pulsed
excitation or by non-monochromatic excitation can be de-
scribed within this framework.

We thank Bing Hu for contributions to the experiment and
data analysis. This work was supported by the NSF under
Grant No. DMR-0907285.

FIG. 5. �Color online� Probability distributions �a� and the cu-
mulant spatial correlation functions �b� of the normalized velocity
of phase singularities v�=v /��I� for diffusive and localized waves
and the comparison to simulations for Gaussian random waves.
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