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Non-linear and non-Gaussian signal inference problems are difficult to tackle. Renormalization techniques
permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but
the approximations and assumptions made are not very obvious. Here we introduce the simple concept of
minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can
be understood as being the Gaussian approximation to the full posterior probability, which has maximal cross
information with it. We derive optimized estimators for three applications, to illustrate the usage of the
framework: (i) reconstruction of a log-normal signal from Poissonian data with background counts and point
spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy
redshifts, (ii) inference of a Gaussian signal with unknown spectrum, and (iii) inference of a Poissonian
log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how Gaussian
knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be

combined into a more accurate surrogate of the non-Gaussian posterior.
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I. INTRODUCTION
A. Abstract inference problem

Measurements provide information on the signals we are
interested in, encoded in the delivered data. How can this
information be best retrieved? Is there a generic and simple
principle from which optimal data analysis strategies derive?
Can an information energy be constructed which—if
minimized—provides us with the correct knowledge state
given the data and prior information? And if this exists, how
can this information ground state be found at least approxi-
matively?

Information energy, to be minimized, would be very use-
ful to have, since many of the existing minimization tech-
niques, analytical and numerical, can then be applied to it. A
number of such functions to be extremized to solve inference
problems were proposed in the literature, like the likelihood,
the posterior, or the entropy. The likelihood is the probability
that the data has resulted from some signal. The posterior is
the reverse, it is the probability that given the data some
signal was the origin of it. Extremizing either of them cer-
tainly makes sense, but often ignores the presence of slightly
less probable, but much more numerous possibilities in the
signal phase space. Those have a much larger entropy and
are therefore favored by maximum entropy methods. How-
ever, maximum entropy alone cannot be the inference deter-
mining criterion, since it favors states of complete lack of
knowledge, irrespective of the data. Thus some counteracting
energy is required which provides the right amount of force
to the inference solution. Here, we argue that the ideal infor-
mation energy is provided by the Gibbs free energy, which
combines both maximum entropy and maximum a posteriori
(MAP) principles.

The Gibbs free energy has to be regarded as a functional
over the space of possible probability density functions
(PDF) of the signal given the data. The result of the minimi-
zation is therefore a PDF itself, and not a single signal esti-
mate. Minimizing the Gibbs free energy maximizes the en-
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tropy within the constraints given by the internal energy. The
latter is understood as the average of the negative logarithm
of the joint probability function of signal and data weighted
with the PDF.

The usage of thermodynamical concepts for inference
problems is not new, see, e.g., [1,2]. What is new here, is that
we develop this for signals which are fields, spatially distrib-
uted quantities with an infinite number of degrees of free-
dom, while using an approximate Gaussian ansatz for the
PDF to be inferred. We thereby connect information field
theory (IFT) [3—10], as a statistical field theory dealing with
a huge number of microscopic degrees of freedom, to ther-
modynamics, as a means to generate simplified, but macro-
scopic descriptions of our knowledge. Thereby we find that
former IFT results obtained with complex renormalization
schemes in [9,11] can easily be reproduced, and even be
extended to more complicated measurement situations.

In the remainder of Sec. I we briefly introduce to IFT,
MAP, and Maximum Entropy. This motivates the minimal
Gibbs free energy principle, which we formally derive in
Sec. II, and show its equivalence to maximal cross informa-
tion. The application of this principle to optimize approxima-
tions of the posterior of concrete inference problems is pro-
vided in Sec. III. There, the log-normal Poisson problem
(Sec. I A) and the problem to reconstruct without known
signal power spectrum (Sec. III B), as well as their combina-
tion (Sec. III C) are addressed. Finally, we show how ap-
proximate posteriors obtained at different temperatures can
be combined into a better posterior surrogate in Sec. IV be-
fore we conclude Sec. V.

B. Information field theory

Information theory describes knowledge states with prob-
abilities. If () is the complete set of possibilities, and A C )
is a subset, then P(A) e [0,1] describes the plausibility of A
being the case, with P(A)=1 denoting A being assumed to be
sure, P(A)=0 denoting A being (assumed to be) impossible,
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and 0<P(A) <1 describing uncertainty about the truth of A.
Obviously P(Q2)=1 and P(©)=0. The usual rules of prob-
ability theory apply, and generalize the binary logic of Aris-
totle to different degrees of certainty or uncertainty [12,13].
In case the set of possibilities is a continuum, it makes sense
to introduce a PDF P(i) over (Q, so that P(A)=[,dy/P().
Each possible state ¢ can be a multicomponent vector, con-
taining all aspects of reality which are in the focus of our
inference problem.

We might be interested in a subaspect of ¢ which we call
our signal s=s(). The induced signal PDF is retrieved from
a functional or path integral over all the phase spaces of the
possibilities of ¢ via P(s)=[DP(p)ds—s()]. If s is a
field, a function over a physical space V, then s=(s,),cy
might be a vector in the Hilbert space () of all L*-integrable
functions over V and P(s) is then a probability density func-
tional. Information theory for s becomes IFT, which is a
statistical field theory.

Inference on the signal s from data d is done from the
posterior probability P(s|d), which can be constructed from
the joint PDF of signal and data P(d,s) via

Pld.s)
Pd)  Zg p
where  P(d,s)=[oDyP(d| ) ds—s()IP() =P(d|s)P(s)
and P(d)=[DsP(d,s). The second equality in Eq. (1) is just
a renaming of the numerator and denominator of the first

fraction, which highlights the connection to statistical me-
chanics. Thus we define the information Hamiltonian

H(d,s)=-1log P(d,s), (2)

ePH(S)

Psld) = (1)

the partition function including a moment generating source
term J

ZB(d,J) = f Dse‘ﬁ(H(d,SHJTs), 3)

and the inverse temperature S=1/T as usual in statistical
mechanics. Here s' is the transposed and complex conju-
gated signal vector s, leading to a scalar product j's
=[vdxj,s,. The ad hoc notion of temperature is as in stan-
dard simulated annealing practice. It permits to narrow (for
T<1) or widen (for 7> 1) the explored phase-space region
with respect to the one of the joint PDF and therefore is a
useful auxiliary parameter. We show in Sec. I A that the well
known thermodynamical equipartition theorem holds

1
(H(s,d))(sq) — H(m,d) = EngfT~ (4)

where Ny, is the number of degrees of freedom and m is the
mean signal field as defined below in Eq. (5), which defines
the ground state energy. This relation can e.g., be used to
check the correctness of an implementation of a signal
phase-space sampling algorithm.

C. Maximum a posteriori

The first guess for a suitable energy to be minimized to
obtain the information state might be the Hamiltonian. Mini-
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mizing the Hamiltonian with respect to s, while keeping d at
their observed values, is equivalent to maximizing the joint
probability P(d,s) and also the posterior P(s|d). The classi-
cal field emerging from this is called the MAP signal recon-
struction in signal processing. For a detailed discussion of
the usage of the MAP principle in IFT see [10]. The MAP
field is often a very good approximation of the mean field

m={(s) s = f DssP(s|d), (5)

which is the optimal estimator of the signal in a statistical L?
error norm sense,

m= argmin;<f dx(s,— Ex)2> . (6)
v (sld)

The MAP estimator on the other hand can be shown to op-
timize the statistical L° norm,1 the result of which may
strongly deviate from the mean m, if the posterior is highly
asymmetric around its maximum. Thus we can regard the
MAP estimator as a good reference point, but not as the
solution we are seeking in general. It is, however, accurate
(in the L? error norm sense) in case the posterior around its
maximum is close to a Gaussian. In this case, the MAP field
can easily be augmented with some uncertainty information
from the Hessian of the Hamiltonian

B 8’H(d,s)

= — s 7
Os0s' ™

S=m

as an approximation of the two point function of the signal
uncertainty

D= {(s=m)(s =m)")a)- (8)

Thus we set D=H"" in

P(s|d) = P(s|d) = G(s — m,D), )
where we introduced the Gaussian

1

_tDen
pappe

G(¢.D) =

Unfortunately, the MAP estimator can perform suboptimally
in cases where the Gaussian approximation does not hold,
see, e.g., [11].

D. Maximum entropy
1. Image entropy

Another quantity often extremized in image reconstruc-
tion problems is the so—called image entropy (iE) [14-25]. In
classical maximum (image) entropy (MiE here, usually ME)
methods the iE is defined for a strictly positive signal via

'"The L° norm measures the amount of exact agreement via |f]lo
=lim, ot [dx6(f>(x)—&?), with 0 denoting the Heaviside function.
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Sip(s) =— J dxs log(s,/5,) = — s'log(s/5), (11)
1%

where 5, is the reference image, which is used to model some
prior information. In the second equality we have defined the
componentwise application of functions on fields, e.g.,
[f(s)],=f(s,), which we use throughout this work.

We note, that the iE is actually not a physical entropy.
Usually its usage is argued for by ad hoc assumptions on the
distribution entropy of photon packages in the image plane,
rather than being a well motivated description of the signal
prior knowledge (or lack thereof). In the following we will
reveal the implicitly assumed prior of MiE methods.

The data enter the MiE method in form of an image en-
ergy, which is ideally chosen to be the negative log-
likelihood,

E(d]s) =~ log[ P(d|s)], (12)

in order to ensure the best imprint of the data on the recon-
struction. The entropy is then maximized with the energy
constraint given by minimizing

E(d,s) = E(d|s) — TSig(s) (13)

with respect to s. Here T is some adjustable temperaturelike
parameter, permitting us to choose the relative weight of im-
age entropy and image energy. Low temperature means that
the MiE map follows the data closely, high temperature that
the map space wants to be more uniformly occupied by the
signal reconstruction.

The prior information on the signal, P(s), does not enter
the MiE formalism explicitly. Actually, an implicit prior can
be identified, assuming that MiE is actually a MAP principle.
In that case the implicitly assumed Hamiltonian is Hig(d,s)
=Fy(d,s), where=denotes equality up to an irrelevant,
since s-independent, additive constant, and we find

=Ts,
Pisls) o e o ] (i_A) ' (14)

Sx

This is not a general prior, but a very specific PDF. Although
there is some flexibility to adopt its functional form by
choosing 5, T, and the image space (pixel space, Fourier
space, wavelet space, etc.) in which Eq. (11) holds, Pig(s)
cannot be regarded as being generic. The MiE prior strongly
suppresses large values in the MiE map. If a data feature can
be either explained by a single map pixel exhibiting a peak
value or by several pixels dividing that value among them-
selves, MiE will usually prefer the second option, leading to
blurred reconstructed images.

We conclude, that the term maximum entropy commonly
used in image reconstruction is very misleading. A more ac-
curate term would be minimal dynamical range, since the
implicitly assumed prior states that pixels carrying larger
than average signal s, are extremely unlikely.
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2. Physical entropy

A physical entropy should measure the distribution spread
of a PDF using a phase-space integral over its phase space.
In fact, the latter is given by the Boltzmann entropy as given
by the negative Shannon information,

Sgp=— j DsP(s|d)logP(s|d), (15)

which is a functional of the signal posterior, Sg
=Sp[P(s|d)], and not of the signal map. Inserting Eq. (1)
yields

Sg=(H(d,s))(s|a) +10g Z,(d,0)=U~F, (16)

where we introduced the internal energy U=(H(d,s)),q) and
the Helmholtz free energy F=F,(d,0) with

Fy(d,J) = - %mg Z4(d.J). (17)

The fully J-dependent Helmholtz free energy provides the
field expectation value via

IF (d,J)

PY; (18)

m= ()=

B=1,J=0

The entropy is also given in terms of the free energy via

IF g(d,J)
B

The entropy as well as the free energy is a functional of the
posterior and not of the signal. Maximizing or minimizing
them does not provide a signal estimator, but singles out a
PDF. If we restrict the space of PDFs to the ones we can
handle analytically, namely Gaussians as given in Egs. (9)
and (10), we might obtain a suitable approximation scheme
to the full field theoretical inference problem.

Maximizing the entropy alone does not lead to a suitable
algorithm, since the maximal entropy state is that of com-
plete lack of knowledge, with a uniform probability for every
signal possibility. The internal energy, however, favors
knowledge states close to the posterior maximum and would
return the MAP solution if extremized alone. Thus the right
combination of entropy and internal energy is to be extrem-
ized. We would expect a free energy of the form U—-TSg to
be this function, in analogy to the energy [Eq. (13)] used in
MiE methods. Thermodynamics teaches us that the Gibbs
free energy is the quantity to be minimized (which is identi-
cal to the Helmholtz free energy in case J=0). Since we are
going to calculate this for an approximation of the real PDF,
it is necessary to go through the derivation in order to make
sure we do this in the right fashion and understand all impli-
cations.

B= (19)

B=1,J=0

II. THERMODYNAMICAL INFERENCE
A. Tempered posterior

In order to take full advantage of the existing thermody-
namical machinery we want to construct the Gibbs free en-
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ergy for information problems. To this end, we introduce a
temperature and a source function into the PDF of the signal
posterior as suggested by the definition of the partition func-
tion [Eq. (3)] by defining

—B(H(s.d)+J"s)

Z5(d.J)

(P(d,s)e™")

P(s

d,T,J) = = , .
J Ds' (P(d,s")e™"*")P
(20)

With the temperature we can broaden (for 7> 1) or narrow
(for T<1) the posterior. Three temperature values are of
special importance, namely, 7=0, which modifies the PDF
into a delta peak located at the posterior maximum, 7=1,
which returns the original posterior, and 7=2%, leading to the
maximum entropy state of an uniform PDF. The source func-
tion J permits us to shift the mean of the PDF to any possible
signal configuration m=m(d,T,J).

The modified PDF will be approximated by a Gaussian
with identical mean and variance,

P(s|d, T,J) = G(s — m,D) = P(s|m,D), (21)

where also D=D(d,T.,J).

We will see, that the width D of this Gaussian approxi-
mation of the PDF increases with increasing temperature. At
low temperature (T<<1) the center of the PDF is probed and
modeled, while at large temperatures (7> 1) the focus is on
its asymptotic tails. Since the Gaussian in Eq. (21) is an
approximation, it is not even guaranteed that 7=1 provides
the best recipe for signal reconstruction. E.g. in [9] a case is
shown, where signal reconstruction using 7=0.5 slightly out-
performs both, 7=0 and 7=1. Since working at multiple
temperatures can reveal different aspects of the same non-
Gaussian PDF (i.e., its central or asymptotic behavior), the
question appears how the differently retrieved Gaussian ap-
proximations can be combined into a single and more accu-
rate representation of the original PDF. This will be ad-
dressed in Sec. IV. For the moment we approximate our
posterior by a single Gaussian as in Eq. (21).

In this case, the partition function can be calculated ex-
plicitly and reads

1/2
Zy(d,J)= %TD exp(fﬁm— B m + ,BH(m,d)).

With standard thermodynamics procedure we calculate

5 =
H ~— —logZg(d,J
( >(s|d) 5B g 5( )
where N is the dimension of the signal vector. This result
is the rephrased equipartition theorem [Eq. (4)] from classi-
cal thermodynamics and further motivates the notion of tem-
perature in IFT.

N,
=74 H(m,d), (22)
J=0 2

B. Internal, Helmholtz, and Gibbs energy

The next step is to calculate the Helmholtz free energy. In
case it can be calculated explicitly from Eq. (17), the infer-
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ence problem is basically solved, since any (connected) mo-
ment of the signal posterior can directly be calculated from it
by taking derivatives with respect to the moment generating
function J, e.g., see Eq. (18). This will, however, only be the
case for a very restricted class of Hamiltonians, like the free
ones, which are only quadratic in s. In the more interesting
case the Helmholtz free energy cannot be calculated explic-
itly, we can use the thermodynamical relation of the Helm-
holtz free energy with the internal energy and entropy.

First, we note that the internal energy of the modified
posterior is given by

U(d9 T"’) = <H(S’d)>(s|d,T,J) = <H(S’d)>(s‘m,D) = ﬁ(d9msD)s
(23)

where m and D are still functions of d, T, and J. The second
average has to be understood to be performed over a Gauss-
ian with mean m and dispersion D:{f(s))(u,p)=JDsf(s)G(s
-m,D).

Further, we need to calculate the entropy for the modified
PDF, which for a Gaussian depends only on D,

Sp[G(s —m,D)] = %Tr[l +log(27D)]=Sx(D). (24)

For the full modified posterior, Eq. (20), the entropy is cal-
culated via Eq. (15) to be

Sg=BU+J m-F), (25)

where m=m(d,T,J)=(s)a1.s> U is given by Eq. (23), and
F by Eq. (17). Solving Eq. (25) for the Helmholtz free en-
ergy yields

Fpd,J)=U-TSg+J'm. (26)

This expresses the Helmholtz free energy in terms of internal
energy and entropy. Unfortunately, this expression contains
the term J'm, where m depends on J implicitly through Eq.
(18). In order to get rid of this term, we Legendre transform
with respect to J and thereby use Eq. (18), which provides us
with the Gibbs free energy

SF
Ggld,m) =F—JT5—J =U-TSg. (27)

The Gibbs energy depends solely on m and not on J. It can
be constructed approximatively, in case approximations of
the internal energy and the entropy are available. For our
Gaussian approximation of the modified posterior we there-
fore write

Gg(d,m,D) = U(d,m,D) - TSg(D). (28)

We know from thermodynamics that the minimum of the
Gibbs free energy with respect to variations in m provides
the expectation value (s) 4 of our field,

6G(d,m,D)

- =0. (29)

M=) sla)

Thus, the Gibbs energy is the information energy we were
looking for in the introduction.
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Minimizing the Gibbs free energy for a Gaussian PDF
with respect to m yields

56 ( - m7D)
=on f DsH(d, S)T =D N¢H,(d, ) gp)»
(30)
with H,,(d, ¢)=H(d,m+ ¢), which implies
_ <SH(d7s)>(s‘m,D) _ <SH(d7s)>(s|m,D) (31)

- <H(d’s)>(s|m,D) -

The optimal map is therefore the first signal moment of the
full Hamiltonian weighted with the approximating Gaussian.

Thermodynamics teaches us further that the propagator,
the uncertainty dispersion of the field, is provided by the
second derivative of the Gibbs free energy around this loca-
tion, thanks to the well known relation

U(m,D)

56 )" .
<5mamf> 7 IRt
=~ BD. (32)

This relation closes the set of equations by providing D.
Evaluating Eq. (32) with our approximate Gibbs energy [Eq.
(28)] and using Eq. (29) yields

8G

TD™ ' = :
omom

M=) sl
== D_l E(CLm,D) + D_l<¢¢1—Hm(ds ¢)>(¢|D)D_1

Thus the propagator is the second moment of the Gaussian
weighted Hamiltonian,

<¢¢ m(¢)>(¢\D)

. (33)
U(d,m,D)+T

This equation seems to suggest that the propagator evaluated
at higher temperature is narrower, since 7 appears in the
denominator. However, the opposite is the case due to the
presence of D in all terms, as a test with a free Hamiltonian
will show in Eq. (44).

C. Cross information

The Gibbs free energy at 7=1 is directly related to the
cross information between the posterior and its Gaussian ap-
proximation. The cross information (or negative relative en-

tropy) of a PDF P with respect to another one P is measured
by the so called Kullback-Leibler divergence [26],

(s| )) »

dy, [P, P] = stP(s|d)log<P( @)

The Kullback-Leibler divergence characterizes the distance
between a surrogate and target PDF in an information theo-
retical sense. It is an asymmetric distance measure, reflecting
that the roles of the two involved PDF differ. The equiva-
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lence of Gibbs free energy and cross information with re-
spect to inference problems can easily be seen,

G(m,D) = (H(d,s) +10g[G(s = m,D) (sjm.0)

= J DsG(s — m,D)logl %}
G(s=m,D

= f DsG(s — m,D)lOg{%}

= dKL(,]B,,P). (35)

In the second last step we added the term log P(d), which is
irrelevant here, since m-and D-independent, and in the last
step we introduced the Kullback-Leibler divergence between

posterior P(s|d) and its Gaussian surrogate P(s|d)=G(s
—m,D). Minimal Gibbs free energy therefore seems to cor-
responds to minimal Kullback-Leibler divergence, and there-
fore to maximal cross information of the surrogate with the
exact posterior.

However, we have only minimized the Gibbs free energy
so far with respect to m, the mean field, degrees of freedom
of our Gaussian, not with respect to the ones parameterizing
the uncertainty dispersion D. We have determined this using
the thermodynamical relation (29). If we want that our sur-
rogate PDF has maximal cross information with the posterior
with respect to all degrees of freedom of our Gaussian, we
also have to minimizing the Gibbs energy with respect to D.
A short calculation shows that this actually yields a result
which is equivalent to the thermodynamical relation (32),

_%
"~ oD
5g(¢ D) 5§B(D)
f D¢H,,(d, p) D
D! ~
=~ b H,(d, $))gp) = DU D) + DD,

from which also Eq. (33) follows. Thus, we can regard both,
the map m and its uncertainty covariance D, as parameters
for which the Gibbs energy should be minimized. We will
refer to this as the maximal cross information principle.

We further note that the maximal cross information prin-
ciple also holds if the Gaussian is replaced by some other
model function, G[P(s|d)]=d; [P, P], a property we will
use later in Sec. V.

Note, that the minimal cross information and the thermo-
dynamical relations yield exactly the same results for m and

D only if 5(m,D) is calculated exactly. In case there are
approximations involved, the resulting algorithms differ
slightly, and this difference can be used to monitor the im-
pact of the approximation made. In the following, we use the
minimal cross information principle for our examples.

D. Calculating the internal energy

In order to calculate the approximative Gibbs energy, we
need to estimate the internal energy, for which we have to
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specify the exact Hamiltonian. We assume that it can be
Taylor-Fréchet expanded as

1
Hd9) =3 A s, s,
n=0 1 "

A(”)(s,. ..5)
(36)
where repeated coordinates are thought to be integrated or
summed over. The approximative internal energy is then

U(m,D) = U[P(s|d)]

= J DsH(d,s)P(s|d)

ool
=> _,<A(")(S, e ) (sm.D)- (37)
n=0 -

The Gaussian n-point correlation functions in this equation
can actually be calculated analytically. For this, we again use
the shifted field ¢=s—m, which has the Hamiltonian

1
n!

H,(d,$)= 2 A (. ... §),
n=0
with

o1
A )= 2 A, . pm, ...m).
k=0 k! I

38

We assume that the interaction coefficients Ai’?..xn are s(ym2

metric with respect to index permutations, since they resulted
from a Taylor-Fréchet expansion.

The internal energy can then be calculated via the Wick

theorem and the fact that all odd moments of ¢ vanish,

_ “1
U(m,D) =2, ;(Ai:m e Do)
n=0 """+

%

— (2n)
=25 A, (D% D) )
» — —
a A(2"+k)(D®...D®m®...m)
o 2"nlk! ’
(39)
Here, we defined the symmetrized tensor product (T
' = 1 Al ;

® T )x]...xn - 27765”,,1 Txﬂ(l)...xﬂ,(k) wa(“l)‘_,xw(n) by averagmg

over all permutations in S, the symmetric group.

Having obtained the internal energy with Eq. (39), and
entropy with Eq. (25) approximatively, we can construct the
Gibbs free energy according to Eq. (28) which we use for our
inference.

E. Minimizing
In order to get our optimal Gaussian approximation to the
posterior, we have to minimize G4(m,D) with respect to m
and D. Minimizing for m is equivalent to minimizing the

internal energy, since the entropy does not depend on m. This
yields
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n k

~ © ’__\ I—A—‘\
S8U(m,D) AP**N(D® - DOm® -+ m,-)
0= 2D S ,
2"nlk!
(40)
which has to be solved for m for any given D. The propaga-
tor derives from Eq. (32) or from

5m n,k=0

5G(m,D) B
0=———=TD
8D
n k
o]
A(2"+k+2)(', . D® - DOm® m)
iyt 2"nlk! '

41
which also depends on m. Thus, Egs. (40) and (41) hav(e t(z
be solved simultaneously.

A simple example should be in order. The simplest case is
that of the original Hamiltonian being quadratic. The ap-
proximated one should then match this exactly. A quadratic
or free Hamiltonian is equivalent to a Gaussian posterior,
P(s|d)=G(s—m,,D,). We get

1 1
H(d,s) = E(S -m)'D (s —m,) = Ail)sx + EAQ)sxsy

Xy
with
AV =—D 'm,,
and
AP =D (42)
Inserting this into Egs. (40) and (41) yields
0=AV)+A®(m,)=D;'(m-m,) = m=m,, (43)

D™= A®(-,)=D;' = D=1D,, (44)

which indeed recovers the original coefficients for 7=1, and
a narrower or wider uncertainty dispersion for 7<<1 or T
> 1, respectively. In the following, we will see that also in
case of interacting Hamiltonians the minimal free energy
principle provides the correct results. We show this by repro-
ducing (and extending) signal estimators derived previously
in IFT using renormalization techniques.

II1. APPLICATION EXAMPLES
A. Poissonian log-normal data

1. Separable case

Many inference problems have to deal with Poissonian
noise, like x-ray and y-ray astronomy as well as reconstruc-
tion of the cosmic large-scale structure from galaxy counts.
Let us assume that the mean count rate N of photons or
galaxies is proportional to an exponentiated Gaussian ran-
dom field s with covariance S=(ss"),) according to

N(s) = ke®. (45)

Here, « is the expected counts for s=0, which may depend
on the spatial position. The scalar b permits us to change
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conveniently the strength of the nonlinearity of the problem
without changing the signal statistics. This log-normal model
for the cosmic large-scale structures as an approximative de-
scription is actually supported observationally [27,28] and
theoretically [29-34].

As a starting point, we assume a local response, so that
the Poisson statistics for the actual counts d, at location x are

d

X

A
P(dx|)\x) = = e_}\xv (46)
d,)

and the full likelihood is well separable into local ones,
P(d]s) = IT PLd [\ (s))]. (47)

The corresponding Hamiltonian was shown in [9] to be
H(d,s) = %ﬂs—ls —d'bs + ke . (48)

Reconstruction methods for this data model were developed
by [9,35-37].

The internal energy of our Gaussian approximation can be
calculated analytically,

~ | 1 . i .
U(m,D) = Em'S‘lm + ETr(DS_I) —d'bm + Kt el D2

(49)

where D denotes the vector of diagonal elements of D.
Minimizing C~}(m,D)=l7(m,D)—T§B(D) with respect to
m and D yields

m= Sb(d - Km+bb/2) s
and
D=T(S" +b*Rppapp) " (50)

respectively. Here we have defined «,=« exp(bt) and denote
a diagonal matrix by putting a hat onto a vector of its diag-

onal elements (\),,=\6,,. This result is identical with the
one found in [9] using a lengthy renormalization calculation.
There it was found by numerical experiment, that using 7
=0.5 in Eq. (50) seems to produce slightly better results than
T=0 and T=1.

2. Entangled case

So far, we assumed that the response provides a one to
one correspondence between locations in signal and data
space. However, for most measurements this is not exactly
true. X- and y-ray telescopes typically exhibit point spread
functions, which map a single signal space location onto sev-
eral detectors, of which each detects events coming from
several indistinguishable directions. Also galaxy redshifts do
not provide accurate distance information, since redshift dis-
tortions and measurement errors lead to effective point
spread functions.

In the following, we generalize to the case of a known and
fixed, but non-local measurement response. Fixed means that
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the response is independent of the signal. This excludes the
treatment of galaxy redshift distortions with this case (e.g.,
see [38] for this), but still includes photometric redshift er-
rors of galaxy catalogs as well as x-and y-ray telescope data.
Such problems have been approached in the past via the
MAP principle [39-42].

The point spread function is modeled by the response ma-
trix R=(R;,) which describes how emissivity at location x is
expected to be observed in data channel i. The expected
count rate is now

A(s) = Re®, (51)

and the likelihood does not separate any more with respect to
X

P(d]s) = [T PLdN(9)], (52)

since \,(s) entangles the signal from several locations,
whereas in Eq. (47) it depends only on the local signal value.
We recover the former case for a diagonal response R;,
=k, 0;,. The resulting Hamiltonian

1 + o %
H(s|d) = Es's—ls + 1"Re” — d" log(Re") (53)
reduces to Eq. (48) for R being diagonal.
The internal energy of our surrogate Gaussian P(s |d)
=G(s—m,D) is then
~ 1 . 1 5
U(m,D) = Em*s-‘m +TH(DS™) + 1Rt D12

- E d; f D¢ log(R] "™ P)G(,D).

- _J

1.

' (54)
This integral /; cannot be calculated in closed from due to the
logarithm in the integrand. We expand the logarithm around
Rle™, since we will see that this recovers the result of the
separable case most easily for R being diagonal. We get

. Rl "+
I;=log(Rle"™) + ( log ——— . (55)
R;e (¢ID)

In case R is diagonal, the first term reduces to bm+log R;,
the second vanishes as (log(exp(b¢)))(g|p)={b®)4p)=0, and
we recover the Hamiltonian of the separable case.

In the general case of an entangling response we Taylor
expand the logarithm of the second term

. S =D
I,=log(Re") - >, ) ((rfe"® = 1)") )
n=1 n ’
—

II;

in

with
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Riebm ) Ri(x)ebm(x)
— . or ri{x)=
RTebm t

i J dx/Ri(xr)ebm(x’)

(56)

ri=

We note that rlTl =[dxr;=1 by construction.
The expansion coefficients II;, can be worked out one by
one. We provide here the first few, namely,

+ 127
I, =rfe"P2 -1,

b2(D>xx+Dyy+2ny)/2 _ Zr;reszA/Z +1,

IIiZ = rixriye

b2
i3 = rigriyriz eXP(E E Dab)
abe{x,yz}
b’ T b2DR2
=3y expl — 2 D, | +3rje -1.
a,be{x,y}

(57)

These coefficients stay small if 52D <1, which means that
the expansion can be truncated if the signal is known within
a few ten percent or if non-Gaussianity is small. Large un-
certainties in the signal strength do not necessarily lead to
large coefficients if they are located at positions without in-
strumental sensitivity (R;, small) or much lower expected
count rates (m, small). In both cases mostly prior informa-
tion and extrapolation from regions with more informative
data will determine the solution at such locations.

In case some of these coefficients are large, substantial
signal uncertainty at the locations to which they are sensitive
must be present. In this case an accurate reconstruction for
these locations cannot be expected. Thus, if we simplify the
Hamiltonian by dropping such terms, even if they are rela-
tively large, the quality of the reconstruction will not suffer
too much since only regions are affected, which are poorly
constrained by the data anyway. Therefore, truncating the
expansion should already provide usable algorithms.

3. Zeroth order solution

To zeroth order, we ignore all II;,-terms and find for the
approximative free energy

= 1 1 .
G(m,D) ~ EmTS_lm + ETr(DS_l) + E [Rjebm+b2D/2

—d; log(R}e"™)] - gTr[l +log(2mD)]. (58)
Minimizing this with respect to m and D yields
m=Sb>, Riebm<+iib - ebzblz)
i R;e™
=Sb[d'r - k' (m + bD/2)],
and
D=TS"' + bR (m+bDi2)]",

with
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K'(t) = E Rie". (59)

This is very similar to Eq. (50) and reduces to it for a diag-
onal response.

4. First order correction

First order corrections are included by keeping the
II;;-term in the approximative free energy, but ignoring
higher terms. The resulting equations are

m= Sb[E d(1+ r;rebzb/z)r,» -« (m+ bDA/Z)}

D=T[S" +b*R"(m+bD/2)]T",

with

" _ bt di >

K (1) 2 Rie (1 * R (60)
This is a slight modification with respect to Eq. (59) in two
aspects. The map changes a bit, but the sign of the changes
depends on the details of the point spread function, since
there are two new terms of similar order, but with opposite
signs. The uncertainty variance is reduced, since the term
added to the inverse propagator is always positive.

5. Observation with background

The observation may suffer from a background, events in
data space, which do not contribute to our signal knowledge.
For example y-ray astronomy has to suppress cosmic ray
events as much as possible, since charged particles do not
point back to the same sources as neutral photons due to
cosmic magnetic fields. Fortunately, cosmic rays have differ-
ent signatures in data space due to the differences in hadronic
and electromagnetic interactions. However, not for all mea-
sured events is the distinction clearly cut and we have to use
prior knowledge to suppress the background events.

Therefore we should extend our formalism to also take
such unwanted backgrounds into account. Actually a reinter-
pretation of the above formula will do. We extend our signal
space by the quantity f determining the logarithm of the
background count rate, s — s’ =(s,f). f. might be a field over
the same physical space as s,, or just a single number as a
total isotropic cosmic ray flux. In any case, the x and z co-
ordinates are regarded to be over different spaces, or distinct
areas of the joint space over which f and s live. The joint

covariance reads
w5 9) o
“\0 F

due to the independence of signal and background. Here, F
=(ff I->(f) is the log-background covariance. The response R
— R’ has to be extended to map also the background space
into the data space. Whether the response images of signal
and background events in data space are well separated or
whether they overlap decides about the background discrimi-
nating power of the instrument.
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The combined map and covariance of signal and log-
background can now be obtained, e.g., from Egs. (59) or (60)
with the appropriate replacements for S,R,m,D
—S',R",m',D’. Our joint map can be split into a signal and
log-background part m’=(5,f). Since we are usually not in-
terested in the background properties, we marginalize over it.
This is especially simple in the Gaussian approximation of
our joint posterior P(s’|d)=G(s'—m',D’), with s'=(s,f),

m'=(5.f).
m = f Ds'sG(s' —m',D") =5,
and

ny%st’(s—@x(s—E)yQ(s’—m’,D’):D;Cy. (62)

Although this does not look too different from the formula
for the case without background, the effect of the back-
ground entered through the joint covariance matrix D',
which mixes the contribution from the signal and back-
ground events appropriately.

B. Reconstruction without spectral knowledge

1. Effective theory

The reconstruction of the signal in the Poisson log-normal
model in the previous section assumed that the signal cova-
riance is known a priori. In case it is unknown, it has to be
extracted from the same data used for the signal inference
[43-47]. However, the optimal way to do this was usually
not derived from first principles, maybe except in [48-50]. A
rigorous approach to such problems is given by the compu-
tationally expensive Gibbs-sampling technique, which inves-
tigates the joint space of signal realizations and power spec-
tra [51-54], which can then easily be marginalized over the
power spectra to obtain a generic signal reconstruction. This
problem was also addressed approximatively for the case of
linear response data from a Gaussian signal subject to Gauss-
ian noise using the MAP principle as well as by the help of
parameter uncertainty renormalized estimation by [11]. We
readdress this problem here using the minimal free energy
approach.

We assume the covariance S=(ss') ) of our Gaussian sig-
nal s to be diagonal within some known function basis Oy,
e.g., the Fourier basis with Oy, =e**. We model the power
spectrum (in this basis) as being a linear combination of a
number of positive basis functions f;(k) with disjoint sup-
ports (the spectral bands), so that

P(k) = 2 pif (k) (63)

is positive for all k (all coefficients of p=(p,); are positive
and the spectral bands cover the full k-space domain). We
define

(S)yy = (0'1:0),, = O fi(K) Oy, (64)

to be the ith spectral band matrix and Si_1 to be its pseudo-
inverse. Thus, we write our signal covariance as
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S= E piS;, (65)

with p=(p;) the vector of unknown spectral parameters. We
further assume that the individual signal-band amplitudes p;
have an independent prior distribution,

Pp) =11 Pp). (66)

with the individual priors being inverse-gamma distributions,
power laws with exponential low amplitude cutoff at g;,

a2l
Qir(ai_l)(%' P Pi- (67)

For a;>1 this is an informative prior, where ¢,/ «; deter-
mines the preferred value. A non-informative prior would be
given by Jeffreys prior with a;=1 and qi=0.2

For a linear data model

P(p) =

d=Rs+n, (68)

with Gaussian noise with covariance N=(nn"),), the param-
eter marginalized effective Hamiltonian is according to [11]

1. 1.
H(d,s) = Es'Ms —its+ > v log<q,-+ Es'Si_ls). (69)

Here M=R'N"'R, j=R'N"'d, yi=a;—1+90,/2, and p;
=Tr[Si_lS ;] the number of spectral degrees of freedom within
the band i.

2. Free energy expansion

The internal energy of a Gaussian posterior-ansatz is then

_ 1 1 .
U(m,D) = Em*Mm + ETr(DM) —ji'm

1.,
+ E y,-<log<qi + —s’Sl-_ls) .
i 2 (s|m.D)

. _J

I;
(70)
Again we have to deal with a Gaussian average over a loga-

rithm, which we expand as

o

I, =1log(7) E—(_l)k<( L s ~)">
i=1og\g;) — — qi+ 759, $—4; ,
k=1 k(qz)k 2 (s]m,D)

_ _J
'

11

with

“Since this would result in an improperly normalized prior, we
understand this as a;=1+€, g;=€, and lim,._,, at the end of the
calculation.
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1 .
Gi=q+ ETr[(mm' +6D)S;']. (71)

Here we have introduced a parameter 6 to be fixed soon. The
first two expansion coefficients are

1
I, = 5(1 - &)Tr(DS; )

1
1, =10 + Tr| { mm"+ =D |S7'DS7" |. (72)
il 2 1 l

3. Zeroth order solution

To zeroth order we find by minimizing the free energy
while ignoring the II-corrections

m=D'j, D=TD’', and
D’:(M+ Ep;ls;‘)". (73)

This means that the map is the Wiener filtered data, where
the spectral coefficients are assumed to be
=Ll lTr[(mmT +6D)S;'] (74)
b Y6 Vb @ 2 )
For 8=0 this yields p;= and therefore D=M"" if M is
(pseudo)invertible. The resulting filter provides a noise
weighted deconvolution, however is unable to extrapolate
into unobserved regions of the signal space. It is widely used
for map making in the field of cosmic microwave back-
ground observations. For 6=1 we recover the critical estima-
tor of [11]. Since there it was shown that the latter performs
significantly better than the former, and also since II;;=0 and
I1,, is minimal for 6=1, we adopt this in the following. For
Jeffreys prior we find

_ Tr(B,)

Pi= s (75)
Qi

with B;=(mm"+D)S;".
4. Second order correction

Including higher order corrections should improve the re-
construction. The first order corrections vanish for =1. The
second order correction yields

-1
m=D'}, D=T[D’-1—E%S;1mm*5i“} ,

i 4

Y -
D'= lM+ > ;’Xisyl} :

1 ql

1 . -1y o1 L
Xi=1+ZTr{ | mm'+ ED S;'DS; |- =S;'D. (76)
i qi
The operator D', which is applied to j to generate the map,
and the uncertainty dispersion D are not identical any more.
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Neither of them can still be expressed as (M+2p;'S;7")~,
due to the operator structure of the S;'D and S;'mm’ terms.
This was also found in [11].

However, if we can assume that this operator processes
any channel in the i-th band in a similar way, we can replace
Si_lDSi_1 and Si_lmmTSi_1 by their channel averaged values
Tr(DS;)S; '/ 9; and Tr(mm'S;")S:'/,, respectively. This
permits to identify spectral coefficients of D=(M
+3p7'57)7" and D'=(M+2,p]7'S;")~". For Jeffreys prior
they become

) Tr(Bi){l ) E(Tr(mmTSi—l))Z]—l

pi Q; Q; Tr(B))
and
Tr(B, 2T S YTr(Ds ! | !
p = THE) ‘){1+— rmm S, )T ’)} . an
Q; Q; [Tr(B))]

where m, D, and B;=(mm'+D)S;" all depend on p. It is
obvious, that the second order correction increases p; by
some margin compared to (75), meaning that the reconstruc-
tion uncertainty increases. It is less obvious how p; develops,
since at first glance it seems to be corrected downwards.
Note however, that an increased p; implies an increased
Tr(B;), since D grows (spectrally) with increasing p;.

The fact that we get two differing sets of spectral coeffi-
cients, p; and p;, reminds us to regard them as auxiliary
variables of our signal reconstruction algorithm, rather than
as optimal spectrum estimates.

C. Poisson log-normal distribution with unknown spectrum

The combined problem, reconstructing a Poisson log-
normal signal with unknown spectrum, can now be treated
approximatively. The combined free energy for the Gaussian
posterior approximation to zeroth order is

G(m,D) = >, [Rjeb"“’szA/2 —d; log(Rjeb’")]
1 -1
+ v, log) g; + ETr[(mmJr +D)S; ]

- gTr[l +log(27D)]. (78)

The resulting map and uncertainty dispersion are provided
by Eq. (59) with the addition that S=Xp;S; and the p;s are
provided by Eq. (74). Higher order corrections can be in-
cluded in a similar way as in the individual problems. Also
background counts with known or unknown covariance
structure can be included in the same way they were treated
in Sec. V.

IV. INFORMATION SYNTHESIS
A. Multitemperature posterior

Although the obtained Gaussian knowledge states from
minimal free energy estimation are approximative and there-
fore of limited accuracy, they might permit us to construct
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more accurate models of the posterior. The idea is to com-
bine several Gaussian distributions to a more accurate ap-
proximation of the true non-Gaussian posterior probability,
and to measure the mean map and its uncertainty dispersion
from this combination.

We recall that Gaussian approximations of the posterior
obtained at low temperatures (7<<1) mostly carry informa-
tion on its peak region, while those obtained at large tem-
peratures (7> 1) information on its asymptotics. Also the
canonical T=1 does not provide a perfect representation of
the posterior, as a Gaussian approximation for a non-
Gaussian PDF never can. However, by combining such dif-
ferent approximations in an appropriate way, we should ob-
tain an improved representation of the correct PDF, which
permits much easier calculation of moments like the signal
mean and its uncertainty variance.

To this end we postulate the existence of a temperature
distribution function P(7T), such that

P(s|d) = f dTG(s — m,1, D) P(T) (79)
0

combines the different Gaussians with means m, 1) and dis-
persions D, 1y to synthesize the right posterior probability. A
formal proof of the existence of P(7), and the necessary
conditions for this is beyond the scope of this work. It should
be noted, that, e.g., multipeaked distributions cannot accu-
rately be represented by approximate Gaussians obtained at
different temperatures. They can, however, often be well ap-
proximated by Gaussians centered on those peaks. The reci-
pes described below do not depend on the way the different
Gaussians used in the mixture model were obtained, and
therefore can also be used in such cases.

In the following we provide a recipe to construct P(7) in
practice. We assume that m;=mr, and D;=Dr, have been
computed for a number Ny of temperatures 7;. The tempera-
tures are best chosen to sample well the different part of the
posterior, its peak by having some 7;<<1, the bulk of the
PDF with T;=1, and the PDF tails with 7;> 1.

The surrogate probability function we want to construct,
and which should resemble the exact one as closely as pos-
sible, is therefore of the form

Nr
Pls|d) = 2, G(s = m;, D;)P;. (80)
i=1

P(s|d) should be as close as possible to P(s|d) in an infor-
mation theoretical sense. The natural choice for the distance
measure is the Kullback-Leibler divergence, which measures

the cross information of P(s|d) on P(s|d), and which is

practically identical to the free energy G[P(s|d)] of our sur-
rogate posterior according to Eq. (34). Introducing un-
normalized probabilities p; as our degrees of freedom, and
setting P;=p;/Z, with Z,=2p; in order to enforce the proper
normalization, X;P;=1, this reads
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Gip) =2 ZU~ O p)]-F. (81)
i “p

We have introduced the here irrelevant, since p-independent,
free energy F=—-log Z, of the original problem and the ener-

gies U; and Up) with respect to the template distributions
Gi(s)=G(s—m;,D,),

U;=(H(d,s))g.= J DsG(s)H(d,s)

and

Ui(p) =(H,(9))g »

with

A (s)=— 1og(2_ pigi(s)/Zp). (82)

B. Minimizing the Gibbs energy

1. Analytical scheme

Now one has to minimize é(p) with respect to p. The
problem to calculate the path integrals defining the energies
was already addressed in this work. A systematic way is to
Taylor-Fréchet expand the Hamiltonians around the centers
of the Gaussians m; and then use the known moments of
G,(s) to approximate the energies. For the surrogate energies
this yields up to second order in ¢;=s—m;

~ 1 ..
Oip) =~1log gi+ 5 X “Te(D] D)
i 8i

1 il 8ki _ _
+-> J<_I_ i |mD; DD my, (83)

2 jk 8i \8i
with
8ji =Pjgj(m,-)/Zp,

and

N;

8i= 2 8ji

j=1

and
m,-j=m,-—mj. (84)

2. Monte Carlo scheme

Alternatively, one can approximate the average (X[s])gi of

a quantity X[s] by sums over N; sampling points {sl@}j,
which can easily be drawn from G,(s),

(X[sDg, = 2 X[s"IN;. (85)

This way, G(p) can be approximated, and minimized with a
suitable optimization scheme. The sampling points, their
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Gaussian probabilities g,@:gk(s?)), as well as the energies
U, need only be calculated once, but the surrogate energies
Uip)=log Zp—Ejlog(Ekka,g))/Ni have to be updated at any
step of the scheme.

One might argue, that if we use stochastic methods to

build 73(s|d), one could have used a Markov-Chain Monte
Carlo (MCMC) method right from the beginning for the sig-
nal inference problem. However, we expect that the here
described posterior synthesis method should reproduce the
correct posterior better than a sample point cloud, since we
are using well adapted Gaussians as our building blocks and
not delta functions as the direct MCMC approach uses. Fur-
thermore, the analytical and sampling method can be com-
bined, in that the analytical estimates are combined with the
sampling estimates of the contributions of the neglected
terms in the Taylor-Fréchet expansions of Eq. (83). And fi-
nally, since our scheme draws samples from Gaussians, it
can be trivially parallelized, which is not easily possible with
MCMC schemes.

C. Maps and moments

Once the minimum of G(p) with respect to p is found,
one has synthesized a posterior approximation with a Gauss-
ian mixture model. From this, any moment of the distribution
function can easily be calculated. The mean map can be ex-
pressed as

m = (s)ps) = E Pi<s>gi(s) = E Pimy, (86)

as well as the uncertainty dispersion as

D = {(s=m)(s =m) V= 2 PD;+mm]) = mm’.

(87)

We leave the verification and application of the information
synthesis method for future work.

V. CONCLUSIONS

We have shown that the minimal free Gibbs energy prin-
ciple in information field theory can be used to obtain ap-
proximate knowledge states with maximal cross information
to the exact posterior. The construction of such knowledge
states with Gaussian PDF is relatively straightforward:

(1) The joint PDF of signal and data P(d,s) has to be
specified, e.g., by specifying a data likelihood P(d|s) and
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signal prior P(s), and using P(d,s)="P(d|s)P(s).

(2) The information Hamiltonian H is the negative loga-
rithm of this, H(d,s)=-log[P(d,s)].

(3) A suitably parametrized PDF as a surrogate for the
posterior has to be specified, e.g., a Gaussian with its mean
and dispersion as degrees of freedom.

(4) The internal energy U and entropy Sg of this PDF
have to be calculated as the PDF-average of the Hamiltonian
and the negative log-PDF, respectively.

(5) The Gibbs free energy, G=U-TSg, has then to be
minimized with respect to all degrees of freedom of the sur-
rogate PDF.

(6) Any statistical summary like mean and variance can
now be extracted from the surrogate PDF.

The minimal free energy principle is therefore well suited
to tackle statistical inference problems. We have demon-
strated this with two different problems and their combina-
tion: reconstructing a log-normal field from Poisson data
subject to a point spread function and reconstruction without
prior knowledge on the signal power spectrum. Earlier re-
sults from renormalization calculations in [9,11] have been
reproduced. The there used renormalization schemes can
therefore be understood as aiming for a surrogate Gaussian
PDF which has maximal cross information to the correct
posterior. Since these results were previously shown to re-
construct well, also the here proposed method for the more
complicated combined case can be expected to work. How-
ever, a detailed implementation and verification of this was
left for future work.

Finally, we have sketched how Gaussian knowledge states
obtained at different thermodynamical temperatures can be
combined into a more accurate representation of the poste-
rior, from which moments of the signal uncertainty distribu-
tions can easily be extracted.

The minimal Gibbs energy and maximal cross informa-
tion principle introduced here to IFT should allow the con-
struction of novel reconstruction schemes for statistical infer-
ence problems on spatially distributed signals. The
thermodynamical language may help to clarify concepts and
to simplify applications of IFT, since it permits us to tackle
nonlinear inverse problems without the need to use diagram-
matic perturbation theory and renormalization schemes.
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