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Efficiency at maximum power is studied for two simple engines �three- and five-state systems�. This quantity
is found to be sensitive to the variable with respect to which the maximization is implemented. It can be wildly
different from the well-known Curzon-Ahlborn bound �one minus the square root of the temperature ratio�, or
can be even closer than previously realized. It is shown that when the power is optimized with respect to a
maximum number of variables the Curzon-Ahlborn bound is a lower bound, accurate at high temperatures, but
a rather poor estimate when the cold reservoir temperature approaches zero �at which point the Carnot limit is
achieved�.
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I. INTRODUCTION

The Carnot bound on efficiency lies at the foundations of
equilibrium thermodynamics. But once time enters the
picture there is no longer a unique criterion for the
effectiveness of a process for turning heat into work. We are
told �1� that early in the history of this subject various
maximization issues were taken up, some leading to the ef-
ficiency now known as the Curzon-Ahlborn �2–4� efficiency,
�CA�1−�Tc /Th �with Tc and Th being, respectively, the
temperatures of the cold and hot reservoirs with which the
engine is in contact�. �CA is less than the Carnot efficiency,
�C�1−Tc /Th, and reflects, with respect to the problem of
efficiency at maximum power, the fact that the system ac-
complishes its goals in finite time and is necessarily dissipa-
tive.

Although in engineering, biology, and other applications,
efficiency at maximum power is not generally the ultimate
criterion �e.g., a plant must also deal with predators, not only
with glucose production�, it has emerged as a significant test-
ing ground for ideas on nonequilibrium thermodynamics.
There is now an extensive literature on this subject, a sam-
pling of which is seen in �5–12�, where many other refer-
ences can be found. What is clear is that efficiency at maxi-
mum power is a more practical measure than Carnot
efficiency, the latter demanding reversibility and as a conse-
quence, relative slowness. It will not help the efficient mouse
if it falls prey to the inefficient but speedy cat!

We have several objectives in this paper. First we point
out that the notion of maximal is ambiguous and that under
some circumstances the physically most natural definition
gives bounds quite different from �CA. That many kinds of
maximizing should exist is not be surprising in view of the

richness of applications. Second we find that under other
circumstances �CA is even closer to the exact value than one
had supposed. And finally, in a related issue, we find that the
ladder, a system previously studied �13�, can enhance the
power output of an engine, although it is less effective with
regard to efficiency.

Our method will be to look at small engines. By this we
mean three- and five-state systems, that in a way are the
simplest idealizations of work-producing processes. The con-
text is stochastic dynamics �14–16� and we employ both nu-
merical and analytic techniques, with a number of rigorous
bounds emerging in the latter �17�. Although much of the
recent work in this area concerns the temperature regime
where Tc /Th�1, we will treat the entire range of tempera-
tures, 0�Tc�Th.

II. THREE-STATE MODEL

The simplest possible model involves three states �see
Fig. 1�. The names we have given the states call to mind a
chemical reaction in which the hot reservoir drives a reaction
starting in the ground state over a barrier state. From there it
can descend, in contact with a lower temperature reservoir,
into a product state. From the product state the system drops
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FIG. 1. Three state system.
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back to the ground state. The energy released at this point is
the work extracted from the engine. In this identification we
take a conventional view of work, as described in �16�; for
example, to chemical species carried away from the site of
our engine �by unspecified agency� would be attributed work
�dN �18,19�. Our application does not require analysis of
some of the subtle heat and work issues taken up for example
in �20�.

One can think of the three-state system as a toy model for
a variety of natural systems. For example, the product state
could be ATP �adenosine triphosphate�, which when it gives
up its energy �typically to create mechanical work� becomes
ADP �adenosine diphosphate� and is raw material for another
cycle of our engine. It is photons from the sun that provide
the high-temperature bath for the step level 1→ level 2.
Stabilization of this excited state �by a “cold” reservoir� cor-
responds to level 2→ level 3. Other interpretations of the
three-state system are possible �see for example �6,21��.
�These are not quite the same, but share the simplicity of
three-state systems.� The matrix of transition probabilities is

R = �1 − ae−�hE2 − c a c

ae−�hE2 1 − a − b be−�c�E2−E3�

c b 1 − be−�c�E2−E3� − c
� ,

�1�

where the following conventions are adopted: 1, 2, and 3 are,
respectively, the ground, barrier and product states;
�h=1 /Th, �c=1 /Tc, E1�0 is the ground-state energy,
and E2 and E3 are the barrier and product state energies.
a, b and c are strictly positive numbers such that R’s
diagonal is nonnegative. Define ��Tc /Th=�h /�c. Rxy
is the probability that a system in state y transitions to
x in unit time. The current through this loop is
J13�R13p̄3−R31p̄1=abc�e−�hE2 −e−�c�E2−E3�� /Z with p̄ the
stationary state and Z��ab+abe−�hE2 +bc�e−�c�E2−E3�

+2c�a+b�+a�c+b�e−�hE2. From J13 it is evident that positive
work will be obtained only for E2�E3 / �1−��. The power is
then P=E3J13 and the efficiency �=E3 /E2. It follows that
Carnot efficiency �1−� in our notation� is obtained only for
P=0, consistent with the requirements of reversibility. In
some of our calculations we take a=b=c. �See Appendix A
for details.�

To consider maximizing the power output of this simple
engine one must first put the engine into some context so that
one has an idea of what is controllable, what is not. For the
interpretation we have given it is natural to consider E2 the
adjustable quantity: in a typical situation the barrier is a free
energy and one uses a catalyst to lower it. Alternatively one
could use an electric field to lower an electrostatic barrier. In
any case, one can determine the maximum power output by
solving �P /�E2=0, with the efficiency at maximum power
given by �̄��max=E3 /E2 at the corresponding E2. One can
show that there is a unique maximum of P for E2	E3 /
�1−��. The equation for this maximum is algebraically com-
plicated and in making this calculation it is convenient to
define a variable 
 such that E2=E3�1+
� / �1−��, making
the earlier constraint equivalent to 
	0. By evaluating

�P /�E2=0 �details in Appendix A� we find that the critical
value of 
 satisfies 
	−�log �� /�cE3 leading to an upper
bound on the efficiency,

�̄ �
1 − �

1 − log �
�cE3

. �2�

For �→1 this bound approaches �C, significantly higher
than �CA. Figure 2 shows numerically calculated values.
Clearly the upper bound provides an excellent estimate for
�→1 and is not far off for �→0 as well. With this definition
of “maximal,” �CA is simply irrelevant.

Variation of E3 with fixed E2 can be done in the same
way, using an auxiliary variable � �defined through
E3=E2�1−���� to deal conveniently with the P	0 con-
straint. We find �̄= �1−�� /2+��1−��2+¯, with 	�	�1 /16.
This bound is also well satisfied but we do not reproduce the
graphs, instead going directly to the maximizing of power
with respect to both E2 and E3. �One could also vary tem-
perature, but we have used either Tc or Th to set the energy
scale, with the other temperature derived from Tc=�Th.�

The results of maximizing with respect to both energies
are shown in Fig. 3. It appears that the Curzon-Ahlborn
value is remarkably good �but note that it is a lower bound�
and we highlight this in Fig. 4 by showing the difference
between the numerically computed efficiency and �CA. Near
�=1 the difference vanishes even to second order in
�1−��2 although from the figure it would appear that the
coefficient of the next power is nonzero.

We have in fact proved analytically that �CA is a lower
bound on the efficiency for the entire range of �. An outline
of the procedure is as follows �see Appendix A for details�.
First one shows that �̄	�CA for � near 0 or 1, with equality
exactly at the end points. Then if �̄ drops below �CA in the
interior there must be �� such that �̄����=�CA����. But such
an equality contradicts the vanishing of P’s partial deriva-
tives.

However, this is only a bound, and near �=1 the effi-
ciency in fact approaches �C. With further manipulation of
�P /�Ek, k=1,2, we find that for �→0,
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FIG. 2. Efficiency at maximum power for the three-state model.
Varying E2.
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�̄ 

1 − �

1 − � log �
� + ¯

, and
d�̄

d�



log �

�
, �3�

where � is of order unity �and for a=b=c is the solution of
��2+e−��2=4+2e−�, which is about 0.82�. Interestingly this
is not evident from the figure because of the singular deriva-
tive.

III. LADDER

In Ref. �13� we discussed a five-state engine that we
called a ladder. The idea is that there exist a pair of
intermediate levels between no. 1 �ground state� and no. 2
�barrier state�. This enhances—exponentially—the 1→2
transition when the “hot” reservoir is not hot enough
to excite level no. 2 in a single step. �This is the case
for photosynthesis.� The level diagram is shown in Fig. 5,
along with our convention that level a is no. 4 and level
b is no. 5. The matrix of transition probabilities, now five by
five, contains the new matrix elements R41=alad exp�−�hEa�,
R14=alad, R25=alad exp�−�h�E2−Eb��, R52=alad, R45

=alad exp�−�c�Ea−Eb��, and R54=alad, with Ea and Eb as the
energies of levels a and b, respectively, and alad an overall
coefficient that in practice we take equal to the a of Eq. �1�.
The diagonal of R is adjusted to have column sums unity. For
the ladder, the requirement that the current be positive is
E2+Eab	E3 / �1−��. Again it is possible to vary either E2 or
E3 �and other variables as well�.

As for the three-state engine, E2 optimization bears little
relation to �CA. A bound on efficiency �using only the ladder
mechanism� at maximal power �varying E2� is

�̄ �
�1 − ��E3

E3 − log �
�c

E3+Eab�1−��
E3−Eab�1−��

. �4�

In Fig. 6, which provides the results of E3 variation with
fixed Th, the ladder is shown to produce more power than the
three-state system. �Besides varying E3, there is optimization
with respect to Eab /E2 with Eab�Ea−Eb.� In Fig. 7 however,
it is seen that it is generally less efficient. This is because of
the “wasteful” step down from a to b, so that
�=E3 / �E2+Eab�. This step, however, is necessary �22� for
the power output. Otherwise, systems reaching level-a would
drop immediately back to the ground state. With respect to
�CA, the �̄ of the ladder can be either larger or smaller,
depending on temperature.
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FIG. 3. Efficiency at maximum power for the three-state model.
Varying both E2 and E3.
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IV. DISCUSSION

We have studied various measures of the effectiveness of
an engine for producing work from heat. Among the many
criteria for “effectiveness” is efficiency when the engine is
operating at maximum power, but even that criterion is not
unique. With a chemical-reaction interpretation of the three-
state engine it is most natural to consider variation of the
“barrier” height �cf. Fig. 1�, yielding efficiencies much at
odds with the well-known Curzon-Ahlborn bound �2–4�. For
other criteria, however, that bound was quite good when res-
ervoir temperatures were nearly equal �but not so good oth-
erwise�. Rigorous upper and lower bounds were also given
here for various maximization criteria. Most of our work was
done for the three-state engine, although additional support
was found by studying the five-state ladder �13�, where much
the same qualitative picture emerged.
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APPENDIX A: DETAILS OF THE CURRENT
CALCULATIONS AND THE MAXIMIZING OF POWER

1. Stationary state and the function Z

We review definitions and notation, mostly from our pre-
vious works �13,15,16,23–28�. Let X be a discrete finite
space and Rxy a stochastic irreducible matrix. Then there ex-
ists a unique stationary state p̄ such that

p̄�x� = �
y

Rxyp̄�y� .

Let T be the set of spanning trees with root x�X, oriented
toward x. For any T�T�x�, R�T� denotes the product of the

Ryz for all edges �yz� of T such that the direction z→y cor-
responds to the orientation of T. Then one has

p̄�x� =
1

Z
�

T�T�x�
R�T� ,

where Z is a normalization factor,

Z = �
x

�
T�T�x�

R�T� .

Z is a kind of partition function.

2. Current matrix

The current matrix in the stationary state is

Jxy = Rxyp̄�y� − Ryxp̄�x�;

it is skew symmetric and satisfies identities analogous to the
Kirchoff laws. If the system has reached its stationary state,
Jxy measures the net flow of probability in one time step from
y to x. The system is said to be in detailed balance if
Jxy =0 for all x ,y�X.

3. Power for the three-state system

For the three-state system only one distinct magnitude of
current is possible, and one must have J21=J32=J13�J. J is
thus the net flow in 1 time step from 3 to 1. By direct cal-
culation

ZJ = abc�e−�hE2 − e−�cE23
 , �A1�

where E23=E2−E3 and Z is the partition function. The power
is therefore

P = E3J . �A2�

It is positive �and thus the system acts as an engine� if and
only if J	0. By Eq. �A1�, this requires

E2 	 E2,C �
E1

1 − �
, where � = Tc/Th �A3�

�which defines E2,C, the Carnot energy for level no. 2�. When
E2=E2,C, J=0, and the system is in detailed balance. No
power is produced and it is equally likely to go one way or
the other. If it is tilted very slightly in one direction, say
J	0 but small, it will �eventually� perform a cycle
1→2→3→1, generating work E3, while consuming E2,C. In
this case, the efficiency is �c=

E3

E2,C
=1−�.

In general when E2	E2,C �so that J	0� the efficiency is

� =
E3J

E2J
=

E3

E2

 1 − � � �C. �A4�

4. Variation with respect to E2

For E2=E2,C, J is zero, while for E2→+�, J→0. Thus J
has at least one maximum. First we show that this maximum
is unique. Suppose otherwise and let E2�
E2� be two con-
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FIG. 7. Ladder efficiency at maximum power for the system of
Fig. 6.
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secutive zeros of �J /�E2, with E2� corresponding to the first
maximum of J and E2� the minimum immediately after it.
Thus

�J�E2��
�E2

= 0,
�2J�E2��

�E2
2 � 0. �A5�

One has

�J

�E2
= −

1

Z
��hR13R32R21 − �cR12R23R31� −

1

Z

�Z

�E2
J

�A6�

�2J

�E2
2 =

1

Z
��h

2R13R32R21 − �c
2R12R23R31�

+ ��hR13R32R21 − �cR12R23R31�
1

Z2

�Z

�E2

+ J� 1

Z2� �Z

�E2
�2

−
1

Z

�2Z

�E2
2� −

1

Z

�Z

�E2

�J

�E2
. �A7�

At E2=E2�, the second term in Eq. �A5� is zero, and the
second term in Eq. �A7� is equal to or greater than zero. Then
using Eq. �A6� �which is zero� in Eq. �A7� at E2� one deduces
from Eq. �A7�

0 �
1

Z
�c��h − �c�R12R23R31 −

J

Z
��h

�Z

�E2
+

�2Z

�E2
2� .

The first term is �strictly� less than zero because �h
�c and
by a direct calculation J

Z ��h
�Z
�E2

+ �2Z
�E2

2 �	0, so that we reach a
contradiction; it follows that J has a unique maximum with
respect to E2.

5. Maximum of power with respect to E2, E3 fixed

Recall that �=
�h

�c
�1. We can fix the energy scale so that

E3=1. Then �J
�E2

=0 is equivalent to

F�E2� � K1�1 − ��e−�cE2�1+��

+ K2e−�cE2�2+���e�c��1−��E2−1� − ��

+ K3e−�c�E2−1��1 − �e�c��1−��E2−1�� = 0, �A8�

where the Kj are positive constants depending only on a, b,
and c �of Eq. �1��. Because E2	

E3

1−� = 1
1−� , we define a new

variable 
 by

E2 =

 + 1

1 − �
, �A9�

so that 
�1 and Eq. �A8� can be rewritten as

K1�1 − ��e−�c���
+1�/1−�� + K2e−�c��1+���1+
�/1−���e�c
 − ��

= K3�e−�c
� − 1� . �A10�

We know from Appendix A 4 that this equation has a unique
root 
 ��	0. The first term in Eq. �A10� is obviously strictly
positive; the second term is strictly positive if and only if


	− log �
�c

; thus the root of Eq. �A10� satisfies


 	 −
log �

�c
.

The efficiency at maximum power is thus

� =
1

E2
=

1 − �

1 + 
���



1 − �

1 −
log �

�c

. �A11�

For �→0, �→0, although the Carnot efficiency, �C,
approaches 1. For �→1, Eq. �A10� shows that 
���→0 and
�
1−�.

6. Maximum power with respect to both E2 and E3

We now consider the system

�P

�E2
= 0 and

�P

�E3
= 0. �A12�

It is convenient to redefine variables

� j = �cEj, �2 =
� + 1

1 − �
�3, so � � 0, �A13�

and we use � and �3=� as new variables. A direct calculation
shows that Eq. �A12� is equivalent to

4��e�� − 1� = 4�1 − ��e−����+1�/1−�

+ ���� − ��e−���1+���1+��/1−�−1�, �A14�

�e�� − 1��4 + 2e−����+1�/1−� + 2e−��+�/1−�

+ e−���1+���1+��/1−�−1�� = ��e−����+1�/1−� + 2�2.

�A15�

In the above, we have set a=b=c. This is a system of two
equations for � and �. We examine its solution in various
regimes.

a. Asymptotics for �\1

If � does not tend to zero, Eq. �A14� shows that �→0 and
Eq. �A15� cannot be satisfied. Thus �→0 if �→1. We write

� = �1 − ���0 + ¯ .

Then Eq. �A15� shows that �→1, so that

� 

1 − �

2
,

and Eq. �A14� shows that �0 is the �unique� root of

4��0 − 1� = 4e−2�0 + e−4�0�1 + �0� .

b. Asymptotics for �\0

Equation �A14� shows that for �→0, ��→+�, so that
� exp���� has a finite limit, which we call �. From Eq. �A15�
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it follows that �� is also finite, and we designate its limit as
�. Equation �A14� shows that

� =
1

4
�2 + e−��2

and Eq. �A15� shows that � satisfies

��2 + e−��2 = 4 + 2e−�,

which has a unique root. Thus

� 

�

�
, � 
 −

� log �

�
+

� log �

�
�A16�

and

� =
1 − �

1 + �



1 − �

1 −
� log �

�

,

so that

d�

d�



log �

�
for � → 0.

c. Global behavior

We want to show that at maximal power

� 	 �CA � 1 − �� for all � , �A17�

with equality only at �=0 or 1.
We again consider the root ����� ,����� of Eqs. �A14� and

�A15�. Because �= 1−�
1+���� at maximal power, the inequality

Eq. �A16� is equivalent to �������, with equality only at
�=0 and 1.

For �→0, ����
− � log �
� 
�, and for �
1, ����→1.

Thus if Eq. �A17� is not fulfilled at some �� one has
�����	���, and there exists some �̄ with

���̄� = ��̄, for 0 
 �̄ 
 1. �A18�

A consequence of Eqs. �A14� and �A15� is the equation

e�� = 1 + ���e��/2. �A19�

But for �=���̄� at �= �̄, one would obtain

e���̄ = 1 + ���̄e���̄/2, � = ���̄� . �A20�

Recall that ex/2�
ex−1

x with equality only at x=0. Equation
�A20� therefore implies

��̄���̄� = 0.

Because �̄	0 �see Eq. �A18��, one has ���̄�=0, and then
Eq. �A14� implies �̄=1, which is a contradiction.
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