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The wave-number k dependent current-correlation function is considered for a harmonic oscillator model.
An explicit analytic expression for the Laplace transformed correlation function is derived. It is compared with
numerical solutions and results obtained by the recurrence relation method. Several limiting cases such as the
long-wavelength limit k→0 and the deep inelastic limit k→� are discussed in detail. In particular, we show
that the deep inelastic limit allows for an explicit summation of the continued fraction. An approximation
scheme for the recurrants at intermediate values of k is also considered.
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I. INTRODUCTION

Correlation functions are an important tool in statistical
physics, both for equilibrium and nonequilibrium systems
�1�. Applications range from structural information in solid-
state physics �2� to unraveling collective effects in plasmas
�3� and liquids �4�. For many applications, the time and
space dependences of correlations are of interest. A promi-
nent example is the current-correlation function which is
connected to transport properties such as the optical conduc-
tivity and the dynamical structure factor �1�. From the latter,
dispersion results for collective modes in condensed matter
can be obtained.

A lot of information on correlation functions have been
gathered for various systems, e.g., in one-dimensional or
quasi-one-dimensional systems. Experimental studies range
from colloidal suspensions �5�, carbon nanotubes �6�, par-
ticles in storage rings �7�, microelectronic devices �8�, mi-
crofluid crystals �9�, and to ordered structures in complex
�dusty� plasmas �10�. In the case of a chain of dust particles
in a complex plasma, the wave-number dependent correla-
tion function is easy to determine experimentally due to the
direct access to position and velocity of the dust particles at
all times �11�. However, it is not easy to determine the time-
and space-dependent correlation functions theoretically start-
ing from a microscopic statistical approach. The problem is
twofold. First, we have to determine the time evolution of
the quantity in question. Second, an ensemble average has to
be carried out. Even for one-dimensional systems, exact re-
sults are known only for very simple types of correlation
functions.

Therefore, we simplify the system under consideration
further and study the current-correlation function for a single
particle in a harmonic potential. For such a system, the time
evolution can be determined exactly and also the statistical
average in the canonical ensemble can be performed. Thus,
we can derive an exact result for the wave-number dependent
current-correlation function. Since this downscaled setup
shows a rich complexity, the result will be useful as a build-

ing block for more complicated systems such as the one-
dimensional chain of harmonic oscillators or the so-called
independent oscillator model �12,13�.

Time-dependent correlation functions have been exten-
sively studied and a host of methods have been developed to
obtain approximate expressions for many-body systems �see,
e.g., Ref. �14� for a review�. Having an exact result at our
disposal, we can examine the power of these methods. As a
method of choice, we consider the recurrence relation
method �RRM� �15–17�. It has been successfully applied to
determine, e.g., the momentum correlation for a harmonic-
oscillator chain �18� and the independent oscillator model
�19�. Moreover, an extension to harmonic oscillators on the
Bethe lattice has been studied �20�. Also anharmonic poten-
tials have been studied in Ref. �21�. The RRM was applied to
elaborate the dynamics of spin systems �17,22–30�, correla-
tions in the electron gas �31–33�, one component �34,35�, as
well as multicomponent plasmas �36�. Specific features such
as a long-time tail are discussed in Refs. �37,38�. For a par-
ticular simple application, we refer the reader to Ref. �39�.
Very recently, the RRM has been used for investigation of
ergodicity in Ref. �40�.

In this paper, we derive analytic results for the time evo-
lution of the wave-number k dependent current-correlation
function and its Laplace transform. We analyze these expres-
sions in limiting cases and compare them with expressions
derived from the RRM. Supplementing the exact expressions
with the RRM, simplified analytic results are obtained. The
theoretical analysis is carried out in Sec. II. Numerical illus-
trations as well as some tests for approximate methods are
presented in Sec. III. Detailed calculations are postponed to
several appendices.

II. THEORETICAL ANALYSIS

Dynamic correlation function of two operators A and B
for a single particle is defined as

�A;B�z = �
0

�

dte−zt�A�t��B�0�� , �1�

where the statistical average �¯ � is given by
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�A�t��B�0�� =
1

Z
�

−�

�

dQ�
−�

�

dP exp�− �H�A�t��B�0� , �2�

with Z being the partition function, �=1 /kBT being the in-
verse temperature, and � indicating complex conjugation.
The canonical coordinate and momentum are Q and P, re-
spectively. The frequency z is a complex quantity and physi-
cal relevant expressions are obtained by taking the limit z
=�− i� with �→0. The time evolution of A is governed by
the Liouvillian as A�t�=eiLtA�0�. Note that this correlation
function obeys the relation �41�

z�A;B�z = �A�B� + �iLA;B�z �3�

for two operators A and B. This relation follows from inte-
gration by parts and allows to trade a correlation function

involving A for a correlation function containing Ȧ= iLA.
We consider a one-dimensional oscillator in an external

harmonic potential. This assumption is only for simplicity,
and the results can be generalized to higher dimensions. Let
Q be the elongation and P be the corresponding momentum.
We start with the Hamiltonian given as

H =
P2

2M
+ M�2Q2

2
, �4�

with the eigenfrequency � and the mass M. The correspond-
ing Liouvillian is

iL =
P

M

�

�Q
− M�2Q

�

�P
. �5�

The current is given by the product of momentum and
position J�x , t�= P�t���x−Q�t�� in the system written in Eq.
�4�. It is convenient to go to Fourier space studying Jk�t�
= P�t�eikQ�t�, where k is the wave number. The current-
correlation function studied here is defined as

�Jk;Jk�z = �PeikQ;PeikQ�z. �6�

Note that this expression reduces to the momentum correla-
tion function for k=0, which is well known �42� and simply
given by

�P;P�z/�PP� =
z

z2 + �2 . �7�

Since the right-hand side of this equation is the Laplace
transform of the cosine function, it reflects the periodic be-
havior of the momentum. Equation �7� can be directly ob-
tained by using Eq. �3� twice exploiting the equation of mo-

tion P̈=−�2P.
The rest of the paper is devoted to determine �Jk ;Jk�z at

arbitrary wave number k. To this end we follow two
schemes. The first is to calculate the Laplace transform of the
time-correlation function by solving the equation of motion.
The second is to employ the recurrence relation method in
order to obtain the dynamic correlation function �Jk ;Jk�z
from static data by constructing a special basis f� via a re-
currence relation �see Ref. �15��. In doing so, we start with
an initial basis vector f0= P�0�exp�ikQ�0�� and obtain further
basis vectors from

f�+1 = iLf� + 	�f�−1, �8�

�
0, and the recurrants 	�= �f�
�f�� / �f�−1

� f�−1� for �
1 and
	0=0. The correlation function itself is obtained as a contin-
ued fraction �see again Ref. �15��,

〈Jk; Jk〉z
〈J∗

kJk〉 =
1

z +
∆1

z +
∆2

z +
∆3

z + . . .

=
1

z
+

∆1

z
+

∆2

z
+

∆3

z
+ . . . .

�9�
Hereafter we use the second notation for the continued frac-
tion throughout this paper. Putting this approach into work,
two tasks have to be accomplished. First, the recurrants 	�

have to be determined as good as possible. Second, the con-
tinued fraction has to be evaluated, preferably by exact sum-
mation. In most situations, neither of these tasks can be done
exactly and one has to resort to approximation schemes. We
study these approximation schemes later. As we shall see
later, the recurrence relation analysis allows us to simplify
the exact expression in limiting cases. It also gives further
insight into the time and space dependences of the correla-
tion function.

A. Direct calculation of time evolution and its
Laplace transform

For a harmonic oscillator, the time evolution of Q and P
is well known,

Q�t� = Q�0�cos��t� +
P�0�
M�

sin��t� ,

P�t� = P�0�cos��t� − M�Q�0�sin��t� ,

with Q�0� and P�0� being the initial values at time t=0. For
simplicity, we use Q0=Q�0� and P0= P�0� instead. With use
of this, the time development of the current-correlation func-
tion is given as

�P�t�exp�− ikQ�t��P�0�exp�ikQ�0���

= ��P0 cos��t� − M�Q0 sin��t��P0

�exp�− ikP0 sin��t�/M��exp�ikQ0�1 − cos��t��	�

= �P0
2 exp�− ikP0 sin��t�/M����exp�ikQ0�1

− cos��t��	�cos��t� − �P0 exp�− ikP0 sin��t�/M���

��Q0 exp�ikQ0�1 − cos��t��	�M� sin��t� . �10�

Now, we expand the exponentials

exp�ikQ0�1 − cos��t��	 = 

n=0

�
1

n!
�ik�1 − cos �t�Q0�n,
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exp�− ikP0/M� sin��t�� = 

n=0

�
1

n!
�− ikP0 sin��t�/M��n.

Crossing terms of P0 and Q0 such as �P0
2Q0

3� vanish and the
integrals for P0 and Q0 can be solved,

�Q0
2n� = �2n − 1�!!� 1

�M�2�n

,

�P0
2�n+1�� = �2n + 1�!!�M

�
�n+1

.

Using �2n−1� ! ! / �2n� ! =1 / �2nn!� and introducing the di-
mensionless parameter A, i.e., the normalized wave number
squared k2,

A = k2/��M�2� , �11�

we can simplify Eq. �10� as

�P�t�exp�− ikQ�t��P0 exp�ikQ0��

=
M

�
exp�−

A

2
sin2 �t�exp−

A

2
�1 − cos �t�2�

���1 − A sin2 �t�cos �t − A sin2 �t�1 − cos �t�� .

�12�

Simplifying Eq. �12� further, we arrive at

�Jk
��t�Jk�0��
�Jk

�Jk�
= e−A�1−cos �t��cos �t − A sin2 �t� . �13�

The k-sum rule has a negative value as

�
0

�

dk
�Jk

��t�Jk�0��
�Jk

�Jk�
= −

�2�

4
��M�2�sin

�t

2
� . �14�

Next, we calculate the Laplace transform by using the
expansion of the exponential of the cosine in terms of the
modified Bessel functions �see �43��,

eA cos �t = I0�A� + 2

n=1

�

In�A�cos�n�t� , �15�

with the modified Bessel function given by

In�A� = �A

2
�n



l=0

�
�A/2�2l

l!�n + l + 1�
. �16�

Proceeding by

�
0

�

dte−zt cos �1t cos �2t

=
1

2
� z

z2 + ��1 − �2�2 +
z

z2 + ��1 + �2�2�
and taking advantage of the recurrence relation between
modified Bessel functions,

In−1�A� + In+1�A� =
2n

A
In�A� , �17�

we finally arrive at

�Jk;Jk�z

�Jk
�Jk�

= 2A−1e−A

n=1

�

n2In�A�
z

z2 + �n��2 . �18�

This is an exact result for the Laplace transformed current
correlation of Eq. �6�. It shows that the correlation function
splits into frequency dependent Lorentzian functions for all
harmonics of the fundamental eigenfrequency �. The weight
is given by elementary functions and modified Bessel func-
tions in the parameter A given by Eq. �11�, i.e., in the nor-
malized wave number squared k2. Note that the frequency
dependence and the wave-number dependence disentangle in
this expression. Equation �15� is the expansion by the cosine
of multiples of the angle �t and the key equation of this
paper. It is more advantageous than the conventional expan-
sion by the power of A cos �t in that we easily have the
position of the poles and can soon evaluate their residues as
a function of A. The conventional expansion enables us only
to have an approximate Laplace transform for Eq. �13�. That
approximate form is straightforward to obtain, not shown
here, but less helpful to expect Eq. �18� correctly. The exact
result is a sum of modified Bessel functions and Lorentzians,
which can be done numerically. It is still worthwhile to look
for additional simplifications. With this in mind, we study
limiting expressions of Eq. �18�.

Discussion of limiting cases

Starting from this result, several limiting cases can be
considered. In the static limit, the slope of the correlation
function is obtained as

�2 lim
z→0

�Jk;Jk�z

�Jk
�Jk�

/z = A−1�1 − e−AI0�A�� �19�

due to the relation eA= I0�A�+2
n=1
� In�A�, which is Eq. �15�

with t=0. Thus, we discover a linear slope of the current-
correlation function in the static limit for any value of the
parameter A. This expression can be further analyzed for
small and large values of A. We obtain the value in the long-
wavelength limit A→0, up to third order in A, as

�2 lim
z→0

�Jk;Jk�z

�Jk
�Jk�

/z = 1 −
3

4
A +

5

12
A2 −

35

192
A3 �20�

and the asymptotic value for large A as

�2 lim
z→0

�Jk;Jk�z

�Jk
�Jk�

/z =
1

A�1 −
1

�2�A
� . �21�

For small k, i.e., for small values of the parameter A, the
leading contribution in Eq. �18� is due to n=1. In particular,
we rediscover the well-known result for the momentum cor-
relation function in the limit k→0,
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lim
k→0

�Jk;Jk�z/�Jk
�Jk� = �P;P�z/�PP� =

z

z2 + �2 . �22�

At k�0, higher harmonics of the eigenmode � contribute
and the weight of each harmonic is given by the modified
Bessel function In�A�. To quantify the k dependence of the
long-wavelength limit, we use Eq. �16� and obtain

�Jk;Jk�z

�Jk
�Jk�

= 2A−1e−A

n=1

�

n2�A/2�n/n!
z

z2 + �n��2 . �23�

Using the series expansion �44�

�a����a,x� = 

n=0

�
�− x�n

�a + n�n!
�24�

for the incomplete gamma function ���a ,x� defined as
�a����a ,x�=x−a��a�−�a ,x�� with the upper incomplete
gamma function �a ,x�, the summation in Eq. �23� can be
performed, and a representation in terms of the gamma func-
tion and the upper incomplete gamma function is found,

�Jk;Jk�z

�Jk
�Jk�

= e−A z

�2Re�−
A

2
�−�1+iz/��

���1 + iz/�� − �1 + iz/�,− A/2�	� . �25�

For large k, i.e., for large values of the parameter A, we
start with the identity, Eq. �15� with t=0,

eA = I0�A� + 2

n=1

�

In�A� . �26�

Noting the asymptotic n-independent behavior, e−AIn�A�
= �2�A�−1/2 �see �43��, Eq. �26� must hold true and thus we
have asymptotically



n=1

�

1 =
�2�A − 1

2
. �27�

Equation �27� seems to be unlikely; however, we have to
face the constraint of Eq. �26� for the analytical treatment.
Furthermore, we must substitute 
n=1

N with N= ��2�A

−1� /2 for 
n=1
� in evaluating Eq. �18�. Thus, we obtain the

asymptotic behavior of the Laplace transform in the leading
order of large A as

�Jk;Jk�z

�Jk
�Jk�

=
1

A

z

�21 −
1

�2�A
−

2
�2�A



n=1

N
�z/��2

n2 + �z/��2� .

�28�

Taking finite summation is important when numerical appli-
cation of Eq. �28� can be done. We can reproduce Eq. �21�
from Eq. �28�.

B. Recurrence relation analysis

Although an exact analytic result has been obtained, i.e.,
Eq. �18�, evaluating the sum involves some complicated
mathematics. Therefore, it is desirable to supplement the so-
lution of the equation of motion performed above with a
different approach. This will further elucidate the findings,
especially in the limiting cases. The recurrence relation
method provides a general scheme to obtain the dynamic
correlation function �Jk ;Jk�z as a continued fraction of Eq.
�9�,

〈Jk; Jk〉z
〈J∗

kJk〉 =
1

z
+

∆1

z
+

∆2

z
+

∆3

z
+ . . . .

We start our analysis by exactly determining the lowest-
order recurrants 	� and ��5. Setting f0= P�0�exp�ikQ�0��
and proceeding en route Eq. �8�, we obtain the following
results:

	1 = �2�3A + 1� , �29�

	2 = �2A
6A + 9

3A + 1
, �30�

	3 = �230A3 + 95A2 + 48A + 12

�2A + 3��3A + 1�
, �31�

	4 = 20�2A
�3A + 1��4A3 + 26A2 + 45A + 30�
�2A + 3��30A3 + 95A2 + 48A + 12�

, �32�

	5 = 3�2 �2A + 3��140A6 + 1470A5 + 4977A4 + 7398A3 + 4470A2 + 1800A + 360�
�30A3 + 95A2 + 48A + 12��4A3 + 26A2 + 45A + 30�

. �33�

Needless to say, it is clear that higher-order recurrants have a
very involved dependence on the wave number k. A summa-
tion of the corresponding continued fraction seems to be un-
likely, but an expansion for the long-wavelength limit �k
→0� as well as the deep inelastic limit �k→�� is possible.

1. Long-wavelength limit

In the long-wavelength limit k→0, the above given recur-
rants 	� can be expanded to read

�	1, . . . ,	5�k→0 = ��2�3A + 1�,9�2A,

�2� 4
3A + 4�, 50

3 �2A,�2� 3
2A + 9�� .

�34�

Explicit results for further recurrants are given in Appendix
B. A general representation for the recurrants in the long-
wavelength limit can be obtained. For the even recurrants it
is proportional to A,
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	2�,k→0 = 2
�2� + 1�2

� + 1
�2A . �35�

As a consequence, even recurrants disappear in the limit k
→0. Contrary, odd recurrants have finite values in the long-
wavelength limit due to a contribution from the frequency,

	2�−1,k→0 = �2�a2�−1A + �2� . �36�

The coefficients a2�−1 follow from

a4�−1 =
4�

2� + 1
,

a4�+1 =
2� + 1

� + 1
.

Thus, in the limit k→0, a summation of the continued frac-
tion given by the recurrants

�	1, . . . ,	8, . . .�

= ��2,9�2A,4�2, 50
3 �2A,9�2,

49
2 �2A,16�2, 162

5 �2A, . . .� �37�

is sought after. The sequence in Eq. �37� already shows some
important features which will be confirmed by numerical
evaluation in Sec. III A. For all k�0, the correlation func-
tion will also show features at the harmonics of the eigenfre-
quency �. However, each harmonic is, including a numerical
factor, suppressed by Eq. �11�, i.e., A=k2 / ��M�2�, com-
pared to the preceding one. The larger k will become, the
more harmonics will contribute.

2. Deep inelastic limit

In this limit, we consider the expansion k→�. Asymptoti-
cally, the lowest recurrants 	�, ��5, are obtained as

�	1, . . . ,	5�k→� = �3�2A,2�2A,5�2A,4�2A,7�2A� .

�38�

A more extensive list including additional contribution in A0

and A−1 can be found in Appendix C. Again, the leading
contribution shows a regular behavior,

	2� = �2���2A ,

	2�−1 = �2� + 1��2A . �39�

Appendix D outlines the summation of the corresponding
continued fraction. Consequently, we obtain a representation
in terms of the upper incomplete gamma function with z̃
=z / ��2A�� as

�2A�
�Jk;Jk�z

�Jk
�Jk�

= z̃2ez̃2
�− 1/2, z̃2� . �40�

This is equivalently written by the generalized error function
w�x� �see Ref. �43��,

�2A�
�Jk;Jk�z

�Jk
�Jk�

= 2z̃�1 − ��z̃w�iz̃�� . �41�

C. Analysis of small-frequency behavior

We here confront our results with conclusions drawn ear-
lier by Kim on the asymptotic long-time limit, i.e., the be-
havior at small frequencies as shown in Ref. �37�. If a

Laplace transform F̄�z�=�0
�dte−ztF�t� is written as a contin-

ued fraction,

F̄ (z) =
1

z
+

d1

z
+

d2

z
+

d3

z
+ . . . ,

�42�
then we have

lim
z→0

zF̄�z� = �1 +
d1

d2
+

d1d3

d2d4
+

d1d3d5

d2d4d6
+ ¯�−1

. �43�

Equation �43� reminds us of the K parameter to discuss on
limt→� F�t� in Ref. �40�. Here, we apply this to study the
small-frequency behavior of �Jk ;Jk�z / �Jk

�Jk� and prove that
limz→0�Jk ;Jk�z / �z�Jk

�Jk�� is a finite quantity. For this aim, we
have to show that

h(z) = lim
z→0

z

z
+

∆2

z
+

∆3

z
+

∆4

z
+ . . .

�44�
does exist. Then, the limit itself is given by

lim
z→0

�Jk;Jk�z/�z�Jk
�Jk�� =

1

	1
�1 +

	2

	3
+

	2	4

	3	5
+

	2	4	6

	3	5	7
+ ¯� .

�45�

Now, we consider the long-wavelength limit k→0 and the
deep inelastic limit k→�. The corresponding recurrants are
derived above in Eqs. �37�–�39�. Equation �45� goes to
��2�−1 as k→0 due to 	2n�A, which is consistent with Eq.
�20�. While Eq. �45� goes to ��2A�−1 as k→� since the
parenthesis in Eq. �45� converges to be 3 after paying careful
attention to Wallis’ product. This result is consistent with Eq.
�21� and the slope obtained from Eq. �D8�.

D. Analysis of high-frequency behavior

Finally, we consider the high-frequency behavior of the
current-correlation function �Jk ;Jk�z / �Jk

�Jk�. With the help of
the continued fraction representation, the asymptotic behav-
ior is given as

�Jk;Jk�z

�Jk
�Jk�

= 

n=0

�

�− 1�n	n�z
−2n−1 �46�

�see, e.g., Ref. �19��. The coefficients 	n� are recursively
given as 	0�=1,	1�=	1 ,	2�=	1�	1+	2� , . . .. Using the spe-
cific values for the recurrants 	1 and 	2, we arrive at

�
�Jk;Jk�z

�Jk
�Jk�

=
�

z
− �3A + 1�

�3

z3 + �15A2 + 15A + 1�
�5

z5 − ¯ .

�47�

If we compare this with the high-frequency expansion of Eq.
�18�,
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�
�Jk;Jk�z

�Jk
�Jk�

=
2�

Az
e−A�


n=1

�

n2In�A� − 

n=1

�

n4In�A�
�2

z2

+ 

n=1

�

n6In�A�
�4

z4 − ¯� , �48�

then we can establish a sequence of identities for modified
Bessel functions,

2

n=1

�

n2In�A� = AeA, �49�

2

n=1

�

n4In�A� = A�3A + 1�eA, �50�

2

n=1

�

n6In�A� = A�15A2 + 15A + 1�eA, �51�

which can also be proven directly using Eq. �26� and the
recursion relations obtained by Eq. �17�.

III. COMPARISON OF CONTINUED FRACTION WITH
NUMERICAL RESULTS

In this section, we present a numerical analysis of the
above findings. First, we briefly illustrate the time evolution
of the current-correlation function. Next, we discuss the
Laplace transformed current-correlation function as a func-
tion of the frequency z and the parameter A. Finally, we
check the limiting cases obtained above by numerical means.

A. Numerical analysis of the Laplace transform

In a first step, we show in Fig. 1 the time dependent
current-correlation function �Jk

��t�Jk�0�� / �Jk
�Jk� as obtained in

Eq. �13�. It is a periodic function with period T=2� /�. Sev-
eral values for the parameter A have been explored. The
momentum correlation function cos �t for A=0 changes into
a bowl-like shape for 0�A�1 /3 with a minimum value at
t=� /�. For 1 /3�A, the correlation function behaves like a
double well with minima located at t=cos−1���4A2+5
−3� /2A	 /�. The geometrical transition occurs at A=1 /3.

Note that the k-sum rule has negative values with the oscil-
lation of � /2 as in Eq. �14�.

Next, we inspect the Laplace transform of the correlation
function given in Eq. �13�. The analysis can be carried out by
numerical integration. Since the integrand of the Laplace
transform as given by Eq. �13� is a periodic function, the
Laplace transform can be determined as

�Jk;Jk�z

�Jk
�Jk�

= �1 − e−zT�−1�
0

T

dte−zt �Jk
��t�Jk�0��
�Jk

�Jk�
, �52�

which is numerically advantageous because it does not in-
volve integration to infinity. We have compared the numeri-
cal integration with performing the finite sum over Bessel
functions given in Eq. �18� and found excellent agreement up
to n=100. For this aim, we have used a continued fraction
representation of the ratio of two successive Bessel functions
�see Ref. �45�� to obtain a numerical approximation for the
modified Bessel functions In�A�. We do not further elaborate
on the numerical expense of either the numerical integration
or the summation of Eq. �18�. However, the advantage of Eq.
�18� is apparent once we want to determine the physical in-
teresting values given by z=�− i�. Here, numerical integra-
tion at large � is challenging due to the rapid oscillations of
the integrand, while Eq. �18� directly shows the positions of
the fundamental mode and its harmonics.

We illustrate the normalized current-correlation function
as given by Eq. �52� in Fig. 2. The current correlation is
shown as a function of the parameter A and the frequency z
in a surface plot combined with contour lines. As expected
from our analysis above, the limit for A→0 is given by Eq.
�22� and a maximum appears for small values of k at z /�
=1. This is flattened out for higher values of k or A.

In order to analyze this in more detail, we show the slope
of the current correlation at frequency z=0 in Fig. 3 as a
function of the parameter A �see Eq. �19��. The slope de-
creases from an initial value of unity. The numerical evalu-
ation confirms the small A dependence as obtained by Eq.
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�20�, while the asymptotic value at large A is given by Eq.
�21�. The numerical study also reveals that these limiting
cases can serve as reliable approximations over a large ex-
tend of A. Instead of obtaining the numerical result from an
analysis of the modified Bessel function I0�A� as in Eq. �19�,
we can consider numerical integration,

�2 lim
z→0

�Jk;Jk�z

�Jk
�Jk�

/z =
�2

2�
�

0

T

dtt2 �Jk
��t�Jk�0��
�Jk

�Jk�
. �53�

Equation �53� is obtained by expanding Eq. �52� with respect
to z and noting that �0

Tdtt0�Jk�t��Jk�0��=0 and
�0

Tdtt1�Jk�t��Jk�0��=0. Again, Eq. �53� has excellent agree-
ment with the slope obtained by the numerical integration
with performing the finite sum given in Eq. �16� due to Eq.
�19�.

Now, we focus on the behavior at small values of A as a
function of the frequency z; i.e., we study the deviation from
the behavior given by Eq. �22�. Figure 4 visualizes this,
where the exact result is shown by solid lines and the ap-
proximate expression given by Eq. �25� is shown by circles.
For A=0.1, both expressions agree well within the resolution
of the graph. For A=1.0, notable deviations occur which in-
crease for A=2.0. Note that Eq. �25� offers us the possibility
to extend our results to physical values of the frequency
without performing the infinite summation present in Eq.
�18�.

B. Numerical analysis of recurrants and continued fractions

We also illustrate the results obtained by the recurrence
relation method. As mentioned above, an exact evaluation of
all recurrants 	�, as well as the summation of the corre-
sponding continued fraction, seems unlikely. However, the
	�’s in the deep inelastic limit are very regular and allow for
an explicit summation of the continued fraction leading to an
incomplete gamma function. We support this result by a nu-
merical evaluation of the deep inelastic limit. Before doing
this, we show the full expressions for the recurrants 	� in
Fig. 5 �see Eqs. �29�–�33�� together with its limiting cases,
i.e., Eq. �34� and Eq. �38�. Being a rational function in A
with a strictly positive denominator, the 	�’s show a very
smooth behavior. The deep inelastic asymptote �dashed-
dotted line� diverges for small A. From this comparison, we
expect the deep inelastic limit to be a reasonable approxima-
tion for A�5, while the long-wavelength limit �dashed line�
is restricted to A�0.1.

We confirm this by evaluating the Laplace transform for
large k. We compare the numerically obtained results from
Eq. �52� with the summed continued fraction given above
and in Appendix D. As can be seen in Fig. 6, the continued
fraction indeed is the correct limit for large k since the nu-
merical expression becomes identical to the analytical ex-
pression. Thus, we can study the deep inelastic limit suitably.

Finally, we study the high-frequency limit z→� for a
fixed value of k or A. As shown above, the leading order in z
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FIG. 3. �Color online� The slope of the current-correlation func-
tion as given by Eq. �19�. The expansions for small A �Eq. �20�� and
large A �Eq. �21�� are also shown.

0 2 4 6 8 10
frequency z [units of Ω]

0

0.1

0.2

0.3

0.4

0.5

<
J k

;J
k

>
z

/<
J k*

J k
>

[u
ni

ts
of

Ω
-1

] A=0.0, exact
A=0.1, exact
A=1.0, exact
A=2.0, exact
A=0.1, approx.
A=1.0, approx.
A=2.0, approx.

FIG. 4. �Color online� Normalized current-correlation function
as a function of the frequency z for small values of the parameter A.
We compare the exact expression Eq. �18� with the A expansion Eq.
�25� and the A→0 limit �Eq. �22��.

0 0.5 1 1.5 2
0

5

10

15

20

0 1 2 3 4
0

10

20

30

0 1 2 3 4 5 6
parameter A

0

20

40

60

80

100

[u
ni

ts
of

Ω
2 ]

∆ν
∆ν,k→0
∆ν,k→∞

0 2 4 6 8
0

20

40

60

ν=2 ν=3

ν=4 ν=5

FIG. 5. �Color online� The recurrants 	1 , . . . ,	5 as a function of
the parameter A. Also shown are the approximate expressions for
	1	1 , . . . ,	5 in the limits k→0 and k→� �see Eqs. �34� and �38�,
respectively�.

0 2 4 6 8 10
frequency z [units of Ω]

0

0.1

0.2

0.3

0.4

<
J k

;J
k

>
z

/<
J k*

J k
>

[u
ni

ts
of

Ω
-1

] full expression, A=1
deep inelastic limit, A=1
full expression, A=2
deep inelastic limit, A=2
full expression, A=4
deep inelastic limit, A=4

FIG. 6. �Color online� Laplace transform as given by Eq. �52�.
Various values of A are considered. We also show the continued
fraction for the deep inelastic limit �see Eqs. �39� and �40��.

WAVE-NUMBER DEPENDENT CURRENT CORRELATION FOR… PHYSICAL REVIEW E 82, 051107 �2010�

051107-7



is given by z−1 and we are interested in the next leading order
by inspecting �z /��3���Jk ;Jk�z / �Jk

�Jk�−z /��. The results for
A=0.5,1 ,2 are shown in Fig. 7. For large values of z, the
limit −�3A+1� is approached as expected from Eq. �47�.

C. Approximation strategy in summation of continued
fractions

As it appears to be impossible to sum up the continued
fraction given by the recurrants 	� exactly, approximation
strategies have been devised �17�. In particular, Hong and
Lee �46� introduced a so-called dynamic convergent calcula-
tion by using a few exact recurrants and supplementing these
with approximate expressions for all other recurrants. A simi-
lar procedure was discussed in Ref. �47�. Here, we follow
this approach combining the exact expressions for 	1 ,	2 ,	3
as given by Eqs. �29�–�31� with the 	�,k→� for �
4 from the
deep inelastic limit. Having the summed continued fraction
Fk→��z� for the deep inelastic limit at our disposal �see Eq.
�40�� we can also determine the analytic representation for
the continued fraction Gk→��z� starting from 	4,k→� by par-
tial inversion,

Gk→��z�

=
1

	3,k→�
	2,k→��	1,k→� 1

Fk→��z�
− z�−1

− z�−1

− z� .

�54�

Therefore, our approximate expression reads

〈Jk; Jk〉z
〈J∗

kJk〉 ≈ 1

z
+

∆1

z
+

∆2

z + ∆3Gk→∞(z)
.

�55�
We examine this approximation scheme for three different
values of the parameter A in Fig. 8. Here, the approximate
expression given by Eq. �55� is compared with the exact
result given by Eq. �18�. As a simple approximation, the
truncation of the continued fraction beyond the third order,
i.e.,

1

z
+

∆1

z
+

∆2

z
+

∆3

z

is also shown. Clearly, the proposed approximate expression

is superior to a simple truncation of the continued fraction
for all values of the frequency z and all parameters A con-
sidered here. As expected from the very way of constructing
the approximation, the agreement is better for larger values
of A. For A=0.5, disagreement in the slope of the correlation
function for small frequencies z is obvious. In conclusion,
Eq. �55� leads to a reasonable approximation but high preci-
sion is restricted to large values of A.

IV. SUMMARY AND CONCLUSIONS

Although simple in setup, the k-dependent current-
correlation function of a harmonic oscillator shows a rich
variety at finite wave number k. The Laplace transformed
current-correlation function has Lorentzian contributions
from all harmonics of the fundamental eigenmode. The
strength of each harmonic n is controlled by a modified
Bessel function In�A� for the normalized wave number
squared A. The analytic expressions derived above are par-
ticularly helpful in taking the physical limit z=�− i� where
numerical calculations are challenging. The recurrence rela-
tion method �RRM� allows insight into the analytical struc-
ture of the correlation function especially in the limits k
→0 and k→�. For the latter deep inelastic limit, the RRM
generates analytical expressions in terms of the upper incom-
plete gamma function.

A wide range of options extending this study is available.
It is straightforward to generalize the treatment to a multidi-
mensional single harmonic oscillator. The results presented
here can be extended also to a harmonic oscillator in a ther-
mal bath, which is a work in progress. In particular, analyti-
cal expressions for the k-dependent current-correlation func-
tion of this important system can be obtained. Furthermore,
one can consider the current-correlation function for a quan-
tal harmonic oscillator. Anharmonicity such as a Duffing po-
tential is also of interest. These will be lines of future
research.
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APPENDIX A: RECURRENCE METHOD AT WORK—A
SIMPLE EXAMPLE

In order to illustrate the RRM �see Ref. �15�� we consider
the example of the correlation function �PQ2 ; PQ2�z which
arises as one contribution in expanding the current correla-
tion. We show that the RRM results lead to a finite continued
fraction. The result is reproduced by a straightforward solu-
tion of the equation of motion for the correlation functions
with the help of Eq. �3�.

Let f0= PQ2 be the initial basis vector. Applying the
RRM, we have for the other basis vectors

f1 = Q�2P2 − �2Q2� , �A1�

f2 = 2P3 − 2�2PQ2, �A2�

f3 = − 6
5 �3�2P2Q + �4Q3� , �A3�

f4 = 0. �A4�

Note that we obtain a four-dimensional Hilbert space for
the problem considered here. For the connection between the
RRM and the dimensionality of the realized Hilbert space,
see, e.g., �48�. In the current context, it is of importance to
realize that the dimensionality increases with increasing
power of Q; e.g., for f0= PQ4, a six-dimensional Hilbert
space is generated. If f0= PQn, then the Hilbert space is �n
+2� dimensional. In consequence, an infinite-dimensional
Hilbert space is obtained for the exponential expression. The
recurrants corresponding to f0 , . . . , f3 are given by

�	1,	2,	3� = � 25
5 �2, 16

5 �2, 9
5�2� . �A5�

For �
4, 	� vanish. Thus, the correlation function is given
by a finite continued fraction as �see Ref. �15��

〈PQ2; PQ2〉z
〈PQ2PQ2〉 =

1

z
+

∆1

z
+

∆2

z
+

∆3

z

=
z3 + 5zΩ2

9Ω4 + 10Ω2z2 + z4

=
1

2

(
z

z2 + (3Ω)2
+

z

z2 + Ω2

)
.

�A6�
The same result is obtained by applying Eq. �3� directly.

APPENDIX B: DETAILS ON THE LONG-WAVELENGTH
LIMIT

Here, we list the long-wavelength expansion of the recur-
rants 	�, 6���14, and give results up to second order in A
given by Eq. �11�,

	6,k→0 = �2� 49
2 A − 49

20A2� ,

	7,k→0 = �2�16 + 8
5A + 4

25A2� ,

	8,k→0 = �2� 162
5 A − 54

25A2� ,

	9,k→0 = �2�25 + 5
3A − 5

63A2� ,

	10,k→0 = �2� 121
3 A − 121

63 A2� ,

	11,k→0 = �2�36 + 12
7 A − 27

98A2� ,

	12,k→0 = �2� 338
7 A − 169

98 A2� ,

	13,k→0 = �2�49 + 7
4A − 7

16A2� ,

	14,k→0 = �2� 225
4 A − 25

16A2� .

APPENDIX C: DETAILS FOR THE DEEP
INELASTIC LIMIT

Here, we list the deep inelastic expansion of the recurrants
	�, ��15, up to order A−1,

	1,k→� = �2�1 + 3A� ,

	2,k→� = �2� 7
3 + 2A − 7

9A−1� ,

	3,k→� = �2� 20
3 + 5A − 121

18 A−1� ,

	4,k→� = �2� 26
3 + 4A − 548

45 A−1� ,

	5,k→� = �2� 49
3 + 7A − 1477

45 A−1� ,

	6,k→� = �2�19 + 6A − 231
5 A−1� ,

	7,k→� = �2�30 + 9A − 903
10 A−1� ,
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	8,k→� = �2� 100
3 + 8A − 5168

45 A−1� ,

	9,k→� = �2� 143
3 + 11A − 8602

45 A−1� ,

	10,k→� = �2� 155
3 + 10A − 2071A−1� ,

	11,k→� = �2� 208
3 + 13A − 6253

18 A−1� ,

	12,k→� = �2�74 + 12A − 404A−1� ,

	13,k→� = �2�95 + 15A − 571A−1� ,

	14,k→� = �2� 301
3 + 14A + 29 183

45 A−1� ,

	15,k→� = �2� 374
3 + 17A − 78 659

90 A−1� .

APPENDIX D: SUMMATION OF THE CONTINUED
FRACTION IN THE DEEP INELASTIC LIMIT

We show that the continued fraction given by the approxi-
mate recurrants of the deep inelastic limit can be summed up,
leading to an analytic result. We start from the recurrants in
Eq. �39� to yield the corresponding continued fraction,

〈Jk; Jk〉z
〈J∗

kJk〉 =
1

z
+

3Ω2A

z
+

2Ω2A

z
+

5Ω2A

z
+

4Ω2A

z
+ . . . .

�D1�
A more general expression can be considered by taking the
recurrants as

	2n−1�k� = �n − 1 + s�Q ,

	2n�k� = nQ . �D2�

This pattern for the recurrants has already been considered
by Hong and Lee in Ref. �31� in the context of the deep
inelastic limit for interacting electron gas. Our case is in-
cluded by taking Q=2�2A and s=3 /2.

We give here a generalized treatment. By equivalence
transformation �49�, we obtain

〈Jk; Jk〉z
〈J∗

kJk〉 =
1

z

(
1

1
− −sQ/z2

1

− −1Q/z2

1
− −(1 + s)Q/z2

1
− −2Q/z2

1
− . . .

)
.

�D3�The term in brackets can be identified as a continued fraction
representation of the confluent hypergeometric function 2F0,

�Jk;Jk�z

�Jk
�Jk�

=
1

z
2F0�s,1;− Q/z2�

2F0�s,0;− Q/z2�
�D4�

�see Refs. �50,51� and for the definition of 2F0 also Ref.
�43��. Using 2F0�a ,b ,x�= �−1 /x�aU�a ,1+a−b ,−1 /x� and
taking advantage of the link between Kummer’s function of

another type U and the upper incomplete gamma function,

U�1 − a,1 − a;x� = ex�a,x� , �D5�

we arrive at

�Jk;Jk�z

�Jk
�Jk�

=
1

z
� z2

Q
�s

ez2/Q�1 − s,z2/Q� . �D6�

This expression is particularly useful due to the known
limiting properties of the upper incomplete gamma func-
tions; e.g., the high-frequency behavior results from the
asymptotic expansion �see Ref. �43��,

�a,x� = xa−1e−x1 +
a − 1

x
+

�a − 1��a − 2�
x2 + ¯� ,

to obtain

�Jk;Jk�z

�Jk
�Jk�

=
1

z
�1 −

sQ

z2 +
s�s + 1�Q2

z4 − ¯� . �D7�

Thus, in the leading order, the current-correlation decays as
z−1. For the small z behavior, a general treatment valid for
any s can be used by exploiting the series expansion of the
incomplete gamma function ���a ,x� �cf. �43��,

�a����a,x� = 

n=0

�
�− x�n

�a + n�n!
,

and its connection to the upper incomplete gamma function
�a ,x� and the lower one ��a ,x�,

�a,x� = �a� − ��a,x� ,

x−a��a,x� = �a����a,x� .

We obtain from these arguments

�Jk;Jk�z

�Jk
�Jk�

=
z

Q
ez2/Q� z2

Q
�s−1

�1 − s�

+
1

s − 1
+

z2/Q
2 − s

−
z4/Q2

2�3 − s�
+ ¯� . �D8�

Thus, for s�1, the leading order is linear and given by
�Jk ;Jk�z / �Jk

�Jk���s−1�−1Q−1z. More expansions also in
terms of Bessel functions can be found in Ref. �52�. Note
that there are special cases for the incomplete gamma func-
tion for s=1,s=1 /2,s=0 �see Ref. �43��. These special cases
have been found earlier by different means �cf. Ref. �31��.

Hong and Lee also found that the time correlation was
Kummer’s function M�s ,1 /2,−Qt2 /4� or � by use of the
inverse Laplace transform with Eq. �D2�. Kummer’s function
M�s ,1 /2,−Qt2 /4� with our case Q=2�2A and s=3 /2 has
the same short-time expansion of Eq. �13� as

�Jk
��t�Jk�0��
�Jk

�Jk�
= 1 −

3A

2
��t�2 +

5A2

8
��t�4

¯ . �D9�

This is related to the fact that Eq. �13� approximately satis-
fies the differential equation for M�3 /2,1 /2,−A��t�2 /2�
within the regime of 0��t�1 in the large A limit.
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