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Clusters generated by the product-rule growth model of Achlioptas, D’Souza, and Spencer on a two-
dimensional square lattice are shown to obey qualitatively different scaling behavior than standard �random
growth� percolation. The threshold with unrestricted bond placement �allowing loops� is found precisely
using several different criteria based on both moments and wrapping probabilities, yielding pc

=0.526 565�0.000 005, consistent with the recent result of Radicchi and Fortunato. The correlation-length
exponent � is found to be close to 1. The qualitative difference from regular percolation is shown dramatically
in the behavior of the percolation probability P� �size of largest cluster�, of the susceptibility, and of the second
moment of finite clusters, where discontinuities appear at the threshold. The critical cluster-size distribution
does not follow a consistent power law for the range of system sizes we study �L�8192� but may approach a
power law with ��2 for larger L.
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I. INTRODUCTION

Recently, there has been a great deal of interest in a model
of “explosive growth” of percolation clusters by the so-
called Achlioptas process �1�, in which two randomly chosen
unoccupied bonds in a system are examined, and the bond
that minimizes the product of the size of the two clusters to
which it is attached becomes the next one to be occupied.
This procedure, called the product rule �PR� �1�, was origi-
nally studied on the Erdős-Rényi random graph �1�, then on
two-dimensional square lattices �2�, and scale-free networks
�3,4�. Other recent papers on explosive and biased percola-
tion include �5–16�. Interest in this process derives from its
unusual explosive behavior, suggesting a first-order transi-
tion, with apparent discontinuities in several quantities.
Many of its properties have yet to be discovered.

In this paper we examine in more detail the PR model on
the regular square lattice, especially with regard to how it
differs from random growth �RG�, in which bonds are added
one at a time and which corresponds to standard percolation.

Some preliminary results were given in �2�, where the
width of the distribution � /N was investigated. As in �1�,
� /N was defined as the difference in times in which the
maximum cluster size smax goes from �N to 0.5N, where N is
the number of sites. �Here time is identical to the number of
bonds added.� For the Erdős-Rényi graph, Achlioptas et al.
�1� found that � /N→0 as N→� for the PR model, while
� /N→const. for the RG model, showing that the two tran-
sitions are qualitatively different. In �2� it was found that for
the square lattice, on the other hand, � /N→0 for both the
PR and RG models but with different powers in N. It, how-
ever, turns out that if a larger �and in the case of the square
boundary, more appropriate� criterion for the upper end of
the gap � were used, say smax=0.7N, then indeed one would
find that � /N→const. as N→� for the RG model and still
goes to zero for the PR model. So with this criterion, the

two models are qualitatively different on the square lattice
just as for the Erdős-Rényi graph. �Even with a criterion of
smax=0.5N, one should have � /N→const. for the RG model
on the square lattice, but one would have to go to a very
large system to see it.�

Recently, Radicchi and Fortunato also studied both the PR
and RG models on the square lattice and analyzed their be-
havior in the context of standard two-parameter scaling �14�.
However, as they mention, it is unclear in what sense this
scaling can be applied to the PR problem, considering that
several of the quantities show discontinuities. In this paper,
we consider the behavior of wrapping probabilities as well as
quantities related to the size distribution such as moments.
The former refers to having a cluster that connects around
the toroidal boundaries of the periodic system �the torus� and
is the analog of crossing probabilities for open systems. In
order to study scaling behavior precisely, it is also necessary
to know the transition point precisely, and we determine it
here using a variety of methods. While the convergence of
various estimates in ordinary percolation is well known
�17,18�, that is not the case for the PR model, and so its
convergence behavior is also studied.

II. PROCEDURE

Actually, there is a subtle but significant difference in the
treatment of the PR process considered previously by the
present author �2� and that by Radicchi and Fortunato �14�.
In �2�, it was assumed that bonds could only be added be-
tween different clusters. This assumption bypassed the ques-
tion of how to assign weights when a bond connects sites
that are part of the same cluster, and for the RG model cor-
responds to “loopless” percolation previously considered by
Manna and Subramanian �19�. On the other hand, in �14�
Radicchi and Fortunato considered that bonds can be placed
anywhere, including within the same cluster. Thus, there is a
difference in the scaling of the time and also a difference in
the weights with which new bonds are added, so these two
processes are not equivalent.*rziff@umich.edu
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In this paper, we follow the unrestricted bond placement
convention used by Radicchi and Fortunato in �14�. When an
internal bond is selected, we use for its weight the square of
the size of the cluster it is part of. We characterize the size of
a cluster �or component� by the number of sites it contains.

To carry out these simulations, we used the algorithm of
Newman and Ziff �20,21� in which clusters are represented
as a tree and a union-find algorithm �modified for the PR� is
used to join clusters together. A randomly ordered list of all
bonds is made initially, and bonds are taken off that list in
pairs. The bond that is not selected according to the PR is put
back on the list randomly by switching with a randomly
chosen member remaining on the list. We also considered the
less efficient procedure of not using a bond list but just ran-
domly selecting bonds on the lattice, skipping over those that
were already chosen until two free ones were found. Both
methods led to identical results.

To determine cluster wrapping, we assigned extra vari-
ables “xcoor” and “ycoor” to each lattice site. These quanti-
ties are the x and y coordinates of that site with respect to the
first site of the cluster, without adjusting for the periodic
boundary conditions. Wrapping is then indicated when an
intracluster bond leads to a difference in a coordinate by a
multiple of the lattice width or height �22�.

The algorithm in �20� allows one to find the various quan-
tities for all values of p in one simulation. We did not carry
out the convolution step with a binomial distribution to get
the grand canonical �fixed probability� rather than canonical
�fixed number� results, as the differences between the two
ensembles for the systems we studied are small. We every-

where consider square lattices and square boundaries, with
N=L	L sites and periodic B.C. Many runs were made to
get good statistics, ranging from 1 000 000 runs for L=128
to 150 000 runs for L=2048. In general, the number of runs
was sufficient so that the errors are smaller than the symbols
or width of the lines or symbols we used to plot the results.
We also considered runs for L=8192 for measuring the size
distribution.

III. RESULTS

The results of this work are shown in a series of pairs of
figures, with results for the RG model placed on the left-hand
side and those for the PR model placed on the right-hand
side.

A. Maximum cluster size

In Fig. 1 we show the average of the maximum cluster
size scaled by the number of sites, �smax� /N, as a function of
p for the different system sizes. This quantity can also be
identified with the usual order parameter, the percolation
probability P�, if one considers that the largest cluster is
effectively the “infinite” one. The PR model �right panel�
clearly shows qualitatively different behavior than the RG
model, with crossing curves in the PR case.

The behavior of �smax� /N at pc is shown in Fig. 2 using
pc=1 /2 for the RG case and pc=0.526 565 �determined be-
low� for the PR case. For the RG case, the slope �−0.1062�
agrees within errors with the scaling predictions of
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FIG. 1. �Color online� �smax� /N �or P�� vs p as a function of system size. Here, as in all of the figures, we show curves for L=128 �red�,
256 �orange�, 512 �green�, 1024 �blue�, and 2048 �violet�—in general, from more gradual �L=128� to sharper �L=2048�. Vertical dashed
lines show the transition points, pc=0.5 �RG� and pc=0.526 565 �PR�. Plots for RG are always shown on the left and those for PR are shown
on the right. The scaling behavior of �smax� /N at pc is shown in Fig. 2.
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FIG. 2. �Color online� ln��smax�pc�� /N� �upper points� and ln�M2�pc� /N� �lower points� as a function of ln L, where pc=0.5 �RG� and
pc=0.526 565 �PR�. Linear fits to the points are shown on the plots, where y represents the abscissa value and x represents ln L. In these
plots, we have also included data for runs at L=64.
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−
 /�=−5 /48�−0.104 167. The points for the PR model are
also fit well by a straight line on the ln-ln plot, suggesting
scaling for this quantity, with slope −
 /�=−0.0589, which is
clearly different from the RG model. Based on the variation
with size, we estimate the error to this result to be �0.01.
This value of 
 /� is consistent with the value 
 /�=0.07�3�
�within the error bars of �0.03� reported in �14�.

B. Moments and susceptibility

Figure 3 shows the behavior of the second moment
M2�p�=	ss

2ns= �1 /N�	isi
2, where si is the mass of the ith

particle, scaled by N. Again, the PR model shows curve
crossing with a possible accumulation or crossing point. The
scaling behavior at pc is shown in Fig. 2. The slope for the
RG model of −0.210 is consistent with the prediction
� /�−2=−5 /24�−0.208 333. The PR data also appear to
obey power-law behavior, with a slope � /�−2�−0.10 im-
plying � /��1.90, with an estimated error of 0.01. This is
somewhat higher than the value � /�=1.7�1� reported in �14�.

By scaling and hyperscaling in two dimensions, one
would expect that the slopes of the two curves in Fig. 2
should differ by a factor of 2: � /�−2=−2
 /�. This is seen to
hold well for the RG data but not so well for the PR case.
Further analysis of the data shows that the value of � /�−2
�−0.10 seems to be independent of L, but −
 /� appears to
be increasing as L increases and may possibly approach the
value −0.05 �as L→�� implied by this scaling. However,
studies on larger systems are needed to confirm this.

In Fig. 4 we show the behavior of the scaled second mo-
ment minus the largest cluster, that is,

M2�

N
=

1

N2 	
i�max

si
2 =

M2

N
−

�smax
2 �
N2 . �1�

According to scaling arguments, this function should go
through a maximum at a value p= pmax, where the quantity
�pmax− pc�L1/� is a certain constant, at which point
M2��pmax� /N should scale as L�/�−2. We verified that the peaks
for RG in Fig. 4 obey this behavior with standard exponents
�not shown�. However, for the PR model, the curves of
M2� /N very closely pivot around the crossing point at
pc�0.526 54, which is also close to the inflection points of
the curves. This suggests that as L→�, M2��pc� /N is non-
zero, which would imply that � /�=2, in conflict with what
we found �� /��1.90� from the behavior of M2�pc�. This
behavior is another indication of the unusual nature of the
PR transition.

In Fig. 5 we show the behavior of the susceptibility �,
defined by

� = ��smax
2 � − �smax�2, �2�

which characterizes the fluctuations in the size of the largest
cluster. It can also be found from previous quantities via
�= �M2−M2�− �smax�2 /N�1/2. The peaks of ��pc� /N in the RG
model decay to zero as L−0.22, consistent with the scaling
prediction L�/�−2=L−5/24. However, the peaks in the PR
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FIG. 3. �Color online� Scaled
second moment M2�p� /N as a
function of p. The different curves
represent system sizes defined in
the caption of Fig. 1.
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ferent curves represent system
sizes defined in the caption of
Fig. 1.
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model apparently increase to a constant value � /N�0.264,
again consistent with � /�=2. Also, the locations of p at the
peaks for the PR model approach pc�0.526 575 as L−1,
again implying �=1. Below we will find that several other
quantities also satisfy inverse-size scaling �Fig. 10�.

In Fig. 6, we show a scaling plot of � /N vs �p− pc�L
assuming �=1 and also � /�=2, and the fit is seen to be
good. �Taking �=1 /0.96 yields a much poorer fit.� A similar
plot for the RG model, with standard percolation scaling, is
shown for comparison.

C. Wrapping probabilities

Next we consider wrapping probabilities. For standard
percolation these were studied theoretically by Pinson �23�
and numerically in �21,24,25�. This work has also been gen-
eralized to the Potts model �26,27�. Even though the perco-
lating critical cluster is a fractal and of zero density in the
continuum limit, the wrapping probability remains finite and
has a value that depends only on the aspect ratio of the sys-
tem and the type of wrapping homology.

In Fig. 7, we show the �only� one-way wrapping probabil-
ity �1�, defined as the probability at least one cluster wraps
horizontally but not vertically or wraps vertically but not
horizontally. For the RG model, the value of �1� at pc
=1 /2 approaches the predicted value 0.351 642 855. . .
�21,23� very rapidly. The curves are exactly symmetric be-
cause for one-way wrapping there must also be a one-way

wrapping on the dual lattice, which in the square system is
identical to the original lattice but with bonds occupied with
probability 1− p. For the PR model, the curves are not quite
symmetric, and the value of p at the peaks approaches
0.526 58 apparently as L−1 �not shown�. The value of �1�

seems to be dropping to a constant value of about 0.18 as
�L−0.5, although the range of values of L we considered is
not sufficient to be very certain about this behavior.

The width �standard deviation� of �1��p�, as a function of
L, is shown in Fig. 8. For RG, the data are consistent with the
theoretical prediction of a straight line with slope of
−1 /�=−0.75. For the PR, the overall slope of the points is
−0.95 but decreases to −0.96 for large L, implying that
��1 /0.96. This is in contrast with the value ��1 seen in
several other situations.

In Fig. 9 we show the probability distribution �h� for
horizontal wrapping, irrespective of whether wrapping oc-
curs in the vertical direction. For both the RG and PR mod-
els, the curves cross at a single point within numerical error.
The crossing point of the RG model is at p=0.499 995�5�,
�h�=0.5210, consistent with Pinson’s theoretical result
�h��pc�=0.521 058 29. . . �21,23�, while that for the PR
model is at p=0.526 566�3�, �h�=0.5106. Convergence be-
havior of the ordinary percolation crossing point was studied
in �21�, however, for site percolation and in the grand ca-
nonical �fixed p� rather than the canonical �fixed-n� en-
semble. We have not determined the convergence in this
case, but the crossing point for the system sizes we consid-
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ered clearly gives a very precise indication of pc.
The estimates for pc that come from various measures are

summarized in Fig. 10, plotted as a function of L1/�=L−0.75

�RG� and L−1 �PR�. The upper curves show the average of p
at which one-way wrapping occurs—that is, the mean of the
distribution shown in Fig. 7, 	p�1��p�. The middle curves
show the average value of p at which horizontal wrapping
first occurs; for the PR case, this is nearly horizontal, so this
quantity is very good for estimating pc precisely. The lower
curves show the average value of p at which either horizon-
tal or vertical crossing first occurs. For the RG model, all
estimates extrapolate to a value very close to the expected
value of 0.5, and for the PR model the extrapolations are
consistent with pc=0.526 264�3�.

Note that here we find a better fit to the data assuming
�=1 rather than ��1 /0.96 found in the scaling of the one-
way width �Fig. 8�. However, if we use the latter value, we
do not find a significant change in the estimated value of pc.

D. Size distribution

Finally, we consider the behavior of the cluster size dis-
tribution at criticality. We ran simulations on systems of size
L=512, 2048, and 8192 for both the RG and PR models and
measured ns, the number of clusters of size s, at the critical
points pc. We binned the weighted data as Ps=	s�=s

2s−1s�ns� for
s=1,2 ,4 ,8 , . . ., thus accumulating the number of occupied
sites belonging to clusters in each size range. That is, when
growing a cluster of size s, we incremented the bin
n= �int��log2 s� by s. �This gives better statistics than the
usual method of incrementing the bin by 1, which corre-
sponds to just counting the number of clusters in each size
bin.� For a given run, 	n�0Ps=N, where s=2n, because, in
the end, all N sites are wetted. For RG, one expects
Ps
s2−�
s−5/91, so Ps is a slowly decreasing function of s
until s approaches the size of the system, at which point the
“infinite” clusters contribute.

In Fig. 11 we plot the average of the normalized distribu-
tion, �Ps� /N, as a function of s for different L. For the RG
case, the data show expected decrease with s except for a
large accumulation in the last two bins because of the finite-
size effects. On the other hand, for the PR case, Ps /N seems
to be increasing, except possibly for a small region in the
largest system, and the accumulation in the large bins occurs
over a much wider range.

In the lower plots of Fig. 11 we show the slopes between
pairs of points �taking the logarithm of �Ps� /N first�. The
data of the slopes for the RG model for large L are seen to be
consistent with the theoretical prediction of 2−�=−5 /91. For
the PR model, for smaller s and L, the slopes are positive,
consistent with the observation of Radicchi and Fortunato
�14� who found �=1.9�1�. Of course, for a normalizable size
distribution, it is necessary that ��2, at least asymptotically.
We indeed find that the slope �barely� goes below zero �cor-
responding to ��2� for a range of s for the largest system;
however, it is unclear from these data whether the slope truly
approaches a consistent value or whether it contains, for ex-
ample, logarithmic terms. Simulations on larger systems
should help answer this question.

For the corrections to scaling for the critical size distribu-
tion, one expects

Ps 
 s2−��A + Bs−�
¯� . �3�

The data for RG are consistent with ��0.75 as found pre-
viously �28,29�. If we fit the data of the PR model to Eq. �3�,
we find B is negative, ��0.3, and ��2.025. The latter
value is consistent with 
 /�=0.05 through the scaling rela-
tion �=2+
 / ��D�, assuming D=2. The hyperscaling rela-
tion 
 /�=d−D would imply that D�1.95, and the scaling is
also consistent with this value of D. Thus, there is evidence
that the size distribution becomes power law and that scaling
is satisfied for the situations in which ��1 and � /��2.
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IV. CONCLUSIONS

We have found the critical bond fraction pc for the PR
model on the square lattice to high accuracy by a number of
methods. The two best criteria to determine pc �in terms of
convergence with L� are the average value of p at which
horizontal wrapping first occurs �Fig. 10�, and the crossing
point of the horizontal wrapping probability �Fig. 9�. �One
could just as well use vertical wrapping or the sum of the
two �30� as a criterion.� Combining our measurements, we
conclude

pc = 0.526 565 � 0.000 005, �4�

where the error bars represent a combination of statistical
error and also the variation among results based on different
criteria. This is consistent with the value 0.5266�2� given by
Radicchi and Fortunato �14�.

The striking qualitative different between the explosive
and regular percolation is highlighted by the nonzero limit-
ing behaviors of M2��p� /N �Fig. 4� and � /N �Fig. 5�. These
results suggest a discontinuity at the transition point, in con-
trast to RG, where the corresponding quantities are continu-
ous. �Note that for regular percolation on a hierarchical

small-world network, however, the transition can also be dis-
continuous �31��.

The cluster size distribution of the PR model shows quite
different behavior than the ER model, with possible power-
law behavior for very large systems with strong finite-size
effects.

The wrapping probabilities proved useful for locating the
transition point and, perhaps surprisingly, behave qualita-
tively quite similar to the RG model. The horizontal wrap-
ping probability �h� shows a very well-defined crossing
point, just as found for the RG case. Its value, �h�=0.5160,
is quite close to �but not identical with� the value for stan-
dard percolation, �h�=0.521 058 29. . . �23�. This result re-
calls the recent findings of various kinetic systems that
evolve to mimic random percolation �32,33�.

On the other hand, the value of the one-way wrapping
probability �1� for the PR model �see Fig. 8� is quite a bit
below the RG percolation value, 0.351 642 855. . ., and it is
hard to find its asymptotic value precisely. Evidently, be-
cause of the more compact geometry of the PR giant cluster,
wrapping one way is more difficult than in the RG case.

Finally, for the scaling, we have found some contradictory
results: M2, �smax�, �1�, and the size distribution give 
 /�
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plying D=1.94�1�, where number in parentheses represents
our estimated errors in the last digit�s�, while some of the
other results �such as the behavior of M2� and �� are more
consistent with �=1 and � /�=2. Perhaps this is indicative
that the normal two-parameter scaling does not hold for this
model because of the first-order transition or that logarithmic
corrections come into play.

Note added. While this paper was in revision, a preprint
appeared which argues that the explosive percolation transi-
tion in the case of the PR rule on the random graph is con-

tinuous �34�. Those arguments, however, do not appear to
apply to the regular square lattice studied here.
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