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The general theory of the single-file multiparticle diffusion in the narrow pores could be greatly simplified
in the case of inverted bell-like shape of the single-particle energy profile, which is often observed in biological
ion channels. There is a narrow and deep groove in the energy landscape of multiple interacting ions in such
profiles, which corresponds to the pre-defined optimal conduction pathway in the configurational space. If such
groove exists, the motion of multiple ions can be reduced to the motion of single quasiparticle, called the
superion, which moves in one-dimensional effective potential. The concept of the superions dramatically
reduces the computational complexity of the problem and provides very clear physical interpretation of con-
duction phenomena in the narrow pores.
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I. INTRODUCTION

The narrow nanopores, which conduct ions or small mol-
ecules are widely known for their unique properties, which
are not observed in macroscopic pores or bulk liquids. The
particles in very narrow pores move in the single-file man-
ner, while the number of particles changes stochastically due
to exchange with surrounding solutions. The examples of
such pores, which are very important for practical applica-
tions, are the ion channels of biological membranes �1–3�
and the carbon nanotubes �4–6�.

Narrow nanopores are studied extensively by means of
molecular dynamics �MD� �7–9� or Brownian dynamics
�BD� �8,10,11� simulations. This approach was very effective
in revealing fine details of the conduction process and pro-
vided insight into the functioning of such practically impor-
tant nanopores as the biological ion channels �8,11,12�. How-
ever, dedicated analytical theory of multi-ion diffusion in the
narrow pores is often desirable in addition to these compu-
tational experiments. Such theory is independent on atomis-
tic design of particular object and describes universal prin-
ciples of diffusion in the narrow pores of any origin
regardless of their atomistic details. It provides conceptual
overview of possible phenomena in the pores, which may or
may not be observed in particular system in particular con-
ditions. The theory allows studying very wide range of pore
parameters and external conditions. Finally, the theory could
be used as an “ideal reference” for simulations or experimen-
tal studies.

Until recently no such theory was available. In our previ-
ous work we presented a theory, which fills this gap �13�.
This theory is very general and describes the single-file dif-
fusion of multiple ions in the narrow pores in nonequilibrium
conditions. The ions move in arbitrary energy profile, created
by the pore walls and the external electrostatic potential and
interact explicitly by means or arbitrary repulsive potential.
Any macroscopic property of the pore �such as a current or a
mean occupancy� could be computed providing that these
potentials and the concentrations of particles in surrounding
solutions are known. It was shown that the problem is re-
duced to finding n-particle distribution functions inside the

pore ��n��x1 , . . . ,xn ; t� for all possible occupancies M �n
�1, where M is the maximal number of particles, which the
pore can accommodate, xi are the coordinates of the ions.

The problem of finding ��n��x1 , . . . ,xn ; t� is independent
from general analytical derivations and should be solved nu-
merically for each particular system. Quite general way of
finding ��n��x1 , . . . ,xn ; t� was proposed in �13�. The distribu-
tion functions ��n��x1 , . . . ,xn ; t� could be found from the
closed hierarchical set of the Fokker-Plank equations of in-
creasing dimensionality, which constitutes significant chal-
lenge in terms of the algorithms, convergence and precision
�13�. We managed to solve some of these problems by pro-
viding generic computational procedure, which is applicable
for arbitrary single-ion energy profile in the pore. Despite its
generality this procedure remains rather intensive computa-
tionally and provides semiquantitative results as discussed in
the “Results” section below.

In the present work we show that the general analytical
theory developed in �13� can be greatly simplified in the case
of specific inverted bell-like shape of the single-ion energy
profile. The interest in such profiles is supported by their
appearance in real ion channels �9,13,14�. The goal of this
work is to study general physical principles of multiparticle
diffusion in the potential of this class. We show that the
multidimensional distribution functions of the ions inside the
pore could be reduced to one-dimensional distribution func-
tions of the quasiparticles �called the super-ions� in such po-
tentials. All observed macroscopic properties of the pore are
then described in terms of the super-ions. This approximation
provides very simple and elegant description of the pore con-
ductance. It also leads to very simple and effective numerical
procedure of finding ��n��x1 , . . . ,xn ; t�, which is more precise
then the generic computational procedure from �13� �provid-
ing that the approximation of the super-ions is valid for given
energy profile�.

The idea of the super-ions was already exploited �al-
though in rather naïve manner� in our previous work �15�.
This work provides much more formal and consistent defi-
nition of the super-ions, which is based on strict general
theory developed in �13�.

We use the results of the general theory developed in �13�
in this work extensively, but do not repeat any derivations.
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The reader is referred to �13� for detailed derivations and
discussion.

II. THEORY

A. Boundary conditions

One of the problems, which arise in the analytical theories
of the multiparticle diffusion, is the choice of the boundary
conditions. The boundary conditions depend on the model of
the pore boundary and the details of particle exchange events
adopted in the theory. It is obvious that the particle, which
leaves the pore, can reenter it with certain probability, which
decreases with time and depends on the diffusion coefficient
and the properties of the transition region between the pore
and the bulk solution �the channel vestibule�. As a conse-
quence effective concentration of particles in the vicinity of
the channel entrance differs from the concentration in the
bulk solution �16�. The microscopic kinetic balance at the
pore boundary is usually considered in order to describe
complex events of particle escape and re-entrance. This
method is the most straightforward, but it leads to complex
boundary conditions, which contain unknown kinetic con-
stants. The complexity of such boundary conditions is shown
in details in the work of Stephan et al. �17�, where the mi-
croscopic rate constant theory for the channel with multiple
occupancy was developed systematically and transformed to
the system of the Fokker-Planck equations in continuous
limit �17�. The equations for n and n+1 particles are coupled
by means of unknown kinetic parameters on the channel
boundaries. The boundary conditions are quite nontrivial al-
ready in the case of two particles and become extremely
complex in the general case. As a result the pores with more
then two ions are not considered �17�. Another example of
complex boundary conditions, which contain the current
through the channel as a parameter, can be found in the work
�16�.

In the present work we follow an approach introduced in
our general theory �13�. In this approach an explicit micro-
scopic description of the ion exchange events is avoided,
which greatly simplifies boundary conditions and distinguish
our framework from existing analytical theories of the mul-
tiparticle diffusion.

It is assumed that the particle, which crosses the pore
boundary and escapes to the solution, loses all correlations
with the particles, which remain in the pore abruptly. This
assumption is the key point of our theory. It means that the
probability of reentry of the escaped particle is the same as
the probability of entry of any other particle from the solu-
tion �the particle has no memory�. As a result the solutions
do not “feel” the presence of the pore and could be consid-
ered as ideal heat bathes with given concentrations of par-
ticles. This basic assumption can be either postulated or de-
rived from dynamic equations in certain conditions as it is
shown in Appendix B in �13�. It leads to convenient factor-
ization of the probability density function at the channel
boundary, which allows describing the events of entry and
exit of the ions by the following simple boundary condition:

��n��x1, . . . ,xn;t�xi=�L = c1,2��n−1��x1, . . . xi−1,xi+1 . . . xn−1;t� ,

�1�

where c1,2 are the concentrations of the ions in solutions, L is
the half-length of the channel.

It is necessary to emphasize that Eq. �1� describes the
exchange events between the pore and the solutions in a
consistent way without any additional assumptions and ki-
netic parameters. It also couples otherwise independent dis-
tribution functions for different occupancy states into the hi-
erarchy.

Equation �1� implies that there are no energy barriers be-
tween the channel and the solutions, so the exchange of par-
ticles between the channel and the reservoirs is purely diffu-
sive. This does not limit the generality of our approach since
any barriers, which may exist at the ends of particular chan-
nel, could be included into the channel itself and reflected by
its single-ion energy profile. Further details and derivations
could be found in �13�.

B. Energy landscape of the pore

Simplified reference model of the pore with inverted bell-
like single-ion energy profile is used in this work. This model
was studied extensively in our previous works �13,15,18�,
which make it ideal for testing our concept of the super-ions.
The interaction forces in this model are balanced in such a
way that the ions are located at some “optimal” distance
from each other most of the time and move in a highly con-
certed manner. Let us formalize this picture. The energy of n
ions, which reside in the pore, is

Un�x�� = �
i=1

n

U0�xi� + �
i,j=1

�i�j�

n

V�xi − xj� , �2�

where U0 is the single-ion energy profile; V is repulsive ion-
ion interaction potential; xi is the coordinate of ith ion mea-
sured along the pore axis; x� = �x1 ,x2 , . . . ,xn�. −L�xi�L,
where L is the half-length of the pore. Single-file motion of
the ions allows us to consider only a part of the whole con-
figurational space where the ions are ordered from left to
right G�n�= �−L�x1�x2� . . . �xn−1�xn�L�.

The single-ion energy profile U0 has inverted bell-like
shape, which could be described by the inverted Gaussian
curve

U0�x� = − A exp�− x2/s2� + �
x

L
, �3�

where A is the depth of the single-ion energy profile; s is the
half-width of this profile. The second term describes the
transmembrane electrostatic potential in the linear approxi-
mation �see Discussion in �13� for the rationale�.

The ion-ion electrostatic interactions in our model are ap-
proximated by the shielded Coulomb potential
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V�r� =
b

r
exp�−

r

d
	 , �4�

where d is the shielding constant; b is the constant, which
converts the electrostatic energy to the kBT units. This inter-
action should be considered as the simplest reasonable ap-

proximation of the real ion-ion interaction inside the pore.
The empirical constant d allows us to vary the amount of
screening.

The values of empirical constants are b=566.2, s=9 Å,
L=20 Å �15,18�. Free parameters A and d are varied. The
configurations up to M =4 were considered to cover the
whole range of possible pore occupancies. Detailed discus-
sion of the various aspects of the reference model of the pore
could be found in �15,18�.

It is easy to deduce that concerted motion of the ions
corresponds to some predefined “optimal” trajectory in
n-dimensional configurational space. A bundle of trajectories
in the close vicinity of this optimal path are sampled with
high probability, while the probabilities of all other trajecto-
ries are negligible. Selected region of configurational space,
where the most probable trajectories are located, obviously
corresponds to a deep and rather narrow “groove” in Un.
Figures 1, 2�b�, and 2�c� show the examples of such grooves
in the cases n=2,3. If the groove is deep enough, then the
probability density ��n��x1 , . . . ,xn , t� is negligible outside the
groove, which simplifies the problem dramatically.

Let us define the groove axis, which corresponds to the
bottom of the groove. The groove axis connects the points
M1= �−L ,x2� , . . ,xn�� and M2= �x1� , . . ,xn−1� ,L� located at the
“input” and “output” facets of G�n�, which correspond to x1
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FIG. 1. The surface plot of U2 for A=40 kBT, d=5 Å. The
groove is clearly visible.
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FIG. 2. The groove axis in various occupancy states for A=43 kBT, d=3 Å. �a� The parametric coordinates of the groove axis for n
=1, . . ,4. ith curve in each particular panel �counting from the left� corresponds to the coordinate xi�	� of the groove axis. The coordinate 	
is normalized for clarity. Top panel shows the single-ion energy profile for the reference. �b� The contour plot of the potential U2 �two ions
in the channel� with the groove axis superimposed as a white line. �c� The plot of the isosurfaces of the three-dimensional potential U3 �three
ions in the channel�. The isosurfaces are drawn at −66 kBT, −60 kBT, −54 kBT, and −50 kBT counting from inside out. The groove axis
is shown as a solid line inside the isosurfaces.
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=−L and xn=L, respectively. M1 and M2 are defined as
�Un�−L,x2,..,xn�

�xi
=0, i=2, . . ,n and

�Un�x1,..,xn−1,L�
�xi

=0, i=1, . . ,n−1
correspondingly. The axis could be parameterized by the
length of the curve 	1 measured from M1 toward M2 as

dr��	1�
d	1

= 
��1��	1� , �5�

where r��	1�=�i=1
n xi

�r��	1�e��i� is the radius-vector of particular
axis point, xi

�r��	1� are Cartesian coordinates of this point, e��i�

are the orts of the laboratory coordinate system,


��1� =

�
i=1

n 
 �Un�x��
�xi


e�i

��
i=1

n � �Un�x��
�xi

	2
�6�

is a vector tangential to the groove axis.
It is convenient to describe the motion inside the groove

in its own local coordinate system, which defines the direc-
tions parallel and perpendicular to the groove axis. The par-
allel direction is given by 
��1�, while remaining n−1 perpen-
dicular directions lie in the hyperplane N�	1�, which is
normal to 
� in particular point 	1 of the groove axis. N�	1� is
defined as

�R�x�� − r��	1�,
��1��	1�� = 0, �7�

where R�x�� is arbitrary point, which belongs to this hyper-
plane. Equation �7� could be rewritten as

�
i=1

n

�xi − xi
�r��	1��
 �Un�x��

�xi

 = 0. �8�

Let us define the system of n−1 orthonormal vectors in
N�	1�


�����	1� = �
i=1

n


i
����	1�e��i�, �9�

where �=2, . . ,n. Equations �9� and �6� define full orthonor-
mal local coordinate system at each point of the groove axis.
This system is valid in some small vicinity of the groove
axis, which ensures that the hyperplanes N�	1� and N�	2� of
any two points do not intersect. The correspondence between
the points x� and x��r� in the laboratory and the local coordinate
systems is given by

xi�	�� = xi
�r��	1� + �

�=2

n

	�
i
����	1� .

The potential �Eq. �2�� could be rewritten using local coor-
dinates 	� ��	��, �=1, . . ,n as

Ũn�	�� � Un
r��	1� + �
�=2

n

	�
�����	1�� . �10�

The criterion of existence of the groove can be formalized
easily as


 �Ũn�	��
�	�



	�=0

= 0,



 �Ũn�	��
�	1




	�=0

�

 �2Ũn�	��
�	�

2 
��	1�


	�=0

,

� = 2, . . ,n . �11�

where �=2, . . ,n; 
��	1� is a characteristic half width of the
groove in direction 	� in the point 	1. In the other words, the
“side walls” of the groove are very steep in comparison with
the profile of the groove bottom. It is also implied implicitly
that the groove is deep enough.

C. Super-ions

As it was already mentioned in introduction, the general
theory of the multiparticle diffusion in the narrow pore de-
veloped in �13� leads to a system of the multidimensional
Fokker-Plank equations

���n��x1, . . . ,xn,t�
�t

= D�
i=1

n
�

�xi

 �Un�x1, . . . ,xn�

�xi
��n��x�,t�

+
���n��x1, . . . ,xn,t�

�xi
� , �12�

where ��n��x1 , . . . ,xn , t� is the probability density in the case
of exactly n ions in the pore, D is the diffusion coefficient.
Equations �12� are subject to the boundary conditions �Eq.
�1��, which form the hierarchical sequence of equations of
the growing dimensionality.

The local coordinate system �	i� is curvilinear, but their
Lame coefficients are all equal to 1

H� =��
i=1

n � �xi

�	�
	2

=��
i=1

n

�
i
����	1��2 = 1.

This makes rewriting Eq. �12� in terms of �	i� trivial

��̃�n��	� ;t�
�t

= D� �

�	1

 �Ũn�	��

�	1
�̃�n��	� ;t� +

��̃�n��	� ;t�
�	1

�
+ �

�=2

n
�

�	�

 �Ũn�	��

�	�

�̃�n��	� ;t� +
��̃�n��	� ;t�

�	�
�� ,

�13�

where

�̃�n��	� ;t� = ��n�
r��	1� + �
�=2

n

	�
�����	1�;t� . �14�

The first term of Eq. �13� describes rather slow relaxation
along the groove �the potential is smooth and changes slowly
along this direction�. The second term describes very fast
relaxation in the perpendicular cross section of the groove
�the potential is extremely fast growing in this direction ac-
cording to Eq. �11��. As a result there are two phases of
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relaxation of the function �̃�n� with very different character-
istic times. We are only interested in the slow phase, which
eventually leads to the steady-state flux along the groove,
which determines all macroscopic characteristics of the pore.
Therefore we can consider the system in the adiabatic ap-
proximation. At the times larger than the characteristic relax-
ation time in the perpendicular cross section of the groove
the distribution function �̃�n� is in local equilibrium in any
hyperplane N�	1�. As a result the solution of Eq. �13� can be
written as

�̃�n��t;	�� = ��n��t;	1�
e−Ũn�	��

zn�	1�
, �15�

where

zn�	1� = �
−
2


2

d	2, . . ,�
−
n


n

d	ne−Ũn�	��. �16�

The limits of integration 
i are chosen to ensure that zn�	1� is
independent on 
i. It is obvious that approximation �Eq.
�15�� approaches exact solution with the increase of depth
and the decrease of width of the groove.

Substitution of Eq. �15� into Eq. �13� and integration over
the same variable and in the same limits as in Eq. �16� yields

���n��t;	1�
�t

= D
�

�	1

 �Un

ef f�	1�
�	1

��n��t;	1� +
���n��t;	1�

�	1
� ,

�17�

where

Un
ef f�	1� = �

−
2


2

d	2, . . ,�
−
n


n

d	n
�Ũn�	��

�	1

e−Ũn�	��

zn�	1�
= − ln zn�	1�

�18�

is a local free energy in each hyperplane N�	1� called an
effective potential.

Equation �17� is essentially a one-dimensional Fokker-
Plank equation for some collective quasiparticle, which
moves along the groove axis in the effective potential �Eq.
�18��. We will call this quasiparticle a super-ion hereafter. It
is necessary to emphasize that the super-ion moves along the
curved one-dimensional groove axis in n-dimensional con-
figurational space, while the real ions move along the pore
axis in real space.

Approximated steady-state solution of Eq. �13� can be
written in terms of the super-ions as

�̃�n��	�� = ���n��	1�
e−Ũn�	��

zn�	1�
, 	� � R�n�

0, 	� � R�n�� , �19�

where R�n� is the part of the configurational space inside the
groove �determined by the integration limits 
i in Eq. �16��;
��n��	1� is the steady-state solution of Eq. �17�. This approxi-
mation is very close to exact solution if the groove is deep
enough �more than several kBT� and Eq. �11� is satisfied.

D. Macroscopic characteristics of the pore

In order to compute the macroscopic characteristics of the
pore it is convenient to subdivide the probability density
��n��	1� into known equilibrium and unknown nonequilib-
rium parts as it was done in the general theory �13�

�̃�n��	�� � e−Ũn�	����n��	�� , �20�

where ��n� is related to the local entropy, which is constant in
equilibrium conditions �13�. All macroscopic characteristics
of the pore could be expressed in terms of �. Equation �19�
could be written as

��n��	�� = ��n��	1� = ���n��	1�
zn�	1�

, 	� � R�n�

0, 	� � R�n�� . �21�

Equation �17� in the steady-state transforms to the following
simple equation for �:

d

d	1

e−Un

ef f�	1�d��n��	1�
d	1

� = 0. �22�

The boundary conditions of the Eq. �22� are obtained from
Eq. �1� using relation �20�,

��n��0� = r1��n−1��0�

��n��ln� = r2��n−1��ln−1� , �23�

where r1,2�c1,2eU0��L�, ln is the length of the groove axis in
the case of n ions in the pore.

Equation �22� is one-dimensional for any number of ions
in the pore and could be solved analytically

��n��	1� = ��n��0� + ���n��ln� − ��n�

��0���
0

	1

eUn
ef f�	��d	���

0

ln

eUn
ef f�	��d	�.

Thus, we obtained analytical solutions for all occupancy
states of the pore. The only quantities, which should be com-
puted numerically are the effective potentials Un

ef f�	1�.
The probabilities of occupancy states are obtained in the

general theory developed in �13� as

wn =

p�n�

n!

�
m=0

nmax p�m�

m!

, �24�

where p�n�=�−L
L dx1 , . . . ,�−L

L dxn��n��x1 , . . . ,xn , t� is the norm
of ��n��xi1

, . . . ,xin
, t�.

Using Eqs. �24� and �21� the probabilities of occupancy
states of the pore could be written as

wn =
q�n�

�
i=0

M

q�n�

, �25�

where q�n�=�0
lnd	1zn�	1���n��	1�.
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The charge density along the pore could be obtained using
Eq. �22� from work �13� and Eq. �21�

��n��z� =
1

q�n��
i=1

n ��
−L

L

dx1, . . ,�
−L

L

�dxi−1�
−L

L

dxi+1, . . ,�
−L

L

dxne−Un�x1,..,xi−1,z,xi+1,..,xn�

� ���n��	1�x1, . . ,xi−1,z,xi+1, . . ,xn���� �26�

Finally, the current through the pore in the occupancy state n
is obtained using Eq. �18� and Eq. �25� from �13�, which
defines the current through the given cross section of the
channel in given occupancy state

J�n��	1� = − n
D

q�n�e
−Un

ef f�	1����n��	1�
�	1

. �27�

The stationary current is obviously independent on 	1, thus
any value of 	1 can be used. The total current through the
pore is

J = �
i=1

M

�wnJ�n��	1��	1=0. �28�

The stationary current can also be expressed in the integral
form by rewriting Eq. �27� using the boundary conditions
�Eq. �1�� and Eq. �20�

J�n� = − n
D

q�n� �c1�̃�n−1��x2�, . . ,xn��e
Un

ef f�0� − c2�̃�n−1�

��x1�, . . ,xn−1� �eUn
ef f�ln��/�

0

ln

eUn
ef f�	1�d	1. �29�

E. Numerical solution

The groove axis is found numerically using Eq. �5� in
conjunction with constrained energy minimization, which
suppresses possible inaccuracies in finding the bottom of the
groove. The number of discrete points, which represent the
groove axis depends on the pore occupancy and ranges from
200 to 1000. Additional tests show that this number is
enough to obtain all quantities with reasonable accuracy �not
shown�. Once the groove axis is found, the orthonormal per-
pendicular vectors �Eq. �9�� are computed in each discrete
point by projecting the orts of laboratory coordinate system
to the corresponding hyperplane N and applying standard
orthogonalization procedure. The discrete rectangular grid is
then defined in the hyperplane N and zn is computed by
direct multi-dimensional integration according to Eq. �16�.
The limits of integration are adjusted empirically. Once zn
are known in each discrete point of the groove axis the com-
putations of �n and the macroscopic properties of the pore
are trivial. This algorithm is implemented in the custom pro-
gram written in FORTRAN 90.

III. RESULTS

A. Groove axis in different occupancy states

Figure 2�a� shows the grooves in the potentials Un for of
n=1, . . . ,4. It is clearly seen that the positions of the ions
change in a concerted way along the groove axis. Figures
2�b� and 2�c� visualize the groove axis in two- and three-
dimensional space. It is visible that the axis connects the
input and the output facets and is surrounded by the “onion
shells” of the isolines of Un.

B. Effective potentials

Figure 3 shows the effective potential Un
ef f for n

=1, . . . ,4. The depth of the effective potential reduces with
the increase of n and reaches approximately 6 kBT for the
last stable configuration of ions �n=3 for given parameters�.
The configuration with four ions is already unstable and in-
troduces a small energy barrier to the effective potential.
This dependence is universal and observed for all tested val-
ues of parameters �not shown�, however the last stable occu-
pancy changes with the change of the well depth A and the
shielding constant d.

Dramatic decrease of the depth of effective potentials in
comparison with U0 clearly shows the physical reason of the
multiple pore occupancy. Indeed, the collective super-ions,
which move in the very shallow effective potential, facilitate
much larger current though the channel than individual ions,
which move in the single-ion potential U0.

C. Comparison with the generic computational procedure

The approximation of the super-ions itself and the general
analytical theory built in �13� are robust and correct. How-
ever, the generic computational procedure �referred as GCP
hereafter�, which was developed in �13�, is rather inaccurate.
The GCP is completely unspecific and handles arbitrary
single-ion energy profiles, but this universality comes at
price of high computational intensity and reduced accuracy.
In brief, there are three factors, which limit the accuracy of
the GCP,
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FIG. 3. Effective potentials for various channel occupancies for
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rentheses �negative depth corresponds to the energy barrier�. The
parameters are the same as in Fig. 1.
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�1� The single-ion energy profile U0 has zero derivatives
at the ends of the channel, while the majority of potentials,
which are commonly used in testing and validation of nu-
merical algorithms, have growing derivative at the bound-
aries �“boxed” potentials�. As a result the precision of the
common numerical schemes becomes questionable in our
case.

�2� As it is explained in �13� the optimization problem
have to be solved instead of the corresponding boundary
value problem in order to avoid computation of the fast-
growing derivatives of V. We have shown, however, that
redundant solutions of this optimization problem exist within
machine precision, which leads to unpredictable inaccuracy.

�3� The hierarchical nature of the equations leads to rapid
amplification of the errors for each subsequent channel oc-
cupancy.

The numerical solution in GCP is correct in equilibrium
however the inaccuracy increases with the increase of non-
equilibrium factors, such as � or the difference of concentra-
tions. The integral characteristics, such as wn, are expected to
be quite accurate near the equilibrium, while the currents J�n�

should only be treated qualitatively.
Thus the approximation of the super-ions can be validated

against the GCP using the integral characteristics, such as wn,
near the equilibrium. Figure 4�a� shows the concentration
dependencies of the channel occupancies wn and the mean
number of ions in the channel in equilibrium. The curves for

small membrane potentials �up to �=10 mV� are visually
indistinguishable from equilibrium ones and thus not shown
for clarity.

Figure 4�b� shows the difference in the mean number of
ions computed in the GCP and in the approximation of the
super-ions. There is almost ideal correspondence between the
concentration dependencies in equilibrium. This is remark-
able taking into account completely different methods of cal-
culations, different underlying approximations and different
numerical inaccuracies in our approximation and in GCP.
This convinces us that the approximation of the super-ions is
very precise in terms of occupancy probabilities in the stud-
ied range of parameters. The results of the GCP and our
approximation diverge consistently with the increase of
membrane potential, but the difference remains very small
�less then 1.5%� up to �=10 mV. Maximal deviations are
observed in the transition regions between different occu-
pancy states. The magnitudes of these deviations increase
with the increase of occupancy. This behavior is most likely
a consequence of the “amplification of errors” in the GCP,
which was mentioned above. The comparison for larger val-
ues of � is not justified due to uncontrollable numerical er-
rors in GCP.

D. Current-voltage relationships

Figure 5�a� shows the current-voltage relationships for
different concentrations in the approximation of the super-
ions computed using Eq. �29�. The curves are rather complex
and consist of two distinct parts. The current increases expo-
nentially for small voltages, which is clearly seen in log scale
in the inset of Fig. 5�a�. The parts of the curves, which cor-
respond to large voltages, are linear or slightly saturating.
The transition from exponential to linear parts is smooth and
shifts toward larger voltages with the decrease of concentra-
tion. The curves for different concentrations eventually con-
verge for the very large voltages.

The shape of the current-voltage relationships reflects
complex interplay between the contributions of different oc-
cupancy states. This can be illustrated by comparing the
current-voltage relationships �Fig. 5�a�� with the dependen-
cies of wn and the mean occupancy on the voltage �Fig.
5�b��. The mean occupancy increases monotonously with the
increase of voltage due to increasing driving force, which
“pumps” the ions into the pore. Double occupancy dominates
in equilibrium ��=0� for chosen parameters. The probability
of double occupancy w2 decreases with voltage, while the
probability of triple occupancy w3 increases. The state with
four ions �w4� substitutes the triple occupancy state with the
further increase of voltage. This sequential substitution of the
dominant occupancy states corresponds to the exponential
part of the current-voltage relationship. When the dominant
occupancy reaches the maximal number of ions �four in our
case�, the transition to linear part begins. In the linear regime
the pore is saturated with the ions completely, so the current
becomes almost independent on concentrations �it depends
on the diffusion coefficient D only�. As a consequence all
curves in Fig. 5�a� converge for very large voltages.

IV. DISCUSSION

The single-file diffusion of several ions in the narrow
pores inevitably leads to their concerted motion caused by
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the geometrical confinement and the interplay between the
single-ion energy profile and the ion-ion interactions, which
keeps the ions at certain preferable distances from each other.
This corresponds to the existence of well-defined one-
dimensional preferable path in the configurational space,
which facilitates the conduction. Particularly, similar picture
of conductance was postulated on the qualitative level for the
KcsA ion channel �2,3,19�. However, there was no consistent
theory of such concerted diffusion of multiple ions in the
narrow pores.

In our previous work �15� we proposed rather naive
theory of concerted single-file motion of ions in the pore,
which first introduced the concept of the super-ion. In �15�
the super-ion was located at the center of masses of all ions
in the pore and was moving in the effective potential com-
posed from U0 and the averaged ion-ion interactions. Such
description relied on multiple assumptions and resulted in a
system of quite complex differential equations. In this work
we propose another approach to the same problem, which is
much more robust and based on the recently developed gen-
eral theory of the multiparticle diffusion in narrow pores
�13�. The introduction of the super-ion in the current work is
based on the specific shape of the potential Un, which pos-
sesses a well-defined deep groove corresponding to the most
preferable path �in terms of free energy� of multiple ions

through the channel. If such groove exists, then the adiabatic
approximation could be applied and the multidimensional
distribution function of n real ions reduces to one-
dimensional distribution function of single quasiparticle �the
super-ion�. Such reduction could be done for any n �provid-
ing that the grooves exist for all occupancies up to n�, which
dramatically simplifies the problem and allows to avoid com-
plex multidimensional equations. The existence of the deep
groove is the only additional assumption in comparison to
general theory, which makes our approximation clear and
easily controllable. The motion of the super-ions for different
occupancy is described by the system of one-dimensional
Fokker-Planck equations, which are coupled by simple hier-
archical boundary conditions �Eq. �23��. There are no com-
plex coupling terms, which were present in the work �15�
and no additional empirical constants.

Since the concept of the super-ions is an approximation, it
is important to validate it against the general theory. The
multidimensional equations of the general theory are cur-
rently solved numerically by means of generic computational
procedure, which produces semiquantitative results. Due to
these numerical issues the comparison is currently limited to
integral properties, such as the probabilities of occupancy
states, and to small deviations from equilibrium. The com-
parison of occupancy probabilities in equilibrium and for
small membrane potentials provide robust test case for our
approximation. It is shown that the approximation of the
super-ions reproduces the occupancy states wn extremely
well. This means that the probability of finding the system
outside the groove is indeed negligible �wn depend on the
norms of the multidimensional distributions ��n�, which are
only computed inside the groove�. Thus, all consequent com-
putations, which based on this key approximation, are suffi-
ciently precise.

The approximation of the super-ions can also be a practi-
cal way of computing the current and other macroscopic
properties of the channel, which are very hard to obtain ac-
curately using the generic computational procedure. The ac-
curacy of the method developed in this work is limited by the
approximation of the super-ions itself. In contrast to generic
computational procedure the computations are very accurate
and very cheap within this approximation. This makes our
technique preferable for all potential where the well-defined
groove exists.

The approximation of the super-ions is currently targeted
on fundamental understanding of the multiion diffusion in
the narrow pores. It provides theoretical description of the
well-known mechanism of so called “barrier-less knock-on
conductance” �2,18�. Indeed, it is shown that the depths of
effective potentials for the super-ions become smaller with
the increase of occupancy. The potential for the highest
stable occupancy is always almost “flat” even if the depth of
initial single-ion potential is 50–100 kBT �Fig. 3�. Thus the
corresponding super-ion moves almost freely inside the
groove and facilitates the “barrier-less conductance,” which
is a universal feature of the pores with multiple occupancy
possessing the smooth bell-like single-ion energy profiles
�18�.
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V. CONCLUSION

The general theory of the single-file multiparticle diffu-
sion in narrow pores developed in �13� can be greatly sim-
plified in rather wide class of specific shapes of the single-
ion energy profiles. In such potentials the ions move in
highly concerted manner, which corresponds to the existence
of narrow and deep groove in the energetic landscape. The
motion of multiple ions can be reduced to the motion of
single quasiparticle �the super-ion�, which moves in one-
dimensional effective potential along the groove. It is shown
that effective potentials of the super-ions, which correspond

to the conducting occupancies of the channel, are essentially
flat. This explains the phenomenon of the barrier-less con-
duction in the narrow channels with multiple occupancy in
very elegant way. The approximation of the super-ions also
reduces the computational complexity of the problem dra-
matically in comparison with the generic computational pro-
cedure.
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