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The efficiency of four different and representative models of heat engines under maximum conditions for a
figure of merit representing a compromise between useful energy and lost energy �the � criterion� is investi-
gated and compared with previous results for the same models where the efficiency is considered at maximum
power conditions. It is shown that the maximum � regime is more efficient and, additionally, that the resulting
efficiencies present a similar behavior. For each performance regime we obtain explicit equations accounting
for lower and upper bounds. The optimization of refrigeration devices is far from being as clear as heat
engines, and some remarks on it are finally considered.
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It is well known that the universal validity of the maxi-
mum Carnot efficiency �c=1−Tc /Th�1−� for any revers-
ible heat engine operating between reservoirs at temperatures
Th and Tc �Th�Tc� has little practical relevance since it ap-
plies to zero-power output heat devices. On the contrary, real
heat engines work at nonzero power and evolve along irre-
versible paths coming from finite-time and finite-size un-
avoidable constraints. Thus, thermodynamic optimization
plays a central role in order to find efficient heat engines
operating at nonzero rates �1–3�.

In a number of recent papers the subject of efficiency at
maximum power, �mp, in heat engines has been addressed
for both cyclic and steady state models of stochastic �meso-
scopic� or quantum �microscopic� systems �4–14�. From the
paradigmatic Curzon-Ahlborn expression for the efficiency
at maximum power �15�, the universality of �mp has been
analyzed through its asymptotic behavior with the Carnot
value �c
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The original Curzon-Ahlborn efficiency applies to a particu-
lar class of cyclic irreversible Carnot-like models where all
irreversibilities are limited to �linear� finite-rate heat transfers
between the working fluid and the external heat sources, so
that internal dissipation of the working fluid and heat leaks
between reservoirs are avoided �endoreversible model� �2,3�.

In particular, we briefly mention three results. First is the
one obtained by Schmiedl and Seifert �4� for a stochastic
one-dimensional Brownian heat engine performing a Carnot-
like cycle driven by a time-dependent harmonic potential.
The power output is maximized with respect to the time
interval spent by the system along the high- and low-

temperature isothermal processes. At maximum power out-
put the system efficiency is given by
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Second is the work by Tu �5� for the Feynman ratchet and
pawl model working under steady conditions optimized with
respect to both the external load and the internal energy re-
quired to lift the pawl in absence of heat exchange between
the thermal baths,
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Third is the result by Esposito et al. �6� for a nanothermo-
electric engine modeled as a single quantum level embedded
between two leads at different temperatures and chemical
potentials, working under steady conditions and optimized
with respect to the scaled electron energy barriers. Using the
perturbative method described in �6� we obtain the closed
equation given by
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ELB = 1 −

24��c − 1��cosh�a0� − 1�log�A + B�
3a0��c − 4��cosh�a0� − 1� + 2�c

2 sinh�a0�
,

�4�

where

A =
�cosh�a0 −

a0�c

4
−

�c
2

6
coth�a0/2�	 + 2�c − 1

2��c − 1�
,

B =
cosh
 1

24�3a0��c − 4� + 2�c
2 coth�a0/2���

�1 − �c

,

and a0=2.399 36. This equation, not explicitly reported in
Ref. �6�, gives the series expansion �6�
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The exact �mp results in Eqs. �1�–�3� and �5� are plotted
together in Fig. 1 where it is clearly seen that they coincide
at small temperature differences, and deviations �below or
above the Curzon-Ahlborn �CA� value� are appreciable for
relatively large temperature differences.

The approximated results for �mp in Eqs. �1�–�3� and �5�
show that the coefficients of the linear and quadratic terms
are identical for such systems, while the coefficient of the
cubic term seems to be model dependent. Very recent results
by Esposito et al. �7�, using stochastic thermodynamics for a
master equation description of a driven open system, have
shown that universality of the coefficient 1/8 of the quadratic
term is restricted to strong-coupling systems with a left-right
symmetry condition �which is satisfied by the systems con-
sidered in �4–6��. The coefficient 1/2 of the linear term
agrees with results for nonisothermal systems in linear irre-
versible thermodynamics with perfect coupling between
fluxes and forces �9–11�. Its validity has been checked by
molecular-dynamics simulations �12� and explicit theoretical
calculations of the Onsager coefficients �8,13�. Interestingly,
the coefficient 1/2 also appears for steady strong-coupling
models used in linear irreversible thermodynamics to de-
scribe some biological isothermal energy converters when
the coupling parameter tends to unity �16�. As noted, the
coefficient 1/8 of the quadratic term depends on particular
symmetry conditions.

The main goal in this paper is to show that the mentioned
kind of universality is not exclusive of the maximum power
regime. It is possible to find other performance regimes �or
figures of merit� generating optimized efficiency with the
same kind of universality which, additionally, behave as up-
per bounds. To illustrate our argument we focus on the analy-
sis of the so-called � criterion, which represents a compro-
mise between energy benefits and losses for a specific job; it
is easy to implement in any energy converter �isothermal or
nonisothermal� because it does not require the explicit evalu-
ation of the entropy generation, and it is independent on
environmental parameters. Particular details on this unified

optimization criterion can be found in �17� and explicit ap-
plications for different heat devices models have been also
reported: nonlinear systems rectifying thermal fluctuations
�18�, isothermal adiabatic rocking ratchets �19�, harmonic
quantum heat devices �20�, and coupled Carnot-like heat de-
vices in the context of linear irreversible thermodynamics
�10,11�. Moreover, this criterion is also easy to implement in
endoreversible refrigeration cycles �17�.

Pertinent to our analysis here is that for heat engines the
� criterion reads as

� = �2� − �max��Ẇ�/� , �6�

where �Ẇ� is the delivered power output and �max is the
maximum possible efficiency �17�. From this definition we
have obtained the � function for the considered models of
heat engines, calculated the conditions of maximum in terms
of the natural independent variables of each problem, and
then obtained the efficiency under maximum � conditions,
which is denoted as �m�. For the endoreversible Curzon-
Ahlborn model the efficiency at maximum � is given by
�17� �m�

CA =1−����+1�
2 �a result first obtained by Angulo-

Brown �21� using the so-called ecological criterion�, which
can be expanded as
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For the stochastic heat engine cycle model of Schmiedl and
Seifert �4� the algebra is straightforward although cumber-
some, and the result is given by

�m�
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E
, �8�

where
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which can be expanded as
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For the Feynman ratchet and pawl model considered by Tu
�5� the algebra is also straightforward, and we get
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For the nanothermoelectric engine model reported by Es-
posito et al., we start with Eqs. �10� and �11� in �6� in order
to derive the expression of �. Then we apply the condition
�xl

�=�xr
�=0 and following the same perturbative method

as in �6�, we obtain an identity at order zero, the transcen-
dental equation a0=2 coth�a0 /2� at first order, the condition
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FIG. 1. �Color� Comparison between efficiency at maximum
power �mp� and maximum � �m�� for the indicated models �see
text� of heat engines as a function of the Carnot efficiency �c.
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a1=−a0 /8 at second order, and a2=−coth�a0 /2� /6 at third
order. The closed form for the efficiency at maximum �
conditions is thus given by
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It is clear from the approximated results for �m� that they are
coincident in the coefficients 3/4 and 1/32 of the linear and
quadratic terms and model-dependent differences appears at
third and higher terms. The 3/4 coefficient has been also
reported in the context of the linear irreversible formalism
for nonisothermal �10� and isothermal �16� heat engines in
the limit of strong coupling when the efficiency is calculated
under maximum ecological conditions.

The exact results of the optimized efficiencies �m� are
also plotted in Fig. 1, where their coincidence at small tem-
perature differences can be observed while deviations �below
or above the �m�

CA value� become appreciable for relatively
large temperature differences. By inspection of Fig. 1 it is
obvious that the efficiencies under maximum of the � func-
tion behave as the efficiencies under maximum power for the
same models, thus sharing the same kind of universality. An-
other clear consequence is that in each case the maximum �
regime yields higher efficiencies, closer to the Carnot values.
In fact, it is easy to check numerically that in all cases the
exact results of the efficiency at maximum � can be approxi-
mated by the semisum of the Carnot value and the exact
results of the efficiency at maximum power, �m����mp
+�c� /2 �semisum rule �16,21��, while for the approximated
results the equality is strictly verified at first order in �c.

One first question is in order here. Why so different mod-
els of heat engines working at small temperature differences
show such a unified behavior when optimized under the
same conditions? In this regard we first recall that the origi-
nal endoreversible Curzon-Ahlborn model assumes a cyclic
internally reversible working system where the irreversibili-
ties are only due to the external coupling between �the non-
instantaneous upper and lower isothermal paths of� the work-
ing system with the external hot and cold reservoirs through
a linear Fourier heat transfer law, where the proportionality
constants are the corresponding thermal conductances
��h ,�c� �15�. Also, relevant in this model is that the maxi-
mum power efficiency is only dependent on the reservoir
temperatures and thus independent on �h and �c. With this

model in mind it is not easy to understand at all the calcu-
lated universality of efficiency at maximum power since
strongly coupled models are nonlinear and, besides, results
of the behavior of heat fluxes on temperature difference are
not explicitly reported. In particular, in the work by Schmiedl
and Seifert �4� the possibility of a linear thermal conduction
gives rise to the existence of a time-dependent thermal con-
ductivity which does not match the assumptions of the en-
doreversible Curzon-Ahlborn model. Sound and recent re-
sults by Esposito et al. �22� clarify the meaning of the
observed universality for efficiency at maximum power.
These authors considered a minimal and generic model of a
Carnot-type heat engine where the heat �input and output� is
assumed to be inversely proportional to the times during
which the system is in contact with the �hot and cold� reser-
voirs, �h and �c, respectively. All irreversibilities �dissipa-
tions� are incorporated in the corresponding proportionality
constants, which play the same role as the thermal conduc-
tances of the CA model. The key result is that efficiency at
maximum power is exactly the CA value when these con-
stant are equals. Then, the CA value of efficiency is recov-
ered without invoking any specific law for heat transfer and
considering the equality of the irreversibility constants as a
symmetry condition playing the same role as the left-right
symmetry of the fluxes in the strong-coupling systems. Thus,
universality of efficiency at maximum power �up to second
order� emerges as a general property linked to symmetric
conditions. The same reason could explain the observed uni-
versality under maximum � conditions �up to second order�,
since behind the mathematics of Eq. �6�, the � criterion just
represents a compromise between useful energy and energy
losses �dissipations� for a specific heat converter �17�.

Another relevant question arises in relation to the possible
existence of universal realistic upper and lower bounds for
optimized efficiencies. In this regard some conclusions can
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FIG. 2. �Color� �a� Upper and lower bounds for the efficiency at
maximum power for systems with left-right symmetry conditions
�Eq. �14�, dotted red lines� and without symmetry conditions �Eq.
�15�, solid green lines�; �b� same as in �a� but for the maximum �
efficiency �Eqs. �16� and �17��. In both cases we show the universal
Carnot value �black lines�.
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be extracted from the above results for efficiencies at maxi-
mum power and maximum �. Let us consider the maximum
power regime and its universal validity up to second order
for systems with well-defined left-right symmetry conditions.
Then we can write for this kind of systems

�mp��c� =
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2
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which accounts for the bounds of maximum power efficiency
of systems with left-right symmetry. If such condition is not
met, then only the coefficient 1/2 should be considered, and
a similar proof shows that the inequality in Eq. �14� becomes

�c

2
� �mp �

�c

2
�1 + �c� . �15�

The bounds defined in Eqs. �14� and �15� are plotted in Fig.
2�a�, and it can be checked that all �mp results considered in
Eqs. �1�–�5� lie �as it should be� between the lower and upper
bounds of Eq. �14�. Also note the more restrictive character
of the bounds for the systems with left-right symmetry con-
ditions.

Indeed, for the maximum � regime we can proceed in a
similar way starting with the expression �m���c�= �3�c /4�
+ ��c

2 /32�+�3
�bn�c

n and assuming positivity of the coeffi-
cients bn �n	3� for the function �m���c���c. In this case
the obtained bounds are

3�c
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for the systems with left-right symmetry conditions, and

3�c

4
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3�c

4
1 +
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3
� , �17�

for the systems without left-right symmetry conditions.
These bounds are plotted in Fig. 2�b�, and we have checked
that all above �m� results lie between bounds imposed by
Eq. �16�.

The derivation of above bounds has been based on the
positivity of all Taylor’s series coefficients for the approxi-
mated �mp��c� and �m���c� expressions of the CA, SS, T,
and ELB models of heat engines. We are not aware of any
general mathematical proof from which the positivity of the
coefficients an=dn�mp�0� /d�c and bn=dn�m��0� /d�c �n
	3� could be demonstrated for arbitrary functions �mp��c�
��c and �m���c���c with the sole conditions �c�1 and
a0��mp�0�=0, a1=1 /2, a2=1 /8, b0��m��0�=0, b1=3 /4,
and b2=1 /32. Nevertheless, we think that the reported
bounds contain explicit and valuable physical insights in the
optimization of heat engines.

Up to now all results apply to heat devices working as
heat engines. For inverse cycles the situation is less clear
than for heat engines. First, it should be stressed that in the
Carnot-like models of refrigerators with two noninstanta-
neous isotherms and two instantaneous adiabatics �i.e., the
endoreversible refrigerator model�, the power input is not an
objective function to be optimized following the original
Curzon-Ahlborn method. In other words, an optimization cri-
terion based on the coefficient of performance �COP�, 
, at
minimum power input of endoreversible refrigerator models
is not feasible �23–25�. So, a number of different optimiza-
tion criteria have been proposed for this kind of models. Yan
and Chen �23� reported an optimization study taking as the
target function 
Qc, where Qc is the cooling power of the
refrigerator. The optimized COP they obtained depends only
on � and was independently reported by Velasco et al. �24�
using a maximum per-unit-time COP and, very recently, by
Allahverdyan et al. �25� from a quantum model with two
n-level systems interacting via a pulsed external field in the
classical limit and taking as the objective function 
Qc. Nev-
ertheless, within linear irreversible thermodynamics formal-
ism the analysis of a specific working regime gave �26� a
different optimized coefficient of performance. It has been
claimed that any of those optimized COPs could be consid-
ered as equivalent to the Curzon-Ahlborn efficiency for en-
doreversible refrigeration cycles �23–26�. This is hard to
verify because, as noted before, in such refrigeration cycles
the optimization of COP at minimum input power is not
feasible. However, the � criterion is also easy to implement
in an unified way in classical refrigeration systems �17�
where the endoreversible limit is well defined �
m�

=� / ��2−�−��� and corroborated by results obtained in the
classical limit of some quantum refrigeration cycles �20�.
Quite surprising is also the situation with some other quan-
tum cooling models where the protocol involving the mini-
mum amount of work done on the system has been analyzed:
a single-level quantum system interacting with a metallic
thermal reservoir through a tunneling junction �27� and a
Brownian particle in a heat bath �28�. In both cases it has
been found that this protocol displays discontinuous jumps at
the initial and final states of the cooling process.

In summary, additional work on optimization criteria for
inverse cycles or steady systems working as refrigerators �or
heat pumps� of stochastic and quantum systems could help
one to find unified features of optimized coefficients of per-
formance under appropriate figures of merit. Even more, per-
haps a wide variety of energy converters, isothermal or not,
could share some universal characteristics, independent of its
nature or specific job. Along this line the � criterion or other
figures of merit based on an appropriate compromise could
guide future works on unified optimization criteria for any
energy converter.
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