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We study the effect of quenched randomness in the arc-length dependent spontaneous curvature of a worm-
like chain under tension. In the weakly bending approximation in two dimensions, we obtain analytic results
for the force-elongation curve and the width of transverse fluctuations. We compare quenched and annealed
disorder and conclude that the former cannot always be reduced to a simple change in the stiffness of the pure
system. We also discuss the effect of a random transverse force on the stretching response of a wormlike chain
without spontaneous curvature.
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I. INTRODUCTION

The wormlike chain �WLC� model of semiflexible poly-
mers treats the macromolecules as one-dimensional locally
inextensible curves with bending rigidity �1–5�. Despite its
simplicity and its initial success with the experiments on
stretching of ds-DNA �6�, the inherent complexity in the mi-
croscopic architecture of biological filaments invites the
search for more realistic models. One key feature of many
biopolymers, such as DNA or denatured proteins, which goes
beyond the classical WLC is their heterogeneity. Their local
architecture �e.g., spontaneous curvature� �7� or their local
elasticity �e.g., their bending rigidity� vary along the polymer
contour. At large scales, this heterogeneity may statistically
behave as a random variable. It may be fixed in time such as
that related to the different base pair sequences in DNA. This
randomness is treated as quenched disorder. If the random
inhomogeneity undergoes thermal fluctuations, it is treated as
annealed disorder. An example of the latter is the reversible
binding of proteins to DNA capable of inducing spontaneous
�intrinsic� curvature which has been studied in �8�.

The first studies of the effect of random base pair se-
quences on the macroscopic statistical properties of DNA
focused on the related random bends �spontaneous curvature�
and treated them on equal footing as the thermally excited
bends, thus considering the annealed disorder case �9–11�.
Bensimon et al. considered the effect of random angles in the
Kartky-Porod chain and using numerical transfer matrix and
Monte Carlo methods found that, as far as stretching is con-
cerned, the disordered chain behaves as a homogeneous
chain with a renormalized persistence length �12�. Nelson
calculated the effect of weak disorder on the entropic elas-
ticity of a flexible rod with random kinks and found that the
sole effect was a reduction in the apparent bending stiffness
with the twist stiffness remaining unchanged �13�. A different
way of modeling disorder has been followed by Debnath and
Cherayil �14� who considered the chain under tension as con-
sisting of random A-B blocks with different elastic constants.
The blocks were treated as “Gaussian” semiflexible polymers
�without the local inextensibility constraint�. Muhuri and
Rao �15� studied finite size effects in the Kratky-Porod chain
with a random sequence of stiffness constants.

In a recent paper �16�, we studied the response of a
weakly bending WLC with arc-length dependent spontane-
ous curvature to a stretching force applied at its ends. We
specifically considered the case of sinusoidally varying spon-

taneous curvature which allows us to treat the general case
via Fourier transformation. This simple and analytically trac-
table model appears to be particularly well suited for the
study of quenched disorder in the spontaneous curvature of a
filament under tension. This is the subject of the present
paper. A similar calculation with a different method �which is
in principle valid� was attempted in Ref. �17�, but a mistake
in the way the thermodynamic limit was taken led to the
incorrect conclusion that sequence disorder has no effect on
elasticity. Here, we use the replica trick to calculate the effect
of uncorrelated quenched disorder and we obtain the force-
extension relationship as well as force-transverse-width rela-
tionship. We compare our results with those obtained in the
context of annealed disorder. Although, as we show, the two
cases �quenched and annealed� are indistinguishable in the
limit of weak disorder, our results for quenched disorder hold
for arbitrary strength.

We also study the adaptation to the WLC of the classical
random-force model which Larkin had introduced in the con-
text of the Abrikosov lattice �18�. As with quenched disorder
in the spontaneous curvature in the weakly bending approxi-
mation, the coupling of a random force is linear and this
makes its analytical treatment straightforward. The effect of
quenched random forces on the WLC conformations has re-
cently been analyzed in �19�. Here, we deal with their effect
on the stretching response in parallel with our study of the
random spontaneous curvature.

II. MODEL

We consider a WLC fluctuating in two dimensions under
a strong stretching force applied at its end-points. The re-
striction for the chain to remain confined to a single plane is
made to allow concise analytical treatment. It certainly ap-
plies to stretching experiments on a surface �20�. Although it
is known the difference between two dimensions �2D� and
three dimensions �3D�, when the curvature of a freely bend-
ing WLC is concerned, to be nontrivial �21�, here we stay
within the weakly bending approximation where it can be
shown, using the Monge gauge �22�, that the two transverse
directions of a �1+2�-dimensional chain decouple. Our re-
covery, for a special case of disorder, of the main result of
Ref. �13� which was based on a 3D model further attests to
the validity of the main features of our results beyond 2D.
Quenched disorder along the polymer contour is represented
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by a random distribution of the arc-length dependent sponta-
neous curvature. The strong stretching force allows us to use
the weakly bending approximation which significantly sim-
plifies the analytical treatment of the filament response as
shown in Ref. �16�. The WLC conformations are param-
etrized by the displacement y�s�, transverse to the direction
of the pulling force �x�, as a function of the arc-length posi-
tion s. The elastic energy functional is given by

Hc�y�s�� =
�

2
�

0

L

ds�� �2y�s�
�s2 � − c̃�s�	2

+
1

2
f�

0

L

ds� �y�s�
�s

�2

− fL , �1�

where � is the bending rigidity related to the persistence
length via �= 1

2LpkBT, f is the applied stretching force, L is
the total contour length, and c̃�s� is the signed spontaneous
curvature. The probability distribution of c̃�s� is given by

P�c̃�s�� 
 exp�− �
0

L

ds
1

2�c
�c̃�s��2	 , �2�

and is completely characterized by c̃�s�=0 and c̃�s�c̃�s��
=�c��s−s��, where the overbar denotes an average over the
disorder. The delta function reflects the assumption of uncor-
related disorder along the polymer backbone.

Experimentally observable quantities of long polymers
with quenched disorder are expected to be self-averaging and
are calculated by averaging the free energy over the distribu-
tion of disorder �23�. This requires averaging the logarithm
of the partition function, a goal which is achieved by em-
ploying the standard replica trick �24�. Averaging the parti-
tion function itself over disorder corresponds to the annealed
system which has been studied in Ref. �17�, where it is called
the “disorder-first system.”

Besides disorder which is related to the spontaneous cur-
vature, in this paper, we also consider the effect of a random
transverse force on the force-extension relationship of a
WLC without spontaneous curvature. The elastic energy
functional of such a system is given by

Hg�y�s�� =
�

2
�

0

L

ds� �2y�s�
�s2 �2

+ �
0

L

dsg�s�y�s�

+
1

2
f�

0

L

ds� �y�s�
�s

�2

− fL . �3�

As usual, the distribution of the random force g�s� is as-
sumed to be completely determined by g�s�=0 and
g�s�g�s��=�g��s−s��. The random coupling term in Eq. �3�
can be viewed as expressing the interaction of a stretched
semiflexible polyampholyte with a quenched linear charge
density g�s� /E and a uniform transverse field E. An alterna-
tive interpretation of Eq. �3� views g�s� as representing a
random interaction with the crowded environment in which
the filament fluctuates. Strictly speaking, quenched disorder
in the embedding medium �environment� should entail a
term �0

Ldsg�x�s��y�s�, where x�s�=s− 1
2�0

sds���s�y�s���2, in-
stead of the one written above, but g�s� is expected to cap-
ture the leading-order behavior in the weakly bending limit.

III. REPLICA TRICK

The standard method to deal with the quenched disorder
average involves averaging over n identical noninteracting
copies �replicas� of the system �24�. In the end, the replica
limit n→0 is taken. The free energy is calculated via ln Z
=limn→0�Zn−1� /n, where Z is the partition function of the
system with a certain realization of the disorder. Zn can be
expressed as Zn=exp�−H�rep� /kBT�.

For the random-spontaneous-curvature system described
by Eq. �1�, the replica “Hamiltonian” takes the form

Hc
�rep� =

1

2
�

0

L

ds�
a=1

n ��� �2ya�s�
�s2 �2

+ f� �ya�s�
�s

�2	
−

�c�
2

2kBT�1 + n��c/kBT��0

L

ds �
a,b=1

n � �2ya�s�
�s2 �

�� �2yb�s�
�s2 � , �4�

where we have omitted constant terms and the subscripts a, b
label the replicas of the original system. In Ref. �16�, we
have shown that in the strong stretching regime, where f
�� /L2, the details of the boundary conditions become irrel-
evant. Therefore we can assume hinged-hinged boundary
conditions and a chain with vanishing curvature at its end-
points. In this case, we can use the Fourier decomposition

ya�s� = �
m=1

�

Aa
�m� sin�qms� , �5�

where qm=�m /L is the wave number of the corresponding
m-mode, and express the replica “Hamiltonian” of Eq. �4� in
a quadratic matrix form. Correlators can be calculated using
the Sherman-Morrison formula from linear algebra. In the
replica limit �n→0�, we get

Aa
�m�Ab

�m�� =
2kBT

Lqm
2 ��qm

2 + f�
�ab +

2�c�
2

L��qm
2 + f�21ab, �6�

where 1 is an n�n matrix with all of its elements equal to 1.
Using the matrix determinant lemma and taking the replica
limit we also calculate the disorder-averaged free energy and
obtain

Ḡc = −
kBT

2 �
m=1

� �ln� �

kBT
��qm

2 + f�� −
1

kBT

�2�cqm
2

��qm
2 + f�	 . �7�

For the random-force system described by Eq. �3�, the
corresponding replica “Hamiltonian” is given by the ana-
loguous procedure,

Hg
�rep� =

1

2
�

0

L

ds�
a=1

n ��� �2ya�s�
�s2 �2

+ f� �ya�s�
�s

�2	
−

�g

2kBT
�

0

L

ds �
a,b=1

n

ya�s�yb�s� . �8�

Using similar calculations as in the case of random sponta-
neous curvature, we obtain the correlators
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Aa
�m�Ab

�m�� =
2kBT

Lqm
2 ��qm

2 + f�
�ab +

2�g

Lqm
4 ��qm

2 + f�21ab, �9�

and the disorder-averaged free energy

Ḡg =
kBT

2 �
m=1

� �ln� �

kBT
��qm

2 + f�	 −
1

kBT

�g

qm
2 ��qm

2 + f�� . �10�

IV. FORCE-EXTENSION RELATIONSHIP

The average projected length of the filament in the direc-
tion of the stretching force is given by

x�L�� = L −
1

2
�

0

L

ds�� �y�s�
�s

�2� , �11�

where

�� �y�s�
�s

�2� =
1

2 �
m=1

�

qm
2 �A�m��2� �12�

and

�A�m��2� = lim
n→0

1

n
�
a=1

n

Aa
�m�Aa

�m�� . �13�

In the strong stretching regime, defined by f � fcr� fL, where
fcr�� /Lp

2 and fL�� /L2 �the shorthand notation defining the
characteristic force scales�, we obtain

x�L��
L

− 1 = −
1

2
� fcr

f
�1/2

−
1

8
�cL� fL

f
�1/2

. �14�

Equation �14� is the central result of our paper. The first
term in the right-hand side �rhs� is the well-known expres-
sion associated with the ironing out of the thermal undula-
tions �25�. The second term comes from straightening the
quenched random undulations related to the spontaneous cur-
vature. This result implies that, as far as the force-extension
response is concerned, uncorrelated quenched disorder in the
spontaneous curvature acts as an effective linear increase in
the temperature given by kB�T=��c /2 �using Lp=2� /kBT�.
We also point out that for given bending rigidity and disorder
strength, the effect of disorder on the force-extension rela-
tionship is independent of the polymer size L. This result
holds for arbitrary strength of disorder, provided that the
strong stretching and weakly bending assumptions are ful-
filled. Our result does not contradict the claim by Marko and
Siggia �25� that disorder related to intrinsic bends with large
radius of curvature compared to the persistence length do not
alter the large f limit. In fact, any arc-length dependent spon-
taneous curvature whose Fourier spectrum has bounded am-
plitude does not alter this limit. As we have shown in �16�,
the response of a weakly bending WLC with arbitrary �but
bounded� spontaneous curvature is the superposition of the
responses corresponding to sinusoidally varying modes of
curvature. The latter contribute terms which scale as 
f−2

and become negligible compared with the thermal term

f−1/2 as the stretching force increases. The crucial differ-

ence with the case of uncorrelated disorder is that the latter
contains bends of unbounded sharpness in a similar fashion
as the thermal excitations do. That is the physical reason why
the disorder term in Eq. �14� has the same form as the ther-
mal one. Of course, uncorrelated disorder with zero correla-
tion length is a mathematical abstraction. In real systems,
there will be a maximum wave number, qmax, in the spectrum
of random undulations of the spontaneous curvature. For f
	�qmax

2 �16�, disorder approximately behaves as uncorre-
lated and our Eq. �14� is expected to hold. For f ��qmax

2 , the
Marko-Siggia �thermal� limit for large f will prevail.

An alternative way to obtain the force-extension relation-
ship is by taking the derivative of the disorder-averaged free
energy given in Eq. �7� with respect to the stretching force:

� fḠc= �x�L��−L� /L. As expected, both ways yield exactly
the same result.

In Ref. �17�, it is shown that the effect of annealed disor-
der in the spontaneous curvature amounts to the replacement
of the original bending rigidity � by �ef f =� / �1+�c� /kBT�.
This implies that for weak disorder, defined by �c	kBT /�,
the approximate linear relation holds �ef f ���1−�c� /kBT�
and we immediately recover the response described by Eq.
�14�. In this regime, quenched disorder has the same effect as
annealed disorder. This is the regime treated in Ref. �13�. The
difference between the two types of disorder becomes sig-
nificant in the case of strong disorder, where �ef f �kBT /�c.
In the quenched case, the second term in the rhs of Eq. �14�
dominates the response. In the annealed case, we would have
gotten − 1

4�cL�fL / f�1/2 instead which differs by a factor of 2.
A more significant qualitative difference between quenched
and annealed disorder can be deduced from the form of Eq.
�6�. Except for the weak regime, the effect of quenched dis-
order cannot be reduced to a simple renormalization of the
bending rigidity.

The force-extension relationship for the random-force
system of Eq. �3� can be calculated in a similar fashion,
taking into account Eqs. �9� or �10�. For strong stretching,
f � fcr� fL, we obtain

x�L��
L

− 1 = −
1

2
� fcr

f
�1/2

−
1

6

�gL

f2 . �15�

We notice that as the stretching force increases, it quickly
irons out the bends caused by the random force and the re-
sponse is dominated by the classical thermal undulations. On
the other hand, for given stretching force, bending rigidity,
temperature, and disorder strength, the effect of disorder
grows linearly with the contour length L and becomes domi-
nant in the thermodynamic limit �f needs to increase accord-
ingly in order to stay within the weakly bending approxima-
tion�. This is an interesting similarity with the random-force-
induced destruction of long-range order in the Abrikosov
lattice according to the Larkin model �18�. Comparing Eq.
�15� with the result obtained in Ref. �16� for the force-
extension relationship of a WLC with sinusoidally varying
spontaneous curvature along the polymer contour, we see
that the random force effectively acts as spontaneous curva-
ture of that type with amplitude cef f = ��gL /3�2�1/4.
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V. TRANSVERSE FLUCTUATIONS

The shape of transverse fluctuations of a stretched fila-
ment, �y�s��2�, is a useful diagnostic tool of its elasticity
distinct from its extension in the direction of the pulling
force, x�L�� �26�. Using the correlators of Eq. �6�, we cal-
culate the width of the transverse fluctuations at the midpoint
�s=L /2�, for f � fL, and obtain

��y�s =
L

2
��2� =

LkBT

4

1

f
+

�c�
3/2

4

1

f3/2 . �16�

For strong disorder, the second term in the rhs of the above
equation, which scales as 
f−3/2, can dominate over a range
of forces before it is overtaken by the thermal term which
scales as 
f−1. In the annealed case the disorder-related term
is absent, whereas in the case of weak disorder, �c	kBT /�,
it is negligible. We point out that strong quenched disorder in
the spontaneous curvature causes a qualitatively different be-
havior in the response of transverse fluctuations which can-
not be simply reduced to a renormalization of the persistence
length of the undisordered wormlike chain. We see that the
claim by Bensimon et al. �12� that “a random Kratky-Porod
chain with a certain type of disorder is well approximated by
a pure chain with an effective elastic constant” is not totally
correct. It only applies to the force-elongation curve and can-
not be extended to the transverse fluctuations of a strongly
disordered WLC.

For the random-force system, the width of the transverse
fluctuations at the midpoint �s=L /2�, for f � fL, is given by

��y�s =
L

2
�	2� =

LkBT

4

1

f
+

�gL3

48

1

f2 . �17�

The random-force contribution scales as a higher power of
the filament length L and thus is relevant in the long chain
limit.

VI. CONCLUSIONS

We studied how the uncorrelated disorder in the sponta-
neous curvature of a weakly bending WLC affects its re-
sponse under strong tension. The force-elongation curve for
quenched disorder is identical to that of a pure system at a
higher temperature. The quenched case is identical to the
annealed case in the limit of weak disorder where its effect
can be reduced to a decrease in the bending stiffness. This is
no longer true as the disorder becomes stronger and our re-
sults hold for arbitrary strength. The effect of strong
quenched disorder on the force dependence of the width of
transverse fluctuations cannot be simply reduced to an effec-
tive change in the temperature or the bending stiffness of the
pure chain.

We also studied the influence of uncorrelated quenched
disorder in the transverse force along the contour of a WLC
without spontaneous curvature under tension. In this case,
the force-elongation curve is identical to that of a pure WLC
with sinusoidal spontaneous curvature. We also find that the
effect of the random force increases with the length of the
chain. A strong random force may qualitatively alter the
force dependence of the transverse fluctuations over a range
of pulling forces.
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