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We investigate the possibility of exploiting the speed and low noise features of Josephson junctions for
detecting sinusoidal signals masked by Gaussian noise. We show that the escape time from the static locked
state of a Josephson junction is very sensitive to a small periodic signal embedded in the noise, and therefore
the analysis of the escape times can be employed to reveal the presence of the sinusoidal component. We
propose and characterize two detection strategies: in the first, the initial phase is supposedly unknown �inco-
herent strategy�, while in the second, the signal phase remains unknown but is fixed �coherent strategy�. Our
proposals are both suboptimal, with the linear filter being the optimal detection strategy, but they present some
remarkable features, such as resonant activation, that make detection through Josephson junctions appealing in
some special cases.
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I. INTRODUCTION

Detection of sinusoidal signals corrupted by Gaussian
noise is, in principle, a completely solved problem. It can be
proven that in the framework of statistical decision theory
�Neyman-Pearson scheme� an adapted linear filter imple-
mented via a Fourier transform is the optimal choice �1�.
Unfortunately it is not always possible to apply such optimal
detection strategy, due to a huge amount of data to process or
to the extreme weakness of the signal to be detect. As an
example we mention the all-sky all-frequency search for
gravitational waves emitted by a pulsar �2�, the search for
continuous monochromatic signal in radio astronomy �3� and
the detection of terahertz radiation �4�. When the optimal
choice is not applicable, suboptimal strategies should be
compared �5�: for example it has been proposed to use ge-
neric bistable systems �6,7�. The general idea is the follow-
ing: the oscillatory signal corrupted by noise is applied to a
nonlinear bistable element that transforms the original signal
to a new one, simpler to analyze. In other words, instead of
applying a linear matched filter to the source signal, one
inserts a nonlinear element; such insertion cannot improve
the overall performance �8�, but can make detection easier or
can reduce the computational or memory burden.

Among nonlinear elements �like generic bistable devices
�6� and superconducting systems �9�� a good candidate is the
Josephson Junction �10� �henceforth JJ� for two important
reasons: �1� JJs are extremely fast elements, that can easily
operate above 100 GHz and up to the terahertz region �11�;
�2� JJs, being superconductive elements, can be cooled close
to absolute zero or to the quantum noise limit �12�, thus
lessening the additional contribution of thermal noise from
the bistable element. The detection of small signals in the
presence of noise with JJs has been reported in two configu-
rations: investigating the magnetic flux trapped by a JJ
closed in a superconducting loop �13,14� �thus forming a
superconducting quantum interference device �SQUID� �10��
or analyzing the switching from the metastable locked solu-
tion to the running state of an underdamped isolated JJ �15�.
The SQUID exhibits a standard double well potential equiva-

lent to the classical case, well known in the context of sto-
chastic resonance �16,17� as a relevant phenomenon for sig-
nal detection �6,18�, although suboptimal �8�. However
SQUIDs, even if they are very sensitive and well studied
systems, meet a principal drawback in their limited band-
width, typically bounded to few kilohertz �18,19�. The es-
cape from the static solution of single JJ �15�, being ex-
tremely fast, seems to be promising for signal processing. In
this paper we aim to characterize such a device as a detector.

The detection scheme that we propose is closely related to
the general problem of passage over a time-dependent bar-
rier. More precisely, when the JJ passes the maximum of the
time-dependent potential, switching from the static to the
running solution, it sets the first passage time across an ab-
sorbing barrier �20�. So the mean time between the initial
state and the switch �or absorption� can be interpreted as a
mean first passage time. Signal detection is then based on the
possibility of ascertaining if the first passage times are due to
a constant barrier �no signal present� or by an oscillating
barrier �signal is present�.

II. MODEL AND DETECTION STRATEGIES

The tunnel of Cooper pairs and normal electrons through
a JJ biased with a sinusoidal signal of amplitude S0, a noise
signal S�t� and an additive thermal noise N�t� can be mod-
eled by the Langevin equation �10�,

C
d2�

dt2 +
1

R

d�

dt
+ Ic sin��� = IB + S0 sin��t + �0� + S�t� + N�t� .

�1�

Equation �1� is called underdamped because of the presence
of the second derivative, or non negligible capacitance. In
normalized units the equation reads:

�̈ + ��̇ + sin��� = � + � sin��t̃ + �0� + ��t̃� + ��t̃� . �2�

Here �= �	 /2eIcC�1/2 /R is the dissipation �Ic, R, and C
are the critical current, the resistance and the capacitance of
the junction�, �= IB / Ic, the dc bias due to the physical bias
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current IB. These parameters can be adjusted in the experi-
ments, although it is not easy to control dissipation �deter-
mined by the normal resistance R� one could in principle
insert shunt resistors to achieve the desired level of dissipa-
tion. We have set �=0.2 and �=0.6 without performing any
parameter optimization to devise the best compromise be-
tween signal detection performances and experimental sim-
plicity: we have just fixed the parameters for numerical con-
venience. Furthermore �=S0 / Ic is the amplitude of the ac
signal, � j = �2eIc / �	C��1/2 the Josephson frequency, and t̃
=� jt the normalized time. Overdot denote the derivative re-
spect to t̃.

In Eq. �2� two random terms appear, � that represents
thermal current fluctuations of intensity ���t̃���t̃���
=2�
��t̃− t̃��, �
=2ekBT / �	Ic� is the normalized tempera-
ture� and � that represents an additive noise with autocorre-
lation function of intensity D, viz ���t̃���t̃���=2D��t̃− t̃��,
corrupting the external signal. To assume that the signal is
only corrupted by an additive term is a simplification: noise
can affect the signal in several ways, for instance as a band-
pass noise, multiplicative noise, phase noise, or as frequency
fluctuations. We have focused on the simple case of additive
noise �that is a paradigm in signal processing�; however we
expect that the results can be indicative of the behavior also
for other noise sources. For instance frequency fluctuations
of the drive in a JJ can be treated, in some limits, as an
additive noise �21�. Quantum fluctuation contribute as an
equivalent thermal source of temperature 
�=e�J / ��Ic�
�14,22�, that can be confused with the stochastic effects �23�.
Thus it is in principle always possible to decrease the tem-
perature, proportional to 
, to reduce fluctuations to an un-
avoidable quantum noise level.

A washboard potential is associated with Eq. �2� �10,24�,

U��� = − �� − cos��� . �3�

The washboard potential �Eq. �3�� for �
1 gives rise to a
barrier �24�,

�U��� = 2��1 − �2 − � cos−1���� . �4�

If the oscillating current is zero ��=0� for low noise �
�D,
D��U� escape occurs at a rate r0 �20�

r0 � �K
−1 exp��U

D
	 . �5�

Such a rate is related to the average escape time �0=1 /r0
��K is the Kramer prefactor, see �20��. The escape times can
be directly measured in experiments �23,25�. In fact when an
underdamped junction leaves the metastable zero voltage
state it switches to a running state with which is associated a
voltage. It is therefore possible to measure the time elapsed
from the application of the signal to the escape.

The possibility of experimentally determining the prob-
ability distribution of the escape times and the average es-
cape rate is the key feature that we want to exploit for signal
detection. More precisely, we propose to take advantage of
the exponential dependence of the mean escape time upon
the barrier height. The escape waiting time is highly sensitive
to the amplitude of the signal �26� as noticed since the pio-

neering experiments �27� that reported the striking changes
into the escape time distributions for the resonant activation
of JJ. For the case of no signal, the expected residence time
distribution is exponential, while for oscillating barriers the
distribution is modified and the average changed. The phe-
nomenon has been thoroughly analyzed for overdamped sys-
tems �28� with colored noise �30� and measured for under-
damped systems �15�. For square wave signals, where a
sudden switch of the barrier �Eq. �4�� between two values
occurs, a remarkably accurate estimate has been proposed
�26�. Unfortunately, when a sinusoidal signal is embedded in
noise and the barrier �Eq. �4�� is modulated, the formula of
Ref. �26� is no longer valid. Moreover, the method used in
Refs. �15,26� assumes that the signal is applied with a known
phase ��0 in Eq. �2�� and therefore the escape time distribu-
tion is a function of the initial phase �15�. In the context of
signal detection, the frequency of the signal might be un-
known, and therefore such approach could be inapplicable.
In this paper we propose to use two procedures. The first can
be implemented without knowledge of the phase �incoherent
detection�, and only relies on detection of the escape time
and subsequent reset of the system to the bottom of the po-
tential well �see Fig. 1�. The second strategy �coherent de-
tection� uses the phase parameter �that is supposed constant,
although unknown� and hence is more similar to the ap-
proaches �15,26�.

The procedure that we propose for the incoherent detec-
tion strategy is the following: �a� the signal-noise is applied
with an unknown initial phase �0 in Eq. �2�; �b� when an
escape occurs in the evolution of Eq. �2� �the junctions
reaches the metastable state Umax� the time �i necessary for
such an escape is recorded and the signal-noise is arrested or
disconnected from the system; �c� the JJ is reset to the bot-
tom of the potential well Umin; �d� the signal-noise is reap-
plied, i.e., Eq. �2� is integrated adding ��i to the previous
initial phase. We have numerically checked that after few
iterations the memory of the initial phase �0 is lost and that
the long term distribution of the escape times is independent
of the choice of the initial phase. It is therefore also possible
to apply the incoherent strategy if the initial phase is un-
known.

In the second case �coherent detection strategy� one as-
sumes that the frequency � of the signal is fixed. Under such

Umax

Umin

� U� Umax�Umin

�

U���

FIG. 1. A picture of the potential barrier and of the detection
procedure. When the phase �depicted as a dashed circle in figure�
reaches the top of the barrier from the left, the system is restarted
with a suitable initial phase from the bottom �black disk in figure�
of the potential well U���.
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a hypothesis, we adopt the following procedure �for square
signals it corresponds to the procedure of Ref. �15��: �a� the
signal-noise is applied with an unknown initial phase �0 to a
JJ that is at rest in the bottom of the potential well �Eq. �3��.
The phase between the signal and the JJ is therefore fixed,
but concealed; �b� when the escape occurs, the escape time �i
to reach the metastable state Umax is recorded and the signal-
noise is only arrested after a time that is a multiple of the
period 2� /� of the external radiation to guarantee that the
same �unknown� initial phase �0 of the signal is retrieved; �c�
the JJ is reset to the bottom of the potential well Umin to
reproduce the same initial conditions as at point �a�; �d� the
signal is restarted, i.e., Eq. �2� is reapplied, and it will have
with respect to the JJ the same initial phase �0. We remark
that the phase difference between the JJ and the signal, �0, is
frozen but unknown. To interpret the data it is necessary to
reproduce the results for all values of �0. In fact the distri-
bution of the escape times depends upon the initial phase �0,
as will be discussed in Sec. IV.

We remark on the main difference between the two strat-
egies: when the system switches from the locked to the run-
ning state in the incoherent strategy we immediately stop the
application of the noise-signal, while in the coherent strategy
we let the signal run to retrieve the initial phase.

For both strategies if the signal is digitally recorded, as it
is the case for the all-sky-all-frequency search of gravita-
tional waves emitted by a pulsar, a preliminary digital/analog
conversion could be required to obtain a signal in the JJ
frequency range. In this case it is possible to apply the re-
corded signal with a much faster time, in the GHz range or as
fast as the electronics allows �while the real time signal
might be slower� thus achieving a considerable speed up.

Typical complementary cumulative distribution function
�CCDF� of the escape times in presence of a sinusoidal sig-
nal ��=0.2, broken lines� and without signal ��=0, solid
line� have been simulated by numerical integration of Eq. �2�
with the Euler method �29� and are shown in Fig. 2. Such a
Figure can also be interpreted as the CCDF for the passage

times of a particle in a well over an oscillating barrier �bro-
ken lines� or over a constant barrier �solid line�.

From the data, it is clear that the CCDF for the two strat-
egies, coherent and incoherent, are very similar, with just a
change in the slope and therefore a change in the average
escape time.

III. RESULTS FOR INCOHERENT DETECTION

In Fig. 3, we show the estimated average escape times
through Umax �see Fig. 1� vs � of a phase particle subject to
an external drive and detected with the incoherent strategy
�dot-dashed line of Fig. 2�. Around the normalized Josephson
resonant frequency �0= �1−�2�1/4 the escape time is very
sensitive to the external signal, in fact it exhibits a large dip,
i.e., a pronounced deviation of the average escape time re-
spect to the unperturbed value even for small � /�D. �We
recall that � /�D is proportional to the signal to noise ratio,
SNR�. At low frequencies the deviations are less pronounced
but still relevant, while for high frequencies one recovers the
Kramer escape time of the unperturbed system �20�. It is
clear that there is a wide range of frequencies �0,�0� where
the analysis of the estimated average escape times ���S can
give a clue to the presence of an external drive corrupted by
noise, as they are different from the average of the escape
times without the signal, �0.

To make such analysis more quantitative, in Fig. 4 we
have adopted the Kumar-Carroll �K-C� index dKC �6�,

dKC =

���S − ���N


�1
2 ��2���S + �2���N�

, �6�

where ���S , ���N are the estimated average escape time over a
prescribed interval T, with and without signal, respectively.
We have also denoted with ����S ,����N the corresponding
estimated standard deviations. The K-C index �Eq. �6�� is
related to the receiving operating characteristics �ROC� of
the detector, and as a rule of thumb is well approximated by
the ROC of a matched filter with signal to noise ratio equal

noise
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FIG. 2. The complementary cumulative distribution function
�CCDF� of the escape time with signal �=0.2 in the incoherent
�dot-dashed line� or coherent �dashed line� case. We also show the
response to pure noise �solid line�. The initial phase for the coherent
strategy is �0=0. Parameters are: �=0.5, �=0.2, �=0.86, D
=0.05, �0= �1−�2�1/4�0.93.

0.001 0.01 0.1 1 10

80

90

100

110

120

130

Ω

�
Τ�

S

FIG. 3. Typical estimated ���S as a function of � �T
=2 1052� /�0� for the incoherent detection strategy. Parameters
are: �=0.5, �=0.2, D=0.05, �=0.1. The average escape time in
absence of the signal is �0=134.6.
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to dKC �31�. In Fig. 4, it is evident, as expected, that dKC
grows by increasing the observation time T. The statistical
analysis of Fig. 4 confirms the result of Fig. 3, i.e., the exis-
tence of a peak at the geometric resonance �0 �dKC�25 at
T�104�2� /�0��, and of an interesting region for lower fre-
quencies �dKC�5�, while the method seems inapplicable at
frequencies above �0 �dKC�1�. From Figs. 3 and 4 it is also
clear that there is no evidence of stochastic resonance �17�
due to resonant activation, or prominent signal detection at
matching between the external drive frequency and the noise
induced unperturbed escape rate, as reported for instance in
Ref. �15�. In contrast to stochastic resonance the results of
Figs. 3 and 4 only display a noise independent resonance at
�0. This difference can be ascribed to the peculiar manner in
which the external signal is applied. In the incoherent strat-
egy the system looses memory of the phase of the signal at
the passage through the absorbing barrier �see Sec. II�. In-
stead in Ref. �15�, the system is reset after each switch—such
reset corresponds to the coherent detection to be analyzed in
Sec. IV.

In Fig. 5, we show the K-C index for several values of the
ratio � /�D. The purpose is to emphasize the behavior for
small SNR, when reliable stochastic simulations are prohibi-
tive. The data reduction demonstrates that the K-C index
decreases roughly as an inverse power law of the SNR; the
best fit procedure gives an upper bound of �1.5 for the ex-
ponent. Extrapolating the results, it is thus possible to infer
the behavior for SNR’s lower than those reported in the fig-
ure. We recall that these performances refer to a specific
signal duration T=2 105 �2� /�0� in Fig. 5. The K-C index
increases extending the detection time T, insofar as the K-C
index is roughly proportional to �T, see also Fig. 4. Thus
combining the numerical power estimated by Fig. 5 and the
square root dependence of the K-C index captured by the
data of Fig. 4 it is possible to predict that to keep a fixed dKC

while lowering � /�D, the detection interval should increase
as T��� /�D�−3. Consequently, by extending the detection
time T one can also achieve the desired level of the K-C

index for low values of SNR. As expected, the matched filter
requires shorter detection time �T��� /�D�−2�.

IV. RESULTS FOR COHERENT DETECTION

In Sec. II. we discussed the possibility of detecting a sig-
nal at a predetermined frequency � employing a coherent
detection strategy. In such strategy the signal is always ap-
plied with the same initial phase. The analysis of the esti-
mated average escape time in presence of a signal with initial
phase �0=0 is reported in Fig. 6. The data show a remark-
able dip at low frequency ���0.01�, that is not present in
the incoherent detection strategy, see Fig. 3. To compare the
performances we analyze the K-C index �6� in Fig. 7. This
analysis, as does the simpler analysis of Fig. 6, confirms the
existence of an interesting region �dKC�10� at low fre-
quency ���0.01� that is not present in the incoherent strat-
egy �see Fig. 4�.
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FIG. 4. The dependence of the K-C index as a function of an-
gular frequency for parameters �=0.5, �=0.2, D=0.05, �=0.1 in
the case of the incoherent detection strategy. The curves displayed
are for different observation time T=2�N /�0, where N=10p.
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FIG. 5. The dependence of K-C index as a function of scaled
signal amplitude � /�D �proportional to the SNR� for the incoherent
detection strategy. The parameters used are �=0.5, �=0.2, �=�0,
T=2 1052� /�0.
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FIG. 6. Typical estimated ���S as a function of � �T
=2 1052� /�0� for the coherent detection strategy. Parameters are
�=0.5, �=0.2, D=0.05, �=0.1, �0=0. The average escape time in
absence of the signal is �0=134.6.
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In Fig. 8, we show the dependence of the K-C index as a
function of the signal scaled amplitude � /�D �compare to
Fig. 5 for the incoherent analysis�. This analysis leads to the
same conclusion as for the incoherent strategy, i.e., by in-
creasing the detection time T��� /�D�−3 one can achieve the
desired level of the K-C index.

A second resonant condition for the coherent detection
strategy occurs at the angular frequency:

� = C��0��2�

�0
	 , �7�

where �0 is the escape time of Eq. �2� for �=0. The factor
C��0� reads 1/4 for �0=0 and is different from the frequency
condition of the standard stochastic resonance �7�. This dif-
ference has been also reported in the experimental findings
of Refs. �15,26�. In Fig. 9 the frequency relation �7� is further
elucidated: we show for different values of D the estimated

escape time. From the figure it is clear that the largest devia-
tion of the signal induced average escape time ���S occurs at
the matching condition described by Eq. �7� over a wide
range of noise intensity, 0.04�D�0.2. Figure 9 thus indi-
cates the presence of a stochastic resonance between the
noise �which determines �0� and the frequency � of the ex-
ternal signal. We ascribe the change in Eq. �7� with respect to
the traditional stochastic resonance to the peculiar choice of
initial conditions. The reset of the initial conditions changes
the effective waveform of the signal, see Fig. 10. Let us
define P��0� as the time from the initial phase and the phase
that corresponds to the maximum of the signal and therefore
to the minimum of the barrier �Eq. �4��. Assuming that the
effective waveform of the signal is of the type depicted in
Fig. 10, the matching condition for stochastic resonance
shown in Fig. 11 is that the barrier reaches a minimum in a
time P��0� close to the noise induced escape from the lowest
energy well. Such resonant condition depends upon the ini-
tial phase �0; in Fig. 12, we report the scaled deviations of
the average estimated escape time in presence of the signal
as a function of the ratio 2� /�0� for different values of the
initial phase �0. We hypothesize that the horizontal axis po-
sitions of the relative minimal C��0�−1 in Fig. 12�a� corre-
spond to the resonant condition of Fig. 11. In other words,
we observe that a resonant condition occurs when the time
�0��U−� to escape the minimum barrier �denoted by �U− in
Fig. 11� matches the time in which the oscillating barrier
reaches a minimum:

�0��U−� = P��0� . �8�

The resonance phenomenon described by Eq. �8� is evident
in Fig. 12�a� where the barrier reaches a minimum in a single
ramp-up. Equation �8� has been compared with numerical
data in Fig. 13 and shows excellent agreement. This simple
picture does not hold when the barrier non-monotonically
reaches the minimum; in fact in Fig. 12�b� the condition �8�
is not valid for �0=�.
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FIG. 7. The dependence of K-C index as a function of scaled
angular velocity for the coherent detection strategy. Parameters are
�=0.5, �=0.2, D=0.05, �=0.1, �0=0. The curves displayed are for
different observation time T=2�N /�0, where N=10p.
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FIG. 8. The dependence of K-C index as a function of scaled
signal amplitude � /�D �proportional to the SNR� for the coherent
detection strategy. The parameters used are �=0.5, �=0.2, �=�0,
T=2 1052� /�0.
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FIG. 9. Scaled estimated average escape time ���S in presence of
signal, vs scaled period 2� /�0� for different values of D in the case
of coherent strategy �initial phase �0=0�. The parameters used are
�=0.5, �=0.2, �=0.1, �0 is the �=0 escape time. The vertical grid
line indicates the resonant condition �7�.
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We wish to underline the following remarks about Eq. �8�:
�1� The prediction of Eq. �8� in the case �0=0, P��0�

= �1 /4��2� /�0�, correctly describes the experimental finding
of an harmonically driven underdamped JJ, see Ref. �26�;

�2� When the barrier decreases monotonically �−� /2
��0�� /2� and the escape occurs in a single ramp-up of the
signal �see Fig. 10�, the physical situation is similar to a
fluctuating barrier �26,32–34�: the time in which the wash-
board potential reaches the minimum, P��0� in our notation,
plays the role of the barrier flipping rate in Refs. �26,32–34�.

�3� By varying the bias current � �which is an external
parameter� one can set the most appropriate barrier �see Eqs.
�4� and �5�� to match the resonant condition �8�.

A qualitative argument to understand the behavior when
the signal does not reach a maximum in a single ramp-up
�see Fig. 12�b�� can be sketched following Ref. �33�, where it
has been noticed that a resonant activation occurs in two
cases:

�a� The low and high frequency limits of the escape times
are identical: an extremum occurs if the derivative with re-
spect to � of the barrier is nonzero;

�b� The low and high frequency limits of the escape times
are different: an extremum occurs if the derivative with re-
spect to � of the escape time is opposite to the difference of
the limits.

The low frequency limit of the escape time can be esti-
mated with an heuristic argument �see the Appendix for de-
tails�,

���0,�� � �Ke−�U�� sin��0�+��/D�1 + A�� cos��0��

+ O
�����0,���2� , �9�

where �K is the Kramer prefactor and the positive constant A
reads:

A = −
�K

D
e−�U�� sin��0�+��/D�U��� sin��0� + �� . �10�

The high frequency limit �see the Appendix� is given by the
time independent potential:

���0,�� � �K exp�−
�U���

D
� + O� 1

����0,��
	 . �11�

A consequence of Eqs. �9� and �11� is that for 0���� the
low frequency limit of the barrier is lower than the high
frequency limit, and therefore the escape time will be longer
�the reverse situation will be observed in the range −���
�0�. From Eq. �9� we are able to compute the following
derivative:

d���0,��
d�

� �Ke−�U�� sin��0�+��/DA� cos��0� + O�����0,��� .

�12�

Equation �12�, valid in the low � regime, shows that the
corrections to the zero frequency limit ���0 ,0�
��Ke−�U�� sin��0�+��/D have the same sign of the derivative of
the external drive, i.e., sign�cos �0�. The results of Fig. 12
confirm this picture: a resonance, or a nonmonotonic behav-
ior is observed for all initial phases but �0= �� /2 �where
the signal derivative vanishes and one should consider higher
order corrections� and is most evident for �0=0 ,�—where
the signal derivative is at a maximum. In the most effective
cases, �0=0 and �0=�, the former leads to the condition �8�
with C��0� correctly predicted by Eq. �7� �see also Fig. 13�,
while the latter ��0=�� exhibits a different frequency rela-
tion when the signal maximum not reached in a single ramp-
up.

0 1 2 3 4 5 6

�0�Π�4

0 1 2 3 4 5 6

�0�0

0 1 2 3 4 5 6

�0��Π�4

0 1 2 3 4 5 6

�0��Π�2

FIG. 10. Effective waveforms for a system prepared with initial phase �0=−� /2, −� /4, 0, � /4. The figures show the sinusoidal drive
between the initial phase �0 and the maximum of the signal, �=� /2.
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V. CONCLUSIONS

We employed the escape times of a JJ from the locked
state as a statistic tool to detect sinusoidal signals corrupted

by noise. We have determined the main features of such a
statistical detector for both incoherent and coherent detec-
tion. For the former we found that the detector: �i� is most
sensitive to the signal in proximity to the junction resonance,
�ii� shows a clearly asymmetric behavior in frequency: very
low sensitivity above the resonance, and relatively good per-
formance for lower frequencies. In the coherent case, which
requires a priori knowledge of the applied frequency, the
performance depends upon the initial phase. For an appropri-
ate choice of the initial phase it is also evident a resonant
activation, i.e., a matching condition between the noise in-
duced escape time and the external frequency, Eq. �8�, well
fits the numerical data. Our analysis of the role of the initial
phase extends the previously observed resonant escape �26�.
Future research could be directed toward: �i� development of
better detection strategies; �ii� coupling two or more ele-
ments to exploit the properties of arrays of JJs �35�; and �iii�
a more accurate analytical treatment of phase dependent
resonant activation phenomenon.

We remark that the detection scheme based on JJs is sub-
optimal, but could prove fast and capable of operation at
very low temperatures, with low intrinsic noise. It is there-
fore in niche applications where speed and reduced noise are
essential that this approach could be considered. Finally, a

P��0�

�U�

Τ

absorbing
barrier

�0�0

�2 0 2 4 6
�1.5

�1.0

�0.5

0.0

0.5

� �rad�

U���

P��0�

Τ

absorbing
barrier

�0��Π�2

�U�

�2 0 2 4 6
�1.5

�1.0

�0.5

0.0

0.5

� �rad�

U���

FIG. 11. The figures show the JJ potential U���=−�̄�
− cos��� as a function of the phase. We consider �̄=�+� cos��0�
with initial phase �0=0 �top� or �0−� /2 �bottom�; for illustrative
purpose �=0.5 and �=0.1. The time P��0� is defined as the time
between the application of the signal �with initial phase �0=0,
−� /2� and the lowest height of the barrier, �U−. The first passage
time � is defined as the time to overcome the maximum of the
barrier �the vertical dashed line�. The resonance defined by Eq. �8�
states that a minimum of the passage time occurs when are equal
the time in which the external signal reduces the barrier to the
lowest value and the escape time from such barrier, assumed to be
static.
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FIG. 12. The dependence of the average es-
cape time ���S �scaled to �0� for the coherent de-
tection strategy as a function of signal scaled pe-
riod 2� /� for different values of the initial phase
�0. In panel �a� we show the escape times when
the effective waveform is monotonic, i.e., −� /2
��0�� /2; in panel �b� we show the four limit
cases �0=0,� /2,� ,−� /2. We underline that for
�0=� the non monotonic behavior of the effec-
tive waveform �the maximum is not reach in a
single ramp-up� leads to a maximum in the es-
cape time. The parameters used are �=0.5, �
=0.2, �=0.1, D=0.07.
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FIG. 13. The dependence of the resonant frequency as a func-
tion of 2� / P��0�, proportional to the inverse time between the
initial phase and the maximum of the signal, see Fig. 11. The
dashed line corresponds to the prediction of Eq. �8�. Parameters are
�=0.5, �=0.2, �=0.1, D=0.07.
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few words of caution: while we have analyzed the physical
principles underlying JJs as possible detectors, practical ap-
plications require a deeper analysis of circuit design and of
technological limitations.
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APPENDIX

In this appendix we give the asymptotic behavior of
���0 ,�� in the slow and fast frequency limit ��→0 and �
→��. To compute the slow frequency behavior of the aver-
age escape time we use, following Ref. �17�, periodically
modulated escape rates of Arrhenius type. In this connection
we have

���0,�� � ��K exp�−
�U��̃�t̃��

D
�� , �A1�

where �̃�t̃�=�+� sin��t̃+�0� is the time dependent bias and
�K is the Kramer escape rate prefactor. Since we are inter-
ested in computing the asymptotic limit �→0, there exists a
frequency such that �t̃��4����1, where, due the exponen-
tial like tail of the escape time distribution, the probability of
occurrence of an escape time greater than 4��� is negligible.
Accordingly, we expand the average escape time in Taylor

series in the variable �t̃ and due to the exponential like dis-
tribution we approximation have the estimates �t̃�
����0 ,��, �t̃2��2���0 ,��2. The Taylor expansion of Eq.
�A1� reads

���0,�� � �Ke−�U�� sin��0�+��/D

��1 −
��

D
���0,��cos��0��U��� sin��0� + ���

+ O
�����0,���2� . �A2�

In the previous equation ���0 ,�� appear on the right side of
the formula �A2�, it can be consistently eliminated by an
iterative substitution �and truncation� of Eq. �A2� in itself.
By defining the parameter

A = −
�K

D
e−�U�� sin��0�+��/D�U��� sin��0� + �� �A3�

Equation �A2� can therefore be written,

���0,�� � �Ke−�U�� sin��0�+��/D�1 + A�� cos��0��

+ O
�����0,���2� . �A4�

By using Eq. �4�, the condition A�0 holds.
The asymptotic limit �→� is obtained by noting that fast

oscillation cannot be followed by the system dynamic �20�.
We have

���0,�� � �K exp�−
�U���

D
� + O� 1

����0,��
	 . �A5�
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