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The nonlinear evolution of an interface subject to a parallel shear flow is studied by the vortex sheet model.
We perform long-time computations for the vortex sheet in density-stratified fluids by using the point vortex
method and investigate late-time dynamics of the Kelvin-Helmholtz instability. We apply an adaptive point
insertion procedure and a high-order shock-capturing scheme to the vortex method to handle the nonuniform
distribution of point vortices and enhance the resolution. Our adaptive vortex method successfully simulates
chaotically distorted interfaces of the Kelvin-Helmholtz instability with fine resolutions. The numerical results
show that the Kelvin-Helmholtz instability evolves a secondary instability at a late time, distorting the internal
rollup, and eventually develops to a disordered structure.
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I. INTRODUCTION

A perturbed interface between fluids subject to a parallel
shear flow is unstable. This interfacial instability is known as
Kelvin-Helmholtz �KH� instability and is one of classical
problems in fluid dynamics �1,2�. A linear stability analysis
dates back to the 19th century, and computations of the non-
linear formation of the rollup of the interface are among
earliest examples of computational fluid dynamics �1�. The
linear and early nonlinear stages of the KH instability are
well understood, but late-time dynamics, where the interface
is chaotically disordered and the rollup has a complex inter-
nal structure, is less discovered. The understanding of late-
time dynamics of the KH instability is important not only in
its own interests, but also in the study of turbulence and
mixing, where the KH instability plays a dominant role �3,4�.

A vortex sheet is a simple model for the interface of a
parallel shear flow, and the vortex method is the numerical
method based on the vortex sheet model �1,5�. In this model,
the interface is approximated by a surface across which the
tangential velocity is discontinuous. The vortex sheet model
has an elegant formulation, but turned out to be not conve-
nient for computations due to the formation of the singularity
�1,6�. Moore �6� showed that a singularity forms in the vor-
tex sheet at a finite time. The difficulty of the vortex method
was resolved by a regularization of the integral kernel in the
model �7�.

In this paper, we present long-time computations for the
KH instability of finite density contrast by using the vortex
method. In the vortex method, the interface is considered as
a set of point vortices, and these vortices are computed in a
Lagrangian manner, not solving equations in whole two-
dimensional grids. This advantage of the vortex method pro-
vides accurate solutions for the evolution of unstable inter-
faces.

The numerical simulations of the KH instability by the
vortex method have been performed by many people �7–13�.

However, most of previous simulations were limited to the
vortex sheet in a uniform density fluid. Several authors
�8,13� conducted the computations for the KH instability in
density-stratified fluids, but the results were given only for
early stages of the rollup. To the authors’ knowledge, results
for the highly distorted KH interface at a late time were
obtained only for a uniform density case �11,12�. The pur-
pose of this paper is the long-time simulations for the vortex
sheet of finite density contrast and the investigation of late-
time dynamics for the KH instability.

A main difficulty in the long-time computations of the
vortex sheet is the lack of resolution resulting from the non-
uniform distribution of point vortices. At an early stage of
the interface evolution, the point vortices tend to cluster
around a vortex core and diverge at the outside region. How-
ever, at late times, point clustering and diverging occur ir-
regularly along the interface, which makes the interface
poorly resolved. The simulation with many vortices initially
is a naive way to enhance the resolution, but for long-time
simulations it is very expensive and usually beyond the com-
puting capability, since the computation cost of the vortex
method at each time step is O�N2�, where N is the number of
vortices.

To overcome the nonuniform distribution of point vorti-
ces, we apply a point insertion procedure which adaptively
adds the vortices to the region of low resolution. Our point
insertion method is an extension of the method presented by
Krasny �14� for the uniform fluid to the density-stratified
fluids. In the case of density stratification, the point insertion
is not an easy task, because the governing equations for the
vortex method are coupled, and variables of a previous time
step are also needed in the insertion procedure.

A redistribution procedure, which relocates the vortices
on the interface uniformly in the arclength or a parameter, is
another way to handle the nonuniform distribution of point
vortices. However, the redistribution algorithm should be de-
vised with high accuracy and applied carefully, because it
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may involve the numerical diffusion. Note that Rangel and
Sirignano �8� used the redistribution procedure and yielded
the excessive smoothing on the solution. Kerr �15� presented
a systematic redistribution procedure for the vortex sheet in
stratified fluids. The redistribution procedure by Kerr has a
predictor and corrector step to shift the point vortices, and
thus is rather complicated.

Besides the nonuniform distribution of point vortices, a
difficulty also lies in the computation of the vortex sheet
strength. In density-stratified fluids, the equation for the vor-
tex sheet strength is coupled with the governing dynamical
equation, and the accurate calculation of the vortex sheet
strength is critically important in the vortex method. In the
KH-type instability, the profile of the vortex sheet strength
becomes very steep and eventually evolves shocks and peaks
along the interface.

A shock-capturing method, which has been well devel-
oped for hyperbolic conservation laws �16�, can be adopted
for the stable computation of the vortex sheet strength. Pre-
viously the Godunov method was employed to the computa-
tion of the vortex sheet strength �13,17�. However, the Go-
dunov method is only first-order accurate and smoothes the
shocks and peaks of the profile, which may result a signifi-
cant change in the evolution of the interface at a late time.
The adoption of a high-order shock-capturing method to the
vortex method is needed for the long-time computation, but a
difficulty is that the point vortices are located nonuniformly,
and most of shock-capturing methods are developed for the
uniform grid.

We apply the weighted essentially nonoscillating
�WENO� scheme �18–20� for the high-order computation of
the vortex sheet strength. The WENO scheme has been
widely used in the hyperbolic conservation laws. The WENO
scheme gives a high resolution around the peak and shock
without spurious oscillations and is capable to implement a
type of problems of nonuniform grids, within the original
framework of the methodology. This couple of advantages of
the WENO scheme is found to be appropriate for the vortex
method.

The paper is organized as follows. Section II gives the
description of the vortex sheet model in density-stratified
fluids, and Sec. III describes the adaptive numerical method
for the vortex model. The computational results are pre-
sented in Sec. IV. Section V gives the conclusion.

II. VORTEX SHEET MODEL

In this section we briefly present the vortex sheet model in
density-stratified fluids. The full derivation of the model is
referred to Tryggvason �21�.

We consider an interface separating two fluids of different
densities in two dimensions. The fluids are inviscid, incom-
pressible, and irrotational, and the motion of fluids is gov-
erned by the Euler equation

ai = −
1

�i
� pi, i = 1,2, �1�

where a is the acceleration of a fluid particle, � is the density
of the fluid, and p is the pressure in the fluid. From the

potential flow assumption, the interface can be modeled as a
vortex sheet. The strength of the vortex sheet � is defined as
the jump in the tangential velocities of two fluids across the
interface,

� = �u1 − u2� · s . �2�

Here, u1 and u2 are the velocities above and below the inter-
face, respectively, and s is the unit tangent vector at the
interface.

The Lagrangian velocity of the interface is expressed by

q = U + 1
2��s , �3�

where U represents the average of the velocity on either side,

U = 1
2 �u1 + u2� , �4�

and � �����1� is the weighting parameter. Taking �=1, the
vortices follow the upper fluid and, taking �=−1, the vorti-
ces follow the lower fluid. In all our computations, � is set to
zero.

The interface is described by a parametric curve
x=x�s , t�= �x�s , t� ,y�s , t��, with the arclength s and time t,
and is evolved by

dx

dt
= q . �5�

The average velocity U= �u ,v� is determined by the
Birkhoff-Rott equation �1�. For the periodic boundary condi-
tion with a period �, the Birkhoff-Rott equation is of the
form

u − iv =
i

2�
�

0

�

�̃ cot
��z − z̃�

�
ds̃ . �6�

Here, z=x+ iy in complex notation, and �̃=��s̃�, z=z�s�, and
z̃=z�s̃�.

To obtain the average velocity by Eq. �6�, the evolution
equation for the vortex sheet strength � is needed. The ac-
celeration ai at the interface has the following kinematic re-
lation:

ai =
dui

dt
−

1

2
��� � 1�

�ui

�s
, �7�

where the + �−� sign is for i=2 �1�. Subtracting the tangential
component of the Euler equation �1� of each fluid and using
Eq. �7�, we have

�a1 − a2� · s = A�a1 + a2� · s

= A�2
dU

dt
· s +

1

4

��2

�s
− ��

�U

�s
· s� , �8�

where A= ��2−�1� / ��2+�1� is the Atwood number. Then, by
relation �7�, Eq. �8� becomes

d�

dt
= 2A

dU

dt
· s +

� + A

4

��2

�s
− �1 + �A��

�U

�s
· s . �9�

Equations �5�, �6�, and �9� give the evolution of the vortex
sheet between stratified fluids. Note that Eq. �9� is actually

SOHN, YOON, AND HWANG PHYSICAL REVIEW E 82, 046711 �2010�

046711-2



an integro-differential equation for � since U is coupled to �
by Eq. �6�.

III. NUMERICAL METHOD

A. Main algorithm

The Kelvin-Helmholtz instability develops a rollup due to
the formation of a singularity, and this produces a difficulty
in numerical computations. To overcome this, we apply a
desingularization parameter 	
0 to Eq. �6�, following
Krasny �7�. The “	 equations” for Eq. �6�, assuming the pe-
riod �=1, are

u =
1

2
�

0

1 sinh 2��y − ỹ�
cosh 2��y − ỹ� − cos 2��x − x̃� + 	2 �̃ds̃ , �10�

v = −
1

2
�

0

1 sin 2��x − x̃�
cosh 2��y − ỹ� − cos 2��x − x̃� + 	2 �̃ds̃ .

�11�

To solve the system of equations numerically, we dis-
cretize the interface 	xi
i=0

N and the vortex sheet strength
	�i
i=0

N . Given 	xi
 and 	�i
, the velocity field can be evalu-
ated from Eqs. �3�, �10�, and �11�. Applying direct summa-
tions for the integral, Eqs. �10� and �11� are approximated by

ui =
1

2�
j�i

� j
sinh 2��yi − yj�

cosh 2��yi − yj� − cos 2��xi − xj� + 	2 ,

�12�

vi = −
1

2�
j�i

� j
sin 2��xi − xj�

cosh 2��yi − yj� − cos 2��xi − xj� + 	2 .

�13�

Here, �i represents the local circulation, defined as

�i = �i	si, �14�

where 	si=��xi+1−xi−1�2+ �yi+1−yi−1�2 /2.
The interface position and vortex sheet strength in time

are determined by Eqs. �5� and �9�–�11�. For time integra-
tions of these coupled equations, we apply an iteration
method. The numerical procedure of time integrations are
described as follows: assuming that the discrete position xi

n,
the average velocity Ui

n, and the vortex sheet strength �i
n are

given at the current time step n, we first estimate d�i
n /dt by

Eq. �9� with dUi
n−1 /dt at the previous time step. Then, we

update �i
n+1 and advance the interface by Eq. �5� with Eq. �3�

by suitable time stepping methods. Using the updated values
for the interface position and vortex sheet strength, the ve-
locity field at the next time step, Ui

n+1, is evaluated from Eqs.
�12� and �13�. Then, we can compute the new estimate for
dUi

n /dt by the central difference with respect to time, i.e.,

dUi
n

dt
=

Ui
n+1 − Ui

n−1

2�t
. �15�

This procedure is repeated until the convergence of dUi
n /dt.

Initially, dUi
0 /dt is updated by the forward difference,

dUi
0 /dt= �Ui

1−Ui
0� /�t. Note that, for the integration of time

stepping, the trapezoidal method is applied to Eq. �5� for the
interface, using the updated velocity Ui

n+1 during the itera-
tion, and Euler’s method to Eq. �9� for the vortex sheet
strength.

B. Point insertion procedure

At the end of each time step, we check each segment of
the arclength, say �si, and apply a point insertion procedure
if �si exceeds some threshold value �slim. The point inser-
tion procedure in density-stratified fluids is much more com-
plicated than that in the uniform fluid, because the model has
two coupled equations; and, when the point vortices are
added at the current time step, the vortices of the previous
time step should be inserted simultaneously. The interpola-
tions for all variables at the current time step would be a
simple way for the point insertion, but this method yields
oscillations from errors and results in a failure of the com-
putation. We give the pseudocode of our point insertion
method below.

Point insertion algorithm

If �si
n+1
�slim,

Step 1: Add a new point xp
n in the middle of xi

n and xi+1
n by

an interpolation.
Step 2: Interpolate �p

n and dUp
n /dt at the new point xp

n.
Step 3: Compute the velocity Up

n at the new point xp
n from

Eqs. �12� and �13�.
Step 4: Advance the new point to xp

n+1 by a time integra-
tion.

Step 5: Interpolate �p
n+1 at the new point xp

n+1.
Step 6: Compute the velocity 	Ui

n+1
 at all marker points
from Eqs. �12� and �13�.

A schematic for the point insertion procedure is illustrated
in Fig. 1. For the interpolations in the algorithm, we use the
third-order Lagrange polynomial

Qp = ci−1Qi−1 + ciQi + ci+1Qi+1 + ci+2Qi+2, �16�

ci = 
j�i

�sp − sj��
j�i

�si − sj� , �17�

where si is the arclength from x0 to xi. We checked that a
fifth-order polynomial interpolation gave nearly the same re-
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FIG. 1. Schematic of the point insertion. The distance of xi
n+1

and xi+1
n+1 exceeds a certain threshold, and to add a point between the

two points, the point xp
n is interpolated in the middle of xi

n and xi+1
n

and is advanced by a time integration.
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sults for the solution. The segment of the arclength is evalu-
ated by the Euclidean distance

�si = ��xi+1 − xi�2 + �yi+1 − yi�2. �18�

For the arclength, a higher-order formula such as the Simp-
son rule may be applied, but no improvement was found
from the result using Eq. �18�.

C. Shock-capturing scheme for vortex sheet strength equation

In the computations of Eq. �9�, we apply the central dif-
ference for s and �U

�s . However, the discretization of the term
with �2 in Eq. �9� should be carefully taken. As time pro-
ceeds, the vortex sheet strength develops a complicated
structure and becomes very steep around the center of the
rollup. This shocklike behavior of vortex sheet strength is
due to the term with �2, because this term makes Eq. �9� a
type of the Burgers equation. Discretizations based on cen-
tral differences for ��2 /�s are numerically unstable, and the
computations stop when the profile becomes steep.

The similarity of Eq. �9� to the Burgers equation suggests
the use of the shock-capturing method for the term ��2 /�s.
Previously the first-order Godunov method was applied to
the computation of ��2 /�s �13,17�. The Godunov method
approximates the term F=−�2 at the midpoints between vor-
tices by

Fi+1/2 = − max���i
+�2,��i+1

− �2� , �19�

where

�+ = max�− �,0�, �− = min�− �,0� . �20�

Then ��2 /�s at xi is calculated by �Fi+1/2−Fi−1/2� /	si. Al-
though this formulation based on the Godunov method pro-
vides stable computations for Eq. �9�, and it runs much
longer time than central differences, it is only first-order ac-
curate and thus smoothes the shocks and peaks of the profile.
A high-order method is needed for accurate computations,
especially in the long-time simulations, but a difficulty is
again the nonuniform distribution of the point vortices. As
mentioned earlier, most of shock-capturing methods are de-
veloped for the uniform grid.

For the high-order computation of the vortex sheet
strength, we apply the WENO scheme �19,20�. A general
framework for the WENO scheme on the nonuniform grid
was established by Shu �19�. Recently an efficient formula-
tion of the fifth-order WENO scheme on the nonuniform grid
was presented by Wang et al. �20�, and we employ this for-
mulation of the WENO scheme for the computation of
��2 /�s. The details of the fifth-order WENO scheme on the
nonuniform grid are referred to �20�. Here, we give only a
brief description of the WENO scheme, for the vortex
method.

The key idea of the essentially nonoscillatory �ENO�
scheme is to choose from among several candidates the sten-
cil on which the solution varies the most smoothly and then
approximates the flux at the cell boundaries with a high order
of accuracy, thus avoiding spurious oscillations caused by
interpolating data across discontinuities. The WENO scheme
uses a convex combination of all the ENO candidate stencils.

Given r ENO stencils of order r, the weights for the WENO
scheme are chosen such that the numerical flux is approxi-
mated to order 2r−1 in the smooth region, while in regions
near discontinuities the WENO scheme emulates the ENO
method.

In the vortex method, the left and right states of the vortex
sheet strength at the cell boundaries, denoted by �i+1/2,l and
�i+1/2,r, are reconstructed by the fifth-order WENO scheme
on the nonuniform grid. Then the Godunov flux

Fi+1/2 = − max���i+1/2,l
+ �2,��i+1/2,r

− �2� �21�

is used for F=−�2 at the cell boundaries.

IV. NUMERICAL RESULTS

To apply the described numerical algorithm to unstable
interfaces, the position and the vortex sheet strength of all
vortex points should be given initially. We focus on the evo-
lutions of the initial sinusoidal interface of one wavelength,

xi =
i

N
, yi = a0 sin 2�xi. �22�

The initial condition for the vortex sheet strength can be
obtained from the linear theory �8�. The initial condition for
the local circulation is given by

�i = �1 + 2�a0�A sin 2�xi −
2�r

1 + r
cos 2�xi�� 1

N
, �23�

where r is the density ratio, r=�1 /�2. The vortex sheet
strength is determined from Eq. �14�.

All results in this section are plotted in dimensionless
units. The dimensionless length and time are given by
x�=x /L and t�= t�u /L, where L is the wavelength of the
interface and �u is the velocity difference across the inter-
face. The vortex sheet strength is also nondimensionalized as
��=� / ��uL�. We suppress the primes in the dimensionless
variables for shortness.

For long-time simulations, we take two cases of the At-
wood number: A=0.05 and A=0.3. The Atwood number
A=0.05, corresponding to the density ratio of 1:1.105, rep-
resents a weakly stratified case, and A=0.3, corresponding to
the density ratio of 1:1.857, is chosen for a moderately strati-
fied case. We do not consider a strongly stratified case since
for A0.5 the KH instability has a weak rollup �13�.

We first examine the performance of the shock-capturing
schemes for the vortex sheet strength. Figures 2 and 3 are the
comparisons of the results for the interface evolution from
the Godunov and WENO schemes for A=0.05 and A=0.3,
respectively. The times are t=0, 0.6, 0.8, 1.0, and 1.1 in Figs.
2 and 3. The initial amplitude of the interface is set to
a0=0.01, and the regularization parameter is 	=0.1; these
values are used in all our computations. The number of point
vortices is fixed to N=400. Figures 2 and 3 show that the
results of the Godunov scheme are overlapped to the WENO
scheme for both A=0.05 and A=0.3. More rollups are found
for the smaller density jump, which is a well-known behav-
ior in the KH instability, and the vortex core is more moved
to the left for the larger density ratio.
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Figure 4 is the comparison of the vortex sheet strength for
Figs. 2 and 3 at selected times. The x axis is the normalized
arclength, which is scaled by the total arclength. We see that
the results from the WENO scheme are sharper and higher

around the peak than those from the Godunov scheme, and
the differences of the results between the Godunov and
WENO schemes are larger at the later time.
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FIG. 2. �Color online� Comparison of the interface evolution
from the Godunov and WENO schemes for A=0.05. The times are
t=0, 0.6, 0.8, 1.0, and 1.1. The solid curves correspond to the
WENO scheme and the dashed curves correspond to the Godunov
scheme.
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from the Godunov and WENO schemes for A=0.3. The times are
t=0, 0.6, 0.8, 1.0, and 1.1. The solid curves correspond to the
WENO scheme and the dashed curves correspond to the Godunov
scheme.
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FIG. 4. �Color online� Comparisons of the vortex sheet strength for A=0.05 and A=0.3 at selected times. �a� A=0.05, t=0.8;
�a�� A=0.05, t=1.1; �b� A=0.3, t=0.8; and �b�� A=0.3, t=1.1.
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Figure 5 is the comparison of the results from the WENO
scheme without and with the point insertion for A=0.3.
Figure 5�a� is the result with the fixed number of points
N=400, and Fig. 5�b� is the result with the point insertion,
initially starting with N=400. The arclength limit for the
point insertion is set to �slim=0.003, and this value is used in
all our computations. In Fig. 5�a�, we find that the result
without the point insertion lacks the resolution around the
vortex core at t=1.4 and is poorly resolved at t=1.5. Figure
5�b� shows that the interface is well resolved by the point
insertion. Note that the number of points at t=1.5 in Fig. 5�b�
is N=1686.

Figure 6 is the comparison of the results from the Go-
dunov scheme with N=1600 and the WENO scheme with
the point insertion, for A=0.3 at t=1.0. The number of points
for the WENO scheme with the point insertion at t=1.0 is
N=817, which is much fewer than N=1600. Figure 6�a� is
the result for the interface, and Fig. 6�b� is the result for the
vortex sheet strength with respect to the normalized ar-
clength. We see in Fig. 6 that the WENO scheme with the
point insertion gives the same result for the interface profile
as the Godunov scheme with N=1600, and is even better for

the vortex sheet strength. Figure 6 validates the accuracy and
efficiency of our point insertion method and the WENO
scheme.

Figures 7 and 8 are the long-time evolutions of the inter-
face, using the point insertion, for A=0.05 and A=0.3, re-
spectively. The times are t=0, 1.1, 1.5, 1.8, and 2.2. Figures
7 and 8 show that our numerical method using the point
insertion successfully simulates the KH instability at late
times. For A=0.05, the interface rolls up uniformly in a large
scale. For A=0.3, the interface evolves a secondary instabil-
ity at t=1.5, where the inside of the rollup is distorted, and
eventually develops to a complex shape. It will be discussed
shortly that the secondary instability would be caused by the
occurrence of new peaks and shocks on the vorticity. Note
that the distortion of the internal rollup was also reported in
a recent paper on the high-order computation of the
Richtmyer-Meshkov instability �22�, which is a shock-
induced interfacial instability. The rollup in the Richtmyer-
Meshkov instability is a type of the KH instability. In Figs. 7
and 8, we also observe that the vortex cores keep moving to
the left, shifting faster for the larger density ratio. For
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A=0.3, the left end point moves to the right, over the vortex
core.

Figure 9 is the zooming of the interface for A=0.05
around the vortex core in Fig. 7 at t=1.8 and 2.2. The loca-
tions of point vortices are also given in Figs. 9�a�� and 9�b��.
Figure 9 shows that the vortex core is well resolved by the
point insertion method. We find that the rollup in the vortex
center is not uniform and the secondary instability also oc-
curs for A=0.05 in a small scale. The interface for A=0.05 at

t=2.2 maintains a relatively uniform shape, compared to that
for A=0.3 at the same time, shown in Figure 10. Figure 10 is
the zooming of the interface for A=0.3 in Fig. 8 around the
vortex core at t=1.8 and 2.2. Only the locations of point
vortices are given in Fig. 10. We clearly see the core struc-
ture for A=0.3 in the fine resolution. The secondary instabil-
ity is pronounced at t=1.8, and the interface forms a com-
plex disordered internal structure at t=2.2. We examined that
the small-scale instability always occurred for varying �slim
or the regularization parameter 	. Similar results were ob-
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tained for smaller values of �slim. For a larger value of 	, the
sheet rolls up slower and the small-scale features appear
later.

Krasny and Nitsche �23� showed that in the uniform fluid,
irregular small-scale features developed at late times: gaps
and folds appeared in the spiral core. They attributed the
irregular features to the onset of chaos in the vortex sheet. In
the stratified fluids, the vortex sheet has a small-scale insta-
bility at late times, but the gaps in the spiral are not found.
The gaps in the uniform fluid were occurred from a reso-
nance after a number of rollups. However, in the stratified
fluids, the secondary instability breaks a uniform rollup in
the inner core, and thus a resonance may not arise. Figure 9
shows that the neck of the rollup is dragged into the core,
and then the fold appears, which may be a different mecha-
nism from the resonance. The relation of the secondary in-
stability to chaos is uncertain and would be an interesting
subject for further study.

Figure 11 is the growth of the arclength of the interface
and the number of points scaled by the initial number of
points, N�t� /N�t=0�, for A=0.3. Figure 11 shows that the
arclength of the interface grows exponentially, and the num-
ber of points increases with a similar rate as the arclength of
the interface.

Figure 12 is the vortex sheet strength along the interface
for Figs. 7 and 8, at t=1.5 and 2.2. For A=0.05, the peaks of
the vortex sheet strength are distinguished and concentrated
near the center, but for A=0.3, many peaks and shocks are
evolved at t=2.2 and spread over the interface. Compared to
Fig. 4, new peaks and shocks of the vortex sheet strength are
found at t=1.5 for both A=0.05 and A=0.3. In Figs. 7 and 8,
the secondary instability on the inside of the rollup is ob-
served at t=1.5. Thus, the new peaks and shocks of the vor-
tex sheet strength may yield the secondary instability on the
interface, and eventually the complex structure of the vortex
sheet strength leads to the disordered profile of the interface.
We also find that for both cases, the highest peak of the
vortex sheet strength at t=2.2 is slightly decreased than that
at t=1.5. This behavior of the decrease in the peak of the
vortex sheet strength is also found in Fig. 4 for both
A=0.05 and 0.3, comparing at t=0.8 and 1.1. Therefore, we
may conclude that in the KH instability, the vortex sheet
strength apparently becomes singular and has a single peak
at an early time, and then after reaching a possible maxi-

mum, this peak is reduced and other peaks and shocks are
formed over the interface, and at a late time the vortex sheet
strength is developed to a chaotic structure.

Figure 13 is the curvature along the interface for
A=0.05 and A=0.3, at t=1.5 and 2.0. Figure 13 shows that
for both cases of A=0.05 and A=0.3, the curvature is very
singular around the vortex core, but for A=0.3 the singulari-
ties of the curvature are more spread over the interface, simi-
larly as the vortex sheet strength.

Figure 14 is the vorticity field for A=0.05 and A=0.3, at
t=2.2. The vorticity � is defined as ��U=�k, where k is
the unit vector in the z axis. In Fig. 14, the vorticity is re-
constructed from the regularized velocity field, computed on
a rectangular grid. The velocity field is obtained from Eqs.
�10� and �11�, taking x and y in the fluid region. We see in
Fig. 14 that for A=0.05 the vorticity is uniformly concen-
trated on the center of the rollup and is almost symmetric.
For A=0.3 the vorticity has two cores, one strong and an-
other mild, and the intensity of the vorticity on the cores is
weaker than that for A=0.05. We also find an interesting
behavior for A=0.3 that the upper arm of the rollup, winding
clockwise, has a relatively strong vorticity, comparable to
that in the inside of the rollup, while the vorticity of the
lower arm, winding counterclockwise, is weak.
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V. CONCLUSIONS

We have presented the long-time computations for the KH
instability in density-stratified fluids by the adaptive vortex
method. The numerical results show that our vortex method
successfully simulates the chaotically distorted interfaces of
the KH instability at late times.

We have applied the point insertion procedure and the
high-order shock-capturing method to the vortex method.
The point insertion procedure provides the fine resolution for
the interface at late times, and the numerical results validate
the accuracy and robustness of our point insertion method.
The high-order shock-capturing method, based on the fifth-
order WENO scheme on the nonuniform grid, for the com-
putation of the vortex sheet strength enhances the accuracy
of the vortex method around the peaks and shocks. The point

insertion procedure and the high-order shock-capturing
method greatly improve the capability and the applicability
of the vortex method.

The various aspects of late-time dynamics of the KH in-
stability have been investigated by the vortex method. It is
found that the KH instability evolves the secondary instabil-
ity at a late time and eventually develops to a disordered
structure. For a weakly stratified case, the interface has a
uniform rollup in a large scale except the vortex center, and
the vorticity is concentrated on the core. For a moderately
stratified case, the vorticity is spread from the center of the
rollup, the secondary instability is pronounced, and the inter-
face forms a complex internal structure.

It has been known that the KH instability induces a mix-
ing of stratified fluids through a transition from two-
dimensional laminar flows to a three-dimensional turbulence
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�4�. Several authors identified the transition to turbulence of
a mixing layer with the onset of three-dimensional irregular
small-scale motions in the core of the two-dimensional KH
wave �4,24,25�. This suggests that the secondary instability

on the core of the rollup may cause the transition to turbu-
lence, and may develop to a three-dimensional motion at a
later time. For a complete modeling of late-time motions of
the KH instability, three-dimensional simulations would be
necessary.

It was shown by Tryggvason et al. �9� that in the uniform
fluid, the regularized vortex model for inviscid fluids repro-
duced many of features associated with the viscous flows
with increasing Reynolds number, but it gave more rollups in
the core than the results for the viscous flows. We thus sur-
mise that the late-time complex motions from our simula-
tions would not be exactly same as the real flows �viscous
flows�. Nevertheless, our simulations show main features of
the late-time dynamics of the KH instability in stratified flu-
ids, and illustrate the instability mechanism on the core of
the interface, for the transition to turbulence.
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