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We provide an extension to lattice systems of the reptation quantum Monte Carlo algorithm, originally
devised for continuous Hamiltonians. For systems affected by the sign problem, a method to systematically
improve upon the so-called fixed-node approximation is also proposed. The generality of the method, which
also takes advantage of a canonical worm algorithm scheme to measure off-diagonal observables, makes it
applicable to a vast variety of quantum systems and eases the study of their ground-state and excited-state
properties. As a case study, we investigate the quantum dynamics of the one-dimensional Heisenberg model
and we provide accurate estimates of the ground-state energy of the two-dimensional fermionic Hubbard
model.
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I. INTRODUCTION

The path-integral formulation of quantum mechanics is
the foundation of many numerical methods that allow one to
study with great accuracy the rich physics of interacting
quantum systems. At finite temperature, a path-integral
Monte Carlo �PIMC� technique for continuous systems has
been developed and applied by Ceperley and Pollock.�1,2�
Recently, this approach has been renovated in a new class of
methods known as worm algorithms. �3,4� The zero-
temperature counterparts of the PIMC algorithm are the rep-
tation quantum Monte Carlo �RQMC� �5� and the path-
integral ground-state methods, �6� which have been
demonstrated useful to simulate coupled electron-ion sys-
tems, �7� as well as to infer spectral properties from
imaginary-time dynamics. �8� A number of important physi-
cal problems—particularly in the fields of strongly correlated
fermions and cold atoms—can be fruitfully modeled by lat-
tice Hamiltonians. A first application of path-integral tech-
niques to �boson� lattice models was proposed by Krauth et
al. in 1991 �9�. Few other attempts to apply PIMC to lattice
models have been made ever since, with a recent application
of the RQMC idea to the quantum dimer model Hamiltonian
�10�. In this paper, we propose a method that generalizes and
improves the approach in Ref. �10� in several ways. Our
method is based on continuous-time random walks and is
therefore unaffected by time-step errors. Inspired by the
work of Syljuasen and Sandvik �11� and Rousseau �12�, we
adopt a generalization of the bounce algorithm of Pierleoni
and Ceperley �7� called directed updates, which helps reduc-
ing the correlation time in path sampling. We also introduce
a worm algorithm based method to calculate pure expecta-
tion values of arbitrary off-diagonal observables, which are
generally out of the scope of existing lattice ground-state
methods.

The resulting algorithm naturally applies to fermions us-
ing the fixed-node �FN� approximation. A technique to im-
prove systematically upon this approximation is proposed,
based on the calculation of a few moments of the Hamil-
tonian. Our methodology is demonstrated by a few case stud-

ies on the one-dimensional Heisenberg and the two-
dimensional fermion Hubbard models.

This paper is organized as follows. In Sec. II we present
the general formalism of ground-state PIMC for lattice mod-
els; in Sec. III our implementation of the RQMC algorithm
on a lattice is presented. In particular, we give a detailed
account of the above mentioned directed-update technique
�Sec. III A� and of the continuous-time propagator �Sec.
III B�; in Sec. III C, we introduce an extension of the algo-
rithm to cope with off-diagonal observables, while in Sec.
III D a further extension to systems affected by sign prob-
lems is presented, including a strategy to improve systemati-
cally upon the fixed-node approximation. Section IV con-
tains a few case applications, including the simulation of the
spectral properties and spin correlations of the one-
dimensional Heisenberg model and the calculation of the
ground-state energies of the fermionic Hubbard model with a
significantly better accuracy than that achieved by the fixed-
node approximation. In Sec. V we finally draw our conclu-
sions.

II. GENERAL FORMALISM

Let us consider a generic lattice Hamiltonian Ĥ and a
complete and orthogonal basis set, whose states are denoted
by �x�. Given the generic wave function ���, its amplitude on
the configuration �x� will be denoted by ��x�, namely,
��x�= �x ���. The exact ground-state wave function ��0� can
be obtained by the imaginary-time evolution of a given
variational state ��V�,

��0� � lim
�→�

���� , �1�

where �����e−�Ĥ��V�, provided that the variational state is
nonorthogonal to ��0�, i.e., ��V ��0��0. Then, the ground-

state expectation value of a quantum operator Ô can be ob-
tained by

�Ô� = lim
�→�

����Ô����
�������

. �2�
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A practical computational scheme can be conveniently in-
troduced by considering a path-integral representation of the
imaginary-time evolution. To such a purpose, we split the
total imaginary time � into M slices of “duration” �=� /M,
in such a way that the value of the evolved wave function on
a generic many-body state of the system reads

���x0� = 	
x1. . .xM



i=1

M

Gxi−1xi

� �V�xM� , �3�

where we have introduced the imaginary-time propagators

Gxi−1xi

� = �xi−1�e−�Ĥ�xi� . �4�

Within this approach, it is easy to write expectation values of

operators Ô that are diagonal in the chosen basis �x�, i.e.,

�x�Ô�y�=O�x��x,y. In fact, in this case we have

�Ô� = lim
�→�

	
X

���X�O�xM�

	
X

���X�
, �5�

where the summation is extended to all possible imaginary-
time paths X��x0 ,x1 , . . . ,x2M� and ���X� is given by

���X� = �V�x0�

i=1

2M

Gxi−1xi

� ��V�x2M� . �6�

The ground-state energy can be conveniently obtained by
means of the mixed average,

E0 = lim
�→�

	
X

���X�EL�x0�

	
X

���X�
, �7�

where EL�x�= �x�Ĥ��V� / �x ��V� is the so-called local energy.
Besides the static �i.e., equal-time� correlation functions,

this formalism allows one to calculate also dynamical corre-

lations in imaginary time CAB�T �= �Â�T �B̂�0�� that can be
computed as

CAB�T � = lim
�→�

	
X

���X�A�xn�B�xm�

	
X

���X�
, �8�

where xn and xm are two coordinates of the path such that
�m−n��=T .

III. REPTATION QUANTUM MONTE CARLO

A probabilistic interpretation of the previous expectation
values �Eqs. �5�–�8�� can be immediately recovered when-
ever ���X��0 for all configurations X. Indeed, in this case,
���X� can be interpreted as a probability distribution that
may be readily sampled by using Monte Carlo algorithms.
This fact allows ground-state expectation values to be calcu-
lated exactly within statistical errors.

The basic idea of the RQMC algorithm is to sample the
distribution probability ���X� by using a Markov process
with simple moves. Given the configuration X
��x0 ,x1 , . . . ,x2M�, a new configuration is proposed in two
possible ways: either XL��xT ,x0 , . . . ,x2M−1� �which we call
“left move”� or XR��x1 , . . . ,x2M ,xT�, �which we call “right
move”�. In both cases, xT is a new configuration proposed
according to a suitable transition probability R��x→xT�,
where x stays for x0 �x2M� when the left �right� move is
considered. Such “sliding moves” are depicted in Fig. 1. Ide-
ally, the transition probability should guarantee the minimum
possible statistical error on the desired observables and, to
such a purpose, it has been proved useful to consider the

propagator with importance sampling, i.e., G̃xy
�

=Gxy
� �V�y� /�V�x�, and take the following transition prob-

ability:

R��x → y� =
G̃xy

�

w�x�
, �9�

where

w�x� = 	
x�

G̃xx�
� �10�

represents the normalization factor. The explicit form of
R��x→xT� will be discussed in more detail in Sec. III B. The
proposed configuration Xd �where d=L or R� is accepted or
rejected according to the usual Metropolis algorithm, where
the acceptance rate is given by

A = min�1,
���Xd�R��xT → x�
���X�R��x → xT� � . �11�

In this way, a sequence of configurations Xk is generated, k
being the �discrete� time index of the Markov chain.

In order to reduce the autocorrelation time of the observ-
ables it is convenient to make several consecutive sliding
moves along the same imaginary-time direction. �5� To such
a purpose, a recent development called “bounce” algorithm
has been proposed �7�. Although the bounce algorithm sam-

x0

x1
x2

x3
x4

x5 x6

x1
x2

x3
x4

x5 x6

xT

X

XR

FIG. 1. �Color online� Pictorial representation of the sliding
moves along the right imaginary-time direction. In the new configu-
ration �bottom�, a new head for the reptile is generated from the old
configuration �top� and the tail is discarded.
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pling procedure does not fulfill the microscopic detailed bal-
ance, the equilibrium probability ���X� is correctly sampled
�7�. The RQMC algorithm with bounce moves can be then
summarized in the following steps:

�1� For the current direction of the move and for the
present configuration Xk, propose xT according to the transi-
tion probability R��x→xT�, where x=x0

k if d=L and x=x2M
k if

d=R.
�2� Given the form of the acceptance ratio A in Eq. �11�,

accept the proposed configuration according to the probabil-
ity

AL = min�1,
w�x0

k�
w�x2M−1

k �� , �12�

if d=L or with probability

AR = min�1,
w�x2M

k �
w�x1

k� � , �13�

if d=R.
�3� If the move is accepted, update the path configurations

according to Xk+1=Xd and continue along the same direc-
tion, otherwise Xk+1=Xk and change direction.

�4� Go back to step 1.

A. Directed updates

At this point we introduce an alternative sampling ap-
proach, which generalizes the bounce idea while strictly ful-
filling the detailed balance condition. Such a scheme, which
is largely inspired by the loop algorithm methods devised for
the stochastic series expansion �11,13� and for the worm al-
gorithm �12,14�, allows one to choose the time direction in a
purely Markovian way, i.e., independently of the previous
history.

In our algorithm, a Markov step consists of many simple
consecutive sliding moves, whose number is not fixed a pri-
ori but is determined by a certain probability �see below�.
The actual Monte Carlo step takes place at the end of few
consecutive updates along the currently chosen direction. In
the examples below, we denote the number of these sliding
moves between the two Monte Carlo steps by s.

At the beginning of each Markov step we choose a direc-
tion d according to the probability P�Xk ,d�, whose form will
be specified later. Assuming that the right direction has been
chosen, we propose a new configuration xT, according to the
transition probability R��x2M

k →xT�, and the configuration la-
bels are shifted according to Xk+1= �x1

k , . . . ,x2M
k ,xT�, with

x2M
k+1=xT. At this point, we continue updates along this direc-

tion with probability K�Xk+1 ,→� or stop with probability
�1−K�Xk+1 ,→��. If it has been decided to continue the up-
dates, then a new configuration is generated according to
R��x2M

k+1→xT� and the labels of the configuration are again
shifted according to Xk+2= �x1

k+1 , . . . ,x2M
k+1 ,xT�. The Markov

step finishes after s consecutive updates along the right di-
rection only when K�Xk+s ,→�	
s, where 
s is a random
number uniformly distributed in �0,1�. At this point a Me-
tropolis test should be done in order to accept or reject the
sequence of intermediate s sliding moves,

A = min�1,
q�Xk+s�
q�Xk� � , �14�

where �see Appendix A�

q�X� =
P�X,←�

1 − K�X,→�
w�x2M−1� =

P�X,→�
1 − K�X,←�

w�x1� .

�15�

However, in order to avoid time-consuming restorations of
the original configuration, it is preferable to accept all the
moves while keeping track of the residual weight q�X�. This
is possible since A only depends on initial and final configu-
rations, so that, given that all the intermediate moves are
accepted, the sampled distribution probability is ���X�
�q�X�. The contribution of the current configuration to sta-
tistical averages must be then weighted by the factor 1 /q�X�.

To proceed to the next Markov step, a new direction d is
chosen according to P�Xk+s ,←� and P�Xk+s ,→� and the up-
dates are carried along the extracted new direction.

Let us now show the actual expressions for the aforemen-
tioned probabilities. In Appendix A, it is demonstrated that
the detailed balance is satisfied if one chooses the probabili-
ties for the directions as

P�X,←� =
1

1 + a�X�
, �16�

P�X,→� =
a�X�

1 + a�X�
, �17�

where

a�X� =
w�x2M−1�

w�x1�
1 − K�X,←�
1 − K�X,→�

, �18�

which is positive and, therefore, guarantees that the above
defined quantities are well-defined probabilities, i.e., 0
� P�X ,←��1 and 0� P�X ,→��1, with the additional
property that P�X ,←�+ P�X ,→�=1.

Regarding the probabilities to continue the updates along
the current direction, we have a substantial freedom of
choice, provided that the condition K�X ,←� /K�X ,→�
=w�x1� /w�x2M−1� is satisfied �see Appendix A�. In this paper
we have adopted

K�X,←� =  min�1,b�X�� , �19�

K�X,→� =  min�1,
1

b�X�� , �20�

where we have defined

b�X� =
w�x1�

w�x2M−1�
�21�

and 0		1 is an arbitrary parameter of the algorithm,
which controls the average number of consecutive updates
along the same direction.

Summarizing, the RQMC algorithm with directed updates
consists of a sequence of Markov steps determined by the
following rules:
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�1� Choose a time direction d according to the probabili-
ties in Eqs. �16� and �17�.

�2� Propose a new configuration xT according to the tran-
sition probability R��x→xT�, where x=x0

k if d=L and x
=x2M

k if d=R.
�3� Shift the configuration indices according to Xk+1

= �xT ,x0
k , . . . ,x2M−1

k � if d=L or Xk+1= �x1
k , . . . ,x2M

k ,xT� if d
=R.

�4� According to the probability K�Xk ,→� or K�Xk ,←�,
decide whether keep moving in the same direction or change
direction. In the former case, go to rule 2, otherwise go to
rule 5.

�5� The Markov step ends here and the current configura-
tion carries the weight 1 /q�Xk+s�, where s is the number of
intermediate moves along the direction chosen.

The relationship between the directed-update scheme and
the bounce algorithm is further elucidated in Appendix B,
where general considerations about the efficiency of the al-
gorithms are presented.

B. Continuous-time propagator

One of the most striking differences between the original
formulation of the RQMC on the continuum and the present
formulation on the lattice is the lack of the discretization
error appearing in the Trotter decomposition of the propaga-
tor. Indeed, it is easier to carry the propagation in continuous
imaginary time on a lattice �15� than on the continuum. �16�
To such a purpose, let us consider the limit of an infinitesi-
mal imaginary time � for which the transition probability of
Eq. �9� can be written as

R��x → y� �
�xy − ��V�y�Hxy/�V�x�

1 − �EL�x�
�22�

��xy�1 + �EL�x�� − �Hxy
�V�y�
�V�x�� + o��2� , �23�

where EL�x� is the previously defined local energy and Hx,y
= �x�H�y� denotes the matrix element of the Hamiltonian.
Whenever �V�y�Hxy /�V�x� is nonpositive for all x and y,
this equation takes the form of a continuous-time Markov
process, whose analytical properties are well known. In par-
ticular, the probability distribution for the “waiting time” �w
in a given state x, i.e., the average time that the system
spends in the state x before making an off-diagonal transition
to another state y�x, is exactly known, namely, P��w ;x�
=exp�−�w�Hxx−EL�x���. As a consequence, the finite-time
propagator R��x→y� can be directly sampled, giving rise to a
succession of a certain number n of consecutive transitions
x→z1→z2→¯→y, with corresponding waiting times
�w�zi�, such that 	i�w�zi�=�. The normalization of the whole
process is

w�x� = exp− 	
i

�w�zi�EL�zi�� , �24�

where the waiting times are extracted according to the expo-
nential probability P��w ;zi�. The transitions between the in-
termediate configurations are done according to the off-

diagonal elements of Eq. �23�, i.e., zi+1 is chosen with
probability proportional to �−�V�zi+1�Hzizi+1

/�V�zi��.

C. Off-diagonal observables

The formalism so far developed allows one to success-
fully compute pure ground-state expectation values of opera-
tors that are diagonal in the local basis x, with the expecta-
tion values of off-diagonal operators restricted to the so-
called mixed averages �5,6,15�. Nonetheless, it is often of
great interest to remove such a limitation �whose result is
biased by the quality of the variational wave function� and a
dedicated sampling strategy has to be devised in order to
cope with such a need. In the following, we show that a
relatively easy modification of the sampling scheme can ac-
complish this task, providing us with a general tool to com-
pute ground-state averages of operators that are nonlocal in
the chosen basis x.

Let us consider an arbitrary off-diagonal observable Ô,
which can be in turn considered as the summation of many

observables we are interested in, i.e., Ô=	dÔ�d�. For ex-
ample, we can imagine these operators to be the components

of the one-body density matrix at a given distance, Ô�d�

=	�r , r��d
br

†br� with the summation extended to all lattice co-
ordinates at a fixed distance d.

In the spirit of Refs. �12,14� we introduce a worm opera-
tor defined by

Wx,y = �x,y + �Ox,y , �25�

where � is a positive constant, and consider the extended
configuration space spanned by the paths

�W
� �X� = �V�x0� � 


i=1

L

Gxi−1xi

� � WxLxR
� 


i=R+1

2M+1

Gxi−1xi

�

� �V�x2M+1� . �26�

The extended paths are broken in two �space�-discontinuous
pieces by the worm operator, which is placed at an imaginary
time 0��LR��. Therefore, paths contain 2�M +1� coordi-
nates, including xL and xR that refer to the same imaginary
time �LR.

The configuration space spanned by Eq. �26� is clearly
larger than the one spanned in Eq. �6�, which is recovered
whenever xL=xR, i.e., when the worm operator is diagonal.

The pure ground-state expectation value of the operator Ô
is conveniently written in terms of the extended paths as

�Ô� =
1

�
lim
�→�

	
X

�W
� �X���xL � xR�

	
X

�W
� �X���xL = xR�

, �27�

where ��C��0 whenever condition C is satisfied. The
modulus of Eq. �26� can be in turn interpreted as a probabil-
ity distribution and stochastically sampled by means of the
elementary sliding moves considered before. Indeed, when-
ever the worm operator is far from the ends of the imaginary-
time paths, the sampling scheme remains unchanged. In this
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case, a move along direction d will generate a new head �or
tail� for the reptile according to R��x→xT� while shifting the
worm position of ��. On the other hand, whenever the worm
operator reaches the ends of the reptile, a new worm con-
figuration is proposed on the other side; in analogy with the
previous analysis, new configurations are generated accord-
ing to a transition probability

RW�x → y� =
1

w̄�x�
�Wxy

�V�y�
�V�x�

� , �28�

where w̄�x� is the normalization factor. Due to the particular
form of the matrix elements �Eq. �25��, the transition
probability will lead either to diagonal configurations �x=y�
or to off-diagonal configurations �x�y�, thus generating
continuous and discontinuous paths. The relative probability
for diagonal and off-diagonal configurations depends on the
value of � that can be tuned in order to reach a balanced
sampling frequency for the different sectors of the extended
paths. In order to exemplify the worm updates, let
us consider the case in which d=R and a con-
figuration �V�x0�Wx0x1

�
i=2
2M+1 Gxi−1xi

� ��V�x2M+1�, after a
sliding update in the right direction, we will have
�V�x1��
i=2

2M+1 Gxi−1xi

� �Wx2M+1xT
�V�xT�, where xT is proposed

according to the transition probability RW�x2M+1→xT�
�see Fig. 2�. In analogy with the previous case, the

acceptance factor for the bounce moves reads ĀR
=min�1, w̄�x2M+1� / w̄�x1

k��.
Summarizing, the RQMC with worm updates consists of

the following steps:
�1� For the current direction of the move d and for the

present configuration Xk consider the worm-operator posi-
tion �LR.

�2� If the worm is not at the ends of the reptile �i.e., �LR
�0 when d=L and �LR�� when d=R� go to step �a�, oth-
erwise go to step �b�.

�a� Propose a new configuration xT according to the tran-
sition probability R��x→xT�, where x=x0

k if d=L and x

=x2M+1
k if d=R. The new configuration is accepted with prob-

ability

AL = min�1,
w�x0

k�
w�x2M

k �� �29�

if d=L or with probability

AR = min�1,
w�x2M+1

k �
w�x1

k� � �30�

if d=R. In the proposed state Xd, all the configuration labels
are shifted in the d direction, determining in turn a shift of
the worm operator of a time interval ��, depending on d.

�b� Propose a new configuration xT according to the worm
transition probability RW�x→xT�, where x=xL

k =x0
k if d=L

and x=xR
k =x2M+1

k if d=R. Accept the new configuration with
probability

ĀL = min�1,
w̄�x0

k�
w̄�x2M

k �� �31�

if d=L or with probability

ĀR = min�1,
w̄�x2M+1

k �
w̄�x1

k� � �32�

if d=R. In the proposed state Xd, all the configuration labels
are shifted in the d direction, and the worm operator is
moved from the head �tail� to the tail �head� of the reptile,
depending on d.

�3� If the move is accepted, update the path configurations
according to Xk+1=Xd and continue along the same direc-
tion, otherwise Xk+1=Xk and change direction.

�4� Go back to step 1.
This scheme samples the probability density associated to

the modulus of Eq. �26�, and the expectation values of the

individual components Ôd can be recast as statistical aver-
ages over such a probability distribution while keeping track
of the overall sign of the extended paths. In particular, the
best estimate of the ground-state expectation values is ob-
tained when the worm is in the central part of the path, at
�LR=� /2, leading to

�Ô�d�� =

	
X

�W
� �X���OxLxR

�d� � 0, �LR =
�

2
�

	
X

�W
� �X���xL = xR, �LR =

�

2
�

=
1

�

���OxLxR

�d� � 0�sgn��W
� �X���OD

center

ND
center , �33�

where �¯ �OD
center denotes statistical averages over the off-

diagonal distribution ��W
� �X����xL�xR , �LR= �

2 � and ND
center

is the number of configurations sampled with a diagonal
worm operator in the center of the paths.

D. Tackling the sign problem

When the probability distribution of Eq. �6� is not
positive-definite, as is generally the case with fermions, the

x0

x1
x2

x3
x4

x5

x1
x2

x3
x4

x5 xT

Wx0,x
1

Wx5,xT

X

XR

FIG. 2. �Color online� Pictorial representation of the sliding
moves along the right imaginary-time direction when the worm
operator sits at the tail of the reptile. In the new configuration �bot-
tom�, a new head for the reptile is generated from the old configu-
ration �top�, the old tail configuration is discarded and the worm
discontinuity is moved to the “neck” of the reptile.
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probabilistic interpretation of the imaginary-time paths
breaks down. This circumstance, which is known as “sign
problem,” originates whenever �V�y�Hxy /�V�x��0 for
some element x�y. In this case, it is not possible to have
polynomial algorithms that are able to obtain an exact solu-
tion of the problem, which would imply to sample correctly
the resulting signs. Therefore, approximated schemes are
welcome and often adopted, the most widespread one being
the so-called fixed-node �FN� approximation. For lattice sys-
tems, this approach relies on the definition of an effective
Hamiltonian, which depends parametrically on the nodal
structure of a given variational wave function �V�x�
= �x ��V� �17�. The matrix elements of the FN Hamiltonian
are defined as

Hxy
FN = �Hxx + �sf�x� if x = y

Hxy if �V�y�Hxy�V�x� � 0

0 if �V�y�Hxy�V�x� � 0,
� �34�

where the sign-flip potential is �sf�x�=	y:sf�V�y�Hxy /�V�x�,
the sum being extended to all the sign-flip states defined by
the condition �V�y�Hxy�V�x��0. With such a choice, the
transition matrix R��x→y� of Eq. �23� is always positive
definite and the summation of Eq. �3� is now restricted—
which results in the FN approximation—to a region of the
Hilbert space in which imaginary-time paths are positive
definite. Therefore, within the FN approximation, the

ground-state wave function ��FN� of ĤFN can be stochasti-
cally sampled without any sign problem. Moreover, it is easy
to show that the FN approximation becomes exact whenever
the signs of the exact ground state are known. Most impor-
tantly, it has been proven �17� that the FN ground-state en-

ergy EFN= �ĤFN� gives a rigorous upper bound to the exact
ground-state one and improves the pure variational results.

At this point, we introduce a straightforward, although
computationally expensive, way to improve further the FN
energy. Our strategy amounts to compute the expectation

values of arbitrary powers of the original Hamiltonian Ĥ on
the FN ground state ��FN�, namely,

Lk =
��FN�Ĥk��FN�

��FN��FN�
. �35�

The FN ground state can be expanded in the basis set of the

eigenstates of Ĥ as ��FN�=�0��0�+�1��1�+�2��2�+¯ and
Lk=�0

2E0
k +�1

2E1
k +�2

2E2
k +¯, with 	i�i

2=1.
Since very often the FN wave function has a considerable

overlap with only few low-energy states, the knowledge of
the first few moments of the Hamiltonian is enough to ap-
proximately reconstruct both the coefficients �i and the en-
ergies Ei. To such a purpose, let us consider a typical situa-
tion in which only the first 2n moments of the Hamiltonian
have been numerically calculated and are therefore known.
We can then truncate the expansion for Lk to the order n−1
having a closed system of 2n equations,

Lk = 	
i=0

n−1

�i,n
2 Ei,n

k , �36�

for k=0, . . . ,2n−1 that can be solved for the unknowns �i,n
and Ei,n. In the limit of large n, the approximated E0,n con-
verges to the exact ground-state energy. Moreover, we veri-
fied that E0,n�E0, as a result of a connection between the
solutions of Eq. �36� and the Lanczos procedure written in
terms of the moments of the Hamiltonian �18�.

The Hamiltonian moments are off-diagonal operators and
can, in principle, be measured according to the sampling
procedure detailed in Sec. III C. In the present implementa-
tion we are able to achieve sufficient statistical accuracy only

for the first moment of the Hamiltonian, i.e., L1= �Ĥ�, while
higher moments are too noisy. Yet, our algorithm is the only
one that allows the calculation of the expectation value of the

original Hamiltonian Ĥ. This is known �17� to be a better
upper bound than the expectation value of the FN Hamil-
tonian accessible with other zero-temperature algorithms.

Although we are not currently in the position to measure
directly the Hamiltonian moments Lk we have a controlled
access to the mixed averages

Lk
mix =

��fn�Ĥk��V�
��fn��V�

, �37�

which present optimal statistical uncertainty. Moreover, an
improved estimate of the ground-state energy based on the
knowledge of the first few moments Lk

mix can be obtained
solving a system of equation similar to Eq. �36� that leads to
the approximate ground-state energies Ei,n

mix. Unfortunately,
the proof that Ei,n

mix�E0, for n�1, is far from being trivial,
requiring a generalization of the already nontrivial upper
bound for n=1 described in Ref. �17�. Nonetheless, we have
numerically verified that, in all the cases treated in this paper
�where E0 is a priori known�, the condition Ei,n

mix�E0 is al-
ways verified. We are then led to conjecture that this may
always be the case.

IV. RESULTS

A. Low-energy excitations and spin correlations of the
Heisenberg model

Hereafter, we present a simple application of the previous
ideas to sign-problem free spin Hamiltonians. Let us con-
sider the one-dimensional quantum Heisenberg model,

Ĥ = J	
i

Ŝi · Ŝi+1, �38�

where Ŝi= �Ŝi
x , Ŝi

y , Ŝi
z� is the spin-1/2 operator on the site i and

J�0 is the nearest-neighbor superexchange coupling.
The total number of sites is denoted by L and periodic-

boundary conditions are assumed. This model can be solved
exactly by using the so-called Bethe ansatz technique �19�.
Information on the excitation spectrum can be obtained from
the dynamical structure factor
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S�q,�� =� dt�Ŝq
z�t�Ŝ−q

z �0��ei�t, �39�

where Ŝq
z�t�=1 /�L	 jŜj

z�t�eiqj is the Fourier transform of
time-evolved spin projection on the z axis. By introducing a
complete set of eigenstates of the Hamiltonian ��n� with
eigenvalues En, we have

S�q,�� = 	
n�0

���0�Ŝq
z ��n��2��� − �n� , �40�

where �n= �En−E0�. In the thermodynamic limit, the spin-1
states form a branch, which is very similar to spin waves in
standard ordered systems, although no long-range order is
found in one dimension.

Imaginary-time-correlation functions of arbitrary �diago-
nal� operators can be efficiently evaluated via Eq. �8�. This
fact allows us to have a direct access to S�q ,T �
= �Ŝq

z�T �Ŝ−q
z �0��. This imaginary-time-correlation function

can be then analytically continued, by using the maximum-
entropy method �20�, in order to have a reasonable numerical
estimate for the dynamical structure factor of Eq. �40�.

Before presenting the results, let us mention that we con-
sider the following Jastrow state as a variational wave func-
tion �21,22�:

��V� = exp	
i,j

vijŜi
zŜj

z��FM� , �41�

where �FM� is the ferromagnetic state along the x direction
for which �x �FM� does not depend on the spin configuration
and the variational parameters vij are optimized by using the
method in Ref. �23�.

In Fig. 3, we show the results for a small L=20 system,
where exact diagonalizations are possible by using the Lanc-
zos method. We report the energy excitations �E�q�=Eq
−E0 for the lowest state with S=1 and fixed momentum q. In
this case a perfect agreement between our RQMC results and
the exact ones is found. Moreover, also on larger systems a

very good accuracy is possible �see Fig. 4�, demonstrating
the performances of our numerical algorithm.

In order to exemplify the potentialities of the scheme out-
lined in Sec. III C, we conclude this part of the results de-
voted to the Heisenberg model showing the ground-state ex-
pectation value of the spin-spin correlation at distance d,

C�d� =
1

L
	

i

Ŝi · Ŝi+d. �42�

The desired observable is used as a worm operator and the
value of the correlation function at various distances is com-
puted by means of the estimator of Eq. �33�. In Fig. 5, we
show the expectation value of C�d� for a 80-site one-
dimensional lattice. In this case we are able to achieve very
good statistics for the off-diagonal observable, with a rela-
tively negligible computational effort when compared to the
evaluation of the ground-state expectation value of other di-
agonal observables.

B. Ground-state properties of the fermionic Hubbard model

As an example of the application of the RQMC to sign
problem affected Hamiltonians, we present some results for
the fermionic Hubbard model on a square lattice, defined by
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FIG. 3. �Color online� Lowest-energy excitations as a function
of the wave vector q for an L=20 Heisenberg chain. The energies
are extracted from the dynamical structure factor S�q ,�� and are
compared to exact results by the Lanczos method.

0

0.3

0.6

0.9

1.2

1.5

1.8

0 π
4

π
2

3π
4 π

∆
E

(q
)

q

RQMC

Bethe ansatz

FIG. 4. �Color online� The same as in Fig. 3 for L=80. Exact
results are given by the Bethe ansatz solution.
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FIG. 5. �Color online� Ground-state expectation value of the
spin-spin correlation function C�d� for the Heisenberg model on an
80-site chain.
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Ĥ = − t 	
�i,j�,�

ĉi,�
† ĉj,� + H.c. + U	

i

n̂i,↑n̂i,↓, �43�

where �¯ � indicate nearest-neighbor sites, ĉi,�
† �ĉi,�� creates

�destroys� an electron on the site i with spin �, and n̂i,�
= ĉi,�

† ĉi,�. As a variational state we consider

��V� = exp	
i,j

vijn̂in̂j��FS� , �44�

where �FS� is the noninteracting Fermi sea and the Jastrow
factor involves density-density correlations. The variational
parameters vij entering in the Jastrow factor may be opti-
mized again by minimizing the variational energy with the
method in Ref. �23�. In order to avoid open shells in �FS�, we
consider 45° tilted lattices with L=2� l2 sites, such that both
the half-filled case and selected hole-doped cases are closed
shells.

Let us start by showing the results for 18 electrons on 18
sites, where the Lanczos diagonalizations are possible �24�.
In Fig. 6, we report our results for the ground-state energy.
The FN approach gives rather accurate results for small val-
ues of U / t, i.e., U / t�4, where �Eexact−Efn� /Eexact�0.01. By
increasing the on-site interaction, the FN approach becomes
worse and worse. This fact is due to the choice of the varia-
tional wave function that does not contain antiferromagnetic
order. Remarkably, a considerable improvement may be ob-
tained by considering the pure expectation value of the
Hamiltonian, which is systematically lower than the FN en-
ergy, as demonstrated in Ref. �17� and now accessible within
our algorithm. Further improvements to the FN energy can
be obtained upon considering few �up to three� higher mo-
ments of the Hamiltonian measured as mixed averages �see
Fig. 6�. The scheme based on the Hamiltonian moments �de-
scribed in Sec. III D� allows us to reach a great accuracy for
the ground-state energy, with a residual error almost inde-
pendent of U / t. Indeed, in this way we have �Eexact
−E� /Eexact�0.002 up to U / t=8.

This approach remains very effective also for larger sys-
tems even though the variational wave function loses accu-
racy by increasing the cluster size �because the ground state
has antiferromagnetic order in the thermodynamic limit,
while the variational state is paramagnetic�. In Table I, we
report the ground-state energy for 50 sites for the half-filled
case, while in Table II we report the ground-state energies for
selected cases at finite hole doping, where numerically exact
results �for moderate values of U and moderate lattice sizes�
can be obtained by the auxiliary-field Monte Carlo method.
�25�

V. CONCLUSIONS

In this paper we have provided an efficient and general
formulation of the reptation quantum Monte Carlo technique
on lattice models. In particular, we showed an alternative
sampling approach which generalizes the bounce algorithm,
previously introduced to reduce autocorrelation time of the
observables. Our scheme allows one to choose the time di-
rection in a purely Markovian way. In addition, the average
number of consecutive moves along the time directions may
be optimized by a fine tuning of a certain parameter that has
been expressly introduced in the transition probabilities. We
reported benchmarks for two different models with pure
bosonic and fermionic degrees of freedom by showing to
what extent it is possible to have accurate results both on the
ground-state and low-energy excitations. The introduction of
a general method to compute ground-state expectation values
of arbitrary off-diagonal observables also constitutes an im-
portant achievement, which will ease the study of relevant
properties such as the Bose-Einstein condensation and super-
conductivity phenomena in strongly interacting models. In
addition, the possibility to directly measure the pure ground-
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〈Ĥ〉
E � 	 �

0,2

FIG. 6. �Color online� Ground-state energy for the fermionic
Hubbard model at half filling on an 18-site tilted-square lattice. The
energy difference �E=Eexact−E is computed with distinct approxi-
mations described in the text.

TABLE I. Ground-state energy as a function of the Hubbard U
repulsion on the 50-site lattice at half filling.

U / t EFN �Ĥ� E0,2
mix

4 −42.850�1� −43.16�1� −43.282�1�
5 −36.364�1� −36.51�1� −37.052�1�
6 −31.885�1� −32.17�1� −32.640�1�
7 −28.318�1� −28.66�1� −29.022�1�
8 −25.382�1� −25.62�1� −26.056�1�

TABLE II. Ground-state energy as a function of the number of
electrons N for Hubbard repulsion U / t=4 on a 50-site lattice. The
numerically exact results obtained by the auxiliary-field Monte
Carlo method EAF are also shown for comparison �25�.

N EFN �Ĥ� E0,2
mix EAF

50 −42.850�1� −43.16�1� −43.282�1� −43.983�1�
42 −53.402�1� −53.57�1� −53.769�1� −54.001�1�
26 −55.4325�1� −55.63�1� −55.6112�1� −55.782�1�
18 −50.4127�1� −50.50�1� −50.4383�1� −50.474�1�
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state expectation values may open the way to a better opti-
mization of the correlated wave function associated with the
ground-state of an effective Hamiltonian which is not the FN
one.
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APPENDIX A: DERIVATION OF THE PROBABILITIES
FOR THE DIRECTED-UPDATE SCHEME

In this appendix we give a detailed derivation of the prob-
abilities for the directed updates. The detailed balance con-
dition guarantees that the given probability distribution
���X� is sampled if transitions from an initial state Xk to a
final state Xk+s differing for s intermediate updates are ac-
cepted according to

As = min�1,
���Xk+s�
���Xk�

T s�Xk+s → Xk�
T s�Xk → Xk+s�� , �A1�

with T s being the overall transition probability between the
two states. Let us first consider the case when s=1 and fix
the right direction d=R �a similar derivation can be obtained
for d=L�. In this case, the transition probability from the
initial state to the final state reads

T 1�Xk → Xk+1�

= P�Xk,→� � R��x2M
k → x2M

k+1� � �1 − K�Xk+1,→�� , �A2�

namely, it is the product of the probability of having chosen
the right direction, times the transition probability for the
new tail of the reptile, times the probability of stopping the
updates after one intermediate step. The inverse transition
probability instead reads

T 1�Xk+1 → Xk�

= P�Xk+1,←� � R��x0
k+1 → x0

k� � �1 − K�Xk,←�� , �A3�

which can be obtained reversing the time directions and con-
sidering transitions from the head of the reptile instead that
from the tail. Therefore, the acceptance factor reads as

A1 = min�1,
1 − K�Xk,←�

P�Xk,→�
�

w�x2M−1
k+1 �

w�x1
k�

�
P�Xk+1,←�

1 − K�Xk+1,→�� .

�A4�

For two intermediate transitions instead the transition prob-
abilities are

T 2�Xk → Xk+2� = P�Xk,→� � R��x2M
k → x2M

k+1� � K�Xk+1,→�

� R��x2M
k+1 → x2M

k+2� � �1 − K�Xk+2,→�� �A5�

and

T 2�Xk+2 → Xk� = P�Xk+2,←� � R��x0
k+2 → x0

k+1�

� K�Xk+1,←� � R��x0
k+1 → x0

k�

� �1 − K�Xk,←�� , �A6�

leading to the acceptance factor

A2 = min�1,
1 − K�Xk,←�

P�Xk,→�
�

K�Xk+1,←�
K�Xk+1,→�

�
w�x2M−1

k+1 �
w�x1

k+1�

�
P�Xk+2,←�

1 − K�Xk+2,→�
�

w�x2M−1
k+2 �

w�x1
k� � . �A7�

The generalization to generic s intermediate steps is straight-
forward and can be written as

As = min�1,
1 − K�Xk,←�

P�Xk,→�
�

P�Xk+s,←�
1 − K�Xk+s,→�

�
w�x2M−1

k+s �
w�x1

k�

� 

l=1

s−1
K�Xk+l,←�
K�Xk+l,→�

�
w�x2M−1

k+l �
w�x1

k+l� �� . �A8�

To find a simple solution for the unknown probabilities, we
first impose a cancellation for the intermediate acceptance
factors, namely,

K�X,←�
K�X,→�

=
w�x1�

w�x2M−1�
. �A9�

This condition is satisfied in Eqs. �19� and �20�. Then, we
notice that the acceptance factor can be written only in terms
of the final and the initial states as

As = min�1,
q�Xk+s,←�
q�Xk,→� � . �A10�

Further, we can impose the two factors q to be independent
of the direction, i.e., the condition q�X ,←�=q�X ,→�
=q�X�, which is satisfied if
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FIG. 7. �Color online� Relative efficiency of the directed-update
scheme and the bounce algorithm. The measured quantity is the
ground-state energy of the one-dimensional Heisenberg model on a
chain of size L=80 sites.
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P�X,←�
1 − K�X,→�

� w�x2M−1� =
P�x,→�

1 − K�x,←�
� w�x1� .

�A11�

Since the two time directions are mutually exclusive, it is
also true that P�X ,←�+ P�X ,→�=1, which allows us to
solve Eq. �A11� and obtain Eqs. �16� and �17�. The same
reasoning can be repeated for the left direction and, due to
imposed homogeneity for the probabilities, it can be checked
that the detailed balance is satisfied for the left direction too.

APPENDIX B: BOUNCE ALGORITHM, DIRECTED
UPDATES, AND EFFICIENCY

In this appendix we comment on the relationship between
the directed-update scheme and the bounce algorithm. If 
=1 is taken in Eqs. �19� and �20�, then after s updates along
the direction d, at the end of the Markov step P�Xk+s ,d�=0,
i.e., the next Markov step will be taken in the opposite di-
rection, just like the bounce algorithm. Although the two
algorithms are similar in this particular limit, there is an im-
portant difference which eventually leads to a different com-
putational efficiency. In order to elucidate this point and to
show the  dependence of the efficiency of the directed up-
dates, we have done a systematic comparison of the two
algorithms.

In particular, we have compared the efficiency of the di-
rected updates with the bounce algorithm for a one-
dimensional Heisenberg model. The computational effi-
ciency is generally defined as

E =
1

�O
2 T

, �B1�

where �O
2 is the square of the statistical error associated to a

given observable after a given computational time T. In Fig.
7, we show the ratio between the directed-update scheme
efficiency over the bounce algorithm efficiency for the mea-
surement of the ground-state energy of a one-dimensional
chain.

We notice that the two sampling schemes have compa-
rable performances, both being based on a similar approach.
As anticipated, it clearly emerges from Fig. 7 that the two
algorithms do not have exactly the same behavior at =1,
the maximum efficiency of the directed updates being
reached for lower values of . This feature is due to the fact
that when  is very close to its saturation value, then a single
Markov step can consist of a conspicuous number of indi-
vidual sliding moves. Even if this situation leads to a fast
decorrelation of configurations it also leads to a rarefaction
of the possibility to measure the desired observables, which
can eventually take place only at the end of the Markov step
and not during the individual moves. This leads to a worse
efficiency if compared to the bounce algorithm, where mea-
surements can be, in principle, done after every sliding
move.

In conclusion, the performances of the two algorithms are
very close, although some advantages may arise from the use
of the directed updates. We further notice that the purely
Markovian approach introduced in this paper could be
slightly more efficient in cases where the number of rejected
configurations by the bounce algorithm is substantial,
whereas all the generated configurations are accepted in the
directed-update scheme.

�1� D. M. Ceperley and E. L. Pollock, Phys. Rev. Lett. 56, 351
�1986�.

�2� D. M. Ceperley, Rev. Mod. Phys. 67, 279 �1995�.
�3� N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Phys.

Lett. A 238, 253 �1998�.
�4� M. Boninsegni, Nikolay Prokof’ev, and B. Svistunov, Phys.

Rev. Lett. 96, 070601 �2006�.
�5� S. Baroni and S. Moroni, Phys. Rev. Lett. 82, 4745 �1999�.
�6� A. Sarsa, K. E. Schmidt, and W. R. Magro, J. Chem. Phys.

113, 1366 �2000�.
�7� C. Pierleoni and D. M. Ceperley, ChemPhysChem 6, 1872

�2005�.
�8� G. Carleo, S. Moroni, and S. Baroni, Phys. Rev. B 80, 094301

�2009�.
�9� W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett. 67,

2307 �1991�.
�10� O. F. Syljuåsen, Phys. Rev. B 73, 245105 �2006�.
�11� O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66, 046701

�2002�.
�12� V. G. Rousseau, Phys. Rev. E 78, 056707 �2008�.

�13� A. W. Sandvik, Phys. Rev. B 59, R14157 �1999�.
�14� S. M. A. Rombouts, K. Van Houcke, and L. Pollet, Phys. Rev.

Lett. 96, 180603 �2006�.
�15� S. Sorella and L. Capriotti, Phys. Rev. B 61, 2599 �2000�.
�16� K. E. Schmidt, P. Niyaz, A. Vaught, and M. A. Lee, Phys. Rev.

E 71, 016707 �2005�.
�17� D. F. B. ten Haaf, H. J. M. van Bemmel, J. M. J. van Leeuwen,

W. van Saarloos, and D. M. Ceperley, Phys. Rev. B 51, 13039
�1995�.

�18� R. R. Whitehead and A. Watt, J. Phys. G 4, 835 �1978�.
�19� See, for example, T. Giamarchi, Quantum Physics in One Di-

mension �Oxford University Press, Oxford, 2004�.
�20� J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys.

Rev. B 44, 6011 �1991�.
�21� E. Manousakis, Rev. Mod. Phys. 63, 1 �1991�.
�22� F. Franjić and S. Sorella, Prog. Theor. Phys. 97, 399 �1997�.
�23� S. Sorella, Phys. Rev. B 71, 241103 �2005�.
�24� F. Becca, A. Parola, and S. Sorella, Phys. Rev. B 61, R16287

�2000�.
�25� S. Sorella �private communication�.

CARLEO et al. PHYSICAL REVIEW E 82, 046710 �2010�

046710-10

http://dx.doi.org/10.1103/PhysRevLett.56.351
http://dx.doi.org/10.1103/PhysRevLett.56.351
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1016/S0375-9601(97)00957-2
http://dx.doi.org/10.1016/S0375-9601(97)00957-2
http://dx.doi.org/10.1103/PhysRevLett.96.070601
http://dx.doi.org/10.1103/PhysRevLett.96.070601
http://dx.doi.org/10.1103/PhysRevLett.82.4745
http://dx.doi.org/10.1063/1.481926
http://dx.doi.org/10.1063/1.481926
http://dx.doi.org/10.1002/cphc.200400587
http://dx.doi.org/10.1002/cphc.200400587
http://dx.doi.org/10.1103/PhysRevB.80.094301
http://dx.doi.org/10.1103/PhysRevB.80.094301
http://dx.doi.org/10.1103/PhysRevLett.67.2307
http://dx.doi.org/10.1103/PhysRevLett.67.2307
http://dx.doi.org/10.1103/PhysRevB.73.245105
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.78.056707
http://dx.doi.org/10.1103/PhysRevB.59.R14157
http://dx.doi.org/10.1103/PhysRevLett.96.180603
http://dx.doi.org/10.1103/PhysRevLett.96.180603
http://dx.doi.org/10.1103/PhysRevB.61.2599
http://dx.doi.org/10.1103/PhysRevE.71.016707
http://dx.doi.org/10.1103/PhysRevE.71.016707
http://dx.doi.org/10.1103/PhysRevB.51.13039
http://dx.doi.org/10.1103/PhysRevB.51.13039
http://dx.doi.org/10.1088/0305-4616/4/6/013
http://dx.doi.org/10.1103/PhysRevB.44.6011
http://dx.doi.org/10.1103/PhysRevB.44.6011
http://dx.doi.org/10.1103/RevModPhys.63.1
http://dx.doi.org/10.1143/PTP.97.399
http://dx.doi.org/10.1103/PhysRevB.71.241103
http://dx.doi.org/10.1103/PhysRevB.61.R16287
http://dx.doi.org/10.1103/PhysRevB.61.R16287

