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Phase-space algorithm for simulating quantum nonlinear response functions of bosons

using stochastic classical trajectories
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Using the positive P-representation of the density matrix, we develop an algorithm for calculating the
quantum many-body nonlinear response functions of a system of bosons driven impulsively by external fields.
The formalism maps the quantum time evolution of N boson degrees of freedom into a stochastic dynamics of
4N classical degrees of freedom. The first- and the third-order response functions are calculated by propagating
the parameters of the P-representation using a set of coupled Langevin equations with multiplicative noise.
These parameters serve as classical variables. Two classical ways for computing the response functions are
presented. In the nonequilibrium method, an observable is calculated for weak impulsive pulses, and the
response functions are obtained by taking its derivatives with respect to the pulse amplitudes. In the alternative,
equilibrium simulation, the response functions are expressed in terms of time-correlation functions involving
the P-representation parameters and stability matrices representing the perturbation of the trajectories. The
stability matrices can be propagated simultaneously with the Langevin equations for the parameters. The

formalism is generalized for a many-body boson system coupled to a harmonic bath.
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I. INTRODUCTION

The computational cost of quantum response functions
scales exponentially with the number of degrees of freedom
since it requires the calculation of the many body states
[1-4]. These response functions are given by specific com-
binations of multipoint correlations functions. The scaling is
much more favorable (power law) for classical systems. Two
algorithms based on classical molecular dynamics (MD)
simulations have been employed: one uses nonequilibrium
simulations based on trajectories of the externally driven sys-
tem [5]. The alternative stability matrix approach uses de-
rivatives of positions and momenta in an equilibrium simu-
lation along the trajectories [6,7]. Both procedures have been
successfully employed for fifth-order Raman [8—15], second-
order surface IR [16], and third-order IR measurements
[17-22]. Semiclassical expansions can provide corrections in
powers of 7 to the classical techniques. They work either at
high temperature or for weakly anharmonic systems [23-27].
A computationally viable general procedure that includes
quantum effects outside these limits will be highly desirable.

In this paper, we propose a fully quantum algorithm based
on the coherent state representation of the many-body den-
sity matrix developed by Glauber [28] and Drummond and
Gardiner [29]. There are several such representations which
use different operator ordering prescriptions; normal and an-
tinormal [33,34] or symmetric [35]. We shall work with Hu-
simi’s positive P-representation [36], but the same ideas can
be applied to the other representations. Gaussian wave pack-
ets have been widely used to simulate the wave functions of
molecular vibrations [37,38]. The density matrix of quantum
states can be represented by a superposition of Gaussian
phase-space wave packets [28,29]. The coherent states form
an overcomplete basis set offering considerable freedom in
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the representation. The density matrix satisfies a Fokker-
Plank equation in its parameter space (4N for N degrees of
freedom). This Fokker-Planck equation is equivalent to
classical-like Langevin equations. The quantum system is,
thus, mapped rigorously into 4N degrees of freedom with
stochastic dynamics. Our primary goal is to connect these
powerful representations for interacting bosons to nonlinear
response theory. The quantum response functions can be cal-
culated in this classical parameter space using the two avail-
able classical algorithms described above. Simulations will
require sampling of the stochastic forces, and coupling the
quantum system to a classical bath poses no difficulty in this
approach. The Langevin equations need to be modified to
include additional noise sources with only a modest increase
in computational cost. The same strategy was recently dis-
cussed for fermions. [39]

The paper is divided as follows. In Sec. II, we review the
P-representation for interacting bosons. We also derive the
Langevin equations for the P-representation parameters
driven by an external field. Section III connects the
P-representation with the response function formalism. We
show how the nonequilibrium simulation can be combined
with the Langevin equations to calculate nonlinear response
functions. We also derive alternative expressions using the
equilibrium correlation functions for the optical response
by employing the stability matrices. We demonstrate how
these two approaches differ for linear or nonlinear interac-
tions with the external fields. In Sec. IV, the method is gen-
eralized to include coupling with a harmonic bath. Sec. V
compares the computational cost of the nonequilibrium and
the stability matrix approaches. Concluding remarks are
given in Sec. VL.

II. P-REPRESENTATION

We consider a system of N boson degrees of freedom
driven by an external field and described by the Hamiltonian

©2010 The American Physical Society
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Summation over repeated indices is implied unless specified
otherwise, and all indices run from 1 to N. &Z (a,) create
(annihilate) an excitation in the mode n. They obey the boson
commutation relation

[aAT’ aAﬂI] = 5’1,’7‘[ * (2)

w,,, denotes the boson energy when n=m and the coupling
between them when n #m. k,,, ;; are two-body interactions.
Coupled two-level systems (hard core bosons) can be de-
scribed. « are taken to be very large when n=m=k=1[ and
zero elsewhere. €(7) is the external time-dependent driving
field, and w, and ,uf) are the elements of the dipole operator.
« and u'® are the sources of nonlinearity of the model. When
these vanish, the nonlinear response is zero.

The approach proposed by Drummond et al. is to expand
the density matrix of a many-body bosonic system in coher-
ent state wave functions. [28,29,40] These are expressed in
terms of standard harmonic oscillator wave functions [28]

N
||Ey>:||a1,a2,...,aN):exp<2 aidj)|6>, (3)

i=1

where |0) is a vacuum state and 4" is an array containing all
the creation operators. The inner product of such wave func-
tions is given by

N
(Blla)= exp( > anﬁn> : 4)

n=1

The positive P-representation is then given by
plr) = f dad’BP(@ B.0A(@.B). (5)
where
dlad’B=11da‘da’dBdp

where the superscripts x (y) refers to the real (imaginary)
part. A(&,E) is defined as follows:

A@.B) = llayple™?, (6)
or in terms of the ladder operators,
A(@,B) = e P+a3'|0)(0] P, (7)

P(a@,f3,1) is normalized such that
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J d*ad’*BP(a,B.1) = 1. (8)

The P-representation is not unique. For a given p, there is an
infinite number of possible P functions. Drummond et al.
[29] showed that it is always possible to obtain positive dis-

tribution which satisfies the relation
2
o 1
P(a,B) = WGXP -

X<&+B* 5(+,8*>, ©)
2 2

a). When a creation or annihilation op-

a-p"
2

A

p

where ||a)y=e %2

erators act on A, we have

a,AM@p) = a,A(@p), (10a)
f\‘”—( i)&“ 10b
(a’B)an_ an"'aan (a’ )s ( )

R ( ] ) o
alA@p =|B,+— |A@p), (10¢)

da,
and

Na P, = B,A@p). (10d)

The time evolution of the density matrix is described by
Liouville’s equation

0 =i oo, (an

where H(r) is the Hamiltonian of the system. Using the
above representation, we obtain

f d2ad2/§—&P(§;ﬁ’t)/§(&,B)

:%f dlad’BP(a,B,0[HD.Aa,p)]. (12)

When the last commutator is evaluated by combining Egs.
(10a)—(10d) with Eq. (1), we obtain

p(0) = J dz&dzﬁ—&P(’Z’tﬂ ’t)A”(&,B)

P A )
—Jd ad ﬁP(a,,B,t)(Anaan +Bn§ﬁn
P

+ EGA,nkGA,mk

1 i _

+ EGB,nkGB,mkm>A(a” B, (13)

where
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A, =AY +iA)

i
== %(E Wy Oy + 2 [Knm,klakalﬂm + Kmn,k]akalﬂm]

m m,k,l
— e - e pP e - 2e(t) ()" anﬂn>, (14)
B,=B'+iB

= _<E OB+ E [kt mnBrBim + Kt umBrfBitm]

m,k,l

— e(t) = () () B2 = 26() P nﬂn), (15)

and

E GA,nkGA,mk == 2 (2 [Knm K] = E(l)(,U« 2)) a, >,
k

(16)

% GB,nkGB,mk_ (2 [Kkl nmlgkﬁl] - 6([),(1, Bn n m)
(17)

In these last four equations, we wrote all sums explicitly for
clarity. G, and Gg are complex matrices obtained taking the
square root of the symmetric complex matrix defined by the
right-hand side of Eqs. (16) and (17) (we assumed that &,
was symmetric under the permutation of n and m and of k
and [). Clearly, Egs. (16) and (17) do not specify G, and Gy
completely. The usefulness of this extra freedom was ana-
lyzed in Ref. [30]. Here, the choice made by Deuar et al. [31]
is assumed and the positive square root is chosen.

Since A(a, B) is analytic in the complex plane, the deriva-

tive acting on A(a,,B) in Eq. (13) can be chosen with some
freedom. For example,

a
J

We use this freedom to require that all coefficients in Eq.
(13) be real. For example,

d
A, ——A"—+A‘ 18
"da "da* (18)

n

Even if A, is a complex quantity, we use the freedom in
d/ da, to make the product A,d/da, real. Equation (13) is
then integrated by parts, and a Fokker-Planck equation for

the time dependence of P(a@, 3,1) is obtained as
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w7 —A'P - AyP— J —BP- Y
g aal " g " 9Bt A"
+ %{mGi,nkGﬁ,mkP + mGA kG miP
+2LG G, P] 1|: i Gy .Gy .P
e, g, AT Amk B o B Bk Bk
P s ,
a By B, G G i +2mG§,nkG§,mkP ]
(19)

Given an initial distribution of the complex variables «, and
B, the time evolution can be computed by employing the
exact mapping between Fokker-Planck and Langevin equa-
tions. Using Ito calculus (for a review of the difference be-
tween Ito and Stratonovitch stochastic integrations, see [32]),
we obtain the Langevin equations

d;? 0t Ghnn() (20a)
o= At G0 (20b)
djl? =B+ Gy (1) (20¢)
df; =B, + Gy, 1), (20d)

where §i(t) and nn(t) are uncorrelated white noise variables,

<§n(t)§i(t N =(m() mi(t")y=(t—1"), (Ei(t) 7, (¢'))=0 for all n
and m, and (§‘E(t)§i (t'))= <77n t)nm(t ))=0 for n# m. Since

m
G4(p) depends on @(p), the noise in these equations is mul-
tiplicative. Numerical algorithm for the integration of differ-
ential equations with multiplicative noise are given in Ref.
[41]. The evaluation of G, may also cause numerical dif-
ficulties because it involves the diagonalization of a complex
matrix that depends on «(f). This diagonalization should be
performed at every time step for the integration of Eqgs.

(20a)—(20d). The distribution function P(a,3,7) can be re-
constructed from an ensemble average over trajectories
which are obtained from Egs. (20a)—(20d). The initial condi-

tions are sampled from P(a&,3,0). The formalism maps the
quantum time evolution of N boson degrees of freedom into
a stochastic dynamics of freedom of 4N classical degrees of
freedom. Note that, in a classical mechanics sense, o and 8
would be conjugate variables in the absence of the noise (if
GA=GB=0).

III. RESPONSE FUNCTIONS

In this section, we apply the above formalism to the cal-
culation of nonlinear optical response functions for many
degrees of freedom. Hereafter we consider the optical re-
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sponse to an external electric field but the formalism can be
applied to any externally driven system.

A. Linear interaction with the field

We consider the linear interaction with the external field
by assuming Mff):o in Eq. (1). In optical spectroscopy, the
measured signal is directly related to the average polarization

P(t) =Tt (w,d, + w6, p(0)], (21)

where Tr stands for trace. Using the coherent states represen-
tation, the polarization becomes

P(r) = f daP(a,t)c, ,, 4, (22)
where @ contains all «, ,’s, and
— — Y — —
ap1 =0, Qpr=0, & 3= BZ’ Ay 4= Bn
and
_ = _ * = *
Cp1 = Mps  Cpa=1My,  Cp3=My  Cpa=1My,.

Note that ¢ runs from 1 to 4. P(@,1) is obtained by solving
the Fokker-Planck Eq. (19). The polarization can be equiva-
lently calculated using a path integral over trajectories of
@, ,(t) given an initial distribution [described by Py(a@)] and

a noise history (described by J[&¥(1), 7(1)]),
P(1) = f d&f D[ 7 ()]D[E(1)]

XPO(&)J[E:F([)’ 7_71(l‘):lcn,qan,q(t) . (23)

The noise variables &(r) and 7%(1) contain all the 7/(f)’s and
§fl(t)’s. Mathematically, the noise history is described as fol-
lows:

JEr), 7 ()] % e VIAEDED+T D7) (2g)

and is normalized such that
f D7 OIDLEOV(E D), 7 (1) = 1. (25)
This result gives the polarization to all orders in the ex-
ternal fields. The response functions are derived by expand-

ing the polarization perturbatively in terms of the external
fields,

P(t) =D, dtn...f dn St 1,1, ... 1))
n=1+v0 0

Xe(t—t,)e(t—1t,—t,1)...€(t—t,—t,_;...—1}),
(26)
where S")(t,,1,_,,....1;) is the nth-order response function.

In a four-wave mixing experiment, the signal is related to
the third-order response function. We shall outline how the
response functions up to third order can be calculated from
the Langevin Egs. (20a)—(20d). We assume delta function
pulses for the external fields
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E(t) =€ 5(t— 7'1) + 625(t— Tz) + 635([— 7'3), (27)

where ¢; is the amplitude of the ith pulse and 73> 7> 7.
From Eq. (26), we have

Jd
SD(r - )= (—P(r)) , (28a)
(961 €=6,=€3=0
SIt-7y,m—7)= ( P(r)) . (28b)
(962 d €] 51:52:53:0

and

3
S(S)(t— T3, 73 — Ty, T) — T]) = (

P(t)) .
El=62=E3=0
(28¢)

(963(962 (961

When a system is subjected to the pulses, the trajectories
make a jump, i.e, at time 7,

— , E1Mn,
@, (1)) = a, (7)) + an, (29)
where w, , is defined as
— Y — X Y _ X
Mn,1 = Mys Mn2 = Mys Mn3 = My Mna=— My

We further denote by u the array containing all u,, ,’s. Simi-
lar jump conditions are induced by the pulses that act at 7,
and 73. Hence, the value of a, , at time 7 is generally given
by

= = _ €11
a, (1) =Fn,q<t_ T3,F{ 3= Tz,F{ 7 — r,a(n) + 7}

M kYl
* [t ) (30)
where F[r—7,a(7)] is a function that takes a(r,) and
propagates it from 7, to 71— in the absence of any fields
(this function certainly depends on the noise history, but this
dependence was not explicitly written in the argument of the
function for simplicity).

As an example, we show how this approach can be used
to calculate the linear response function. According to Eqs.
(28a) and (23), SV(t—7,) is given by

S(t- 7)) = lim el f da f DIENOIDL7(1)]
1

€—0

XPO(C_Y)J(Ei(t)v 771(1‘))6‘;1,(/{Fn,q|:t - TI’C_((TI)

€114

A _Fn,q[t_Th&(Tl)]}’ (31)

where a(7,) has been propagated from 0 to 7, in the absence
of fields. When the terms inside the brackets are expanded in
powers of the field amplitude, it gives
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sW(t-7)= fdaf D7 () 1DLE(D]Po(@) (& (1), 7(1)

aFnl,ql(t_ T],C_Y(Tl)) Cnl,qllu'nz,zh

, (32)
aanz,qz(’rl) h
which can be written in compact notation as
Ja
S(l)(t— )= CnygMnygy [ 9%, ql( ) (33)
ﬁ doy nz,qz(Tl)

If the distribution function is stationary between 0 and 7, we
can take 7;=0. Further, if the system is initially in the ground
state (note that the ground state is stationary with respect to
the Hamiltonian in the absence of fields), P is given by

2

1 1
Py(a) = (47)1\,6_22”*‘1&"#,

(34)

and the first order response is simplified to (after an integra-
tion by parts)

C”l"h'u’"zqu<

s0(1) = gD (0, (33)

where a, (1) is obtained simulating Egs. (20a)—(20d) in the
absence of the fields. The second- and third-order response
functions are derived following the same procedure. The re-
sulting expressions are

C”ls‘h'u””zv‘lz’u’"zv‘ia

SOt =75, 7) = 72

<Mn1q1,n2q2(ts 7-2) an3,q3(0)> s
(36)

and

Cnl,ql/'l’nz,qzﬂn3,q3/-l’n4,q4
h3

S(3>(l — T3, 73— T, 7-2) =

(2)
X <M"1‘11’"2‘12»”5‘15(t’ 3 7-3)

)
M"SqS 1343, n4q4(7-3, 7'2,0)
2
+ Mfl.)q] 1343:149 4(t, 73, 72) &ty 4,(0)),
(37)

where we have again assumed 7, to be zero and P, to be
given by Eq. (34). M and M® are stability matrices defined
as

aan q (tZ)
M (tyt) = ———, (38)
n1q1:1549, aa’nz,qz(tl)
and
Pa, ,(13)
(2) _ ny,q\'3
nlql,nzqz,n3q3(t3,t2,t1)— Pty ) day ) (39)
2 343
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B. Non-linear interaction with the field
When the dipole moment depends nonlinearly on the os-
cillator coordinates, the average polarization is generally
given by
P(r) = f da f DL7 (0]DLE (0)1Py(@)I[E (1) 7' (1) 1B[a(r)],

(40)

where B[ a(r)] is nonlinear in the a, ,’s. The jump condition
expressed by Eq. (29) can be replaced by

L €y [
an,q(’r_f) = an,q(Tl) + ]Tq + f_ dTGnm,q(T)gm,q(T),

7

(41)
where
Gnm 1= GA nm? Gnm 2= GA nm?
Gnm,S - G)l(? nmo Gnm,4 = B,nm’
and
§n,1 = gns gn,Z = gn’ gn,3 = Mns gn,4 = -

We can derive a similar correlation function expression
for the optical response following the procedure presented in
the last section. It turns out that the stochastic nature of the
jump does not contribute to the response function, because it
brings a term of the form §i A7), f;tl A1) mj(Tz) and
ffl l(rl)ém ,( Tz)fk ,(73) which vanishes when the noise is aver-
aged (i.e., the random jumps at different times are uncorre-
lated). We then obtain

(M _ Mn, dB[a(1)]

and under the same assumption as in the last section (the
distribution is stationary between 0 and 7;)

S0 = E24BL (1))t (0))- (43)

For the second- and third-order response functions, we ob-
tain

Mon, g Mnyq, | 9B(1)
SO - ’ _ e, M(2) t, 7,0
( ™2 7'2) 72 (7%3 ‘13(1‘) "3‘13’”141’”242( n2 )
PB(t
a, ‘11(0) &anz qz(TZ)

and
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oy g, Moy g, Mons, PB(t #B(t
S(3)(t Ty Ty = T, 7'2) _ ny.qy 1123‘12 13,43 ( ) ( ) Mglz)q . (l, T 7_2)
fi aanl,ql(TS) aanz,qz(TZ) aan3,q3(0) aan4,q4(t) aanl,ql(o) 4TRSS
#B(t) #B(1)
M® t,7,0) + M®? t, 7,0
0761’,14,514(1‘) d Cl’nl,ql(Tz) n4q4,nzq2,n3q3( ’ ) 0761’,14#4(1‘) d aﬂ]»q1(7-3) n4q4,nzq2,n3q3( : )
#B(1) dB(1)
(2) T a2
da, ,(73) da, ,(73) M"4q4’"2‘12v”3‘13(73’7-2’0) + a,, 4.0 "4‘14’”5‘15’”1‘110 7-3’7-3)]‘/["545 347, "3‘13(73’7-2’0)
494 191 494
JB(1) Pty (1) s
n4q4(t) &anlql(TS) d anzqz(TZ) d angqg(())
|
When B(r) is linear in the «,, s, these results reduce to Eqgs. SNt =13, 75— Ty, 1 — 7))
(35)—(37). The derivatives of B(r) with respect to a(7) for B
T# ¢ are evaluated using the first-order stability matrices, = (Peee = Peeo = Peyoe, = Poe, + Peoo
+ Poe,o + Pooe, = Pooo)/ €1 €263, (47)

#B(t)
(1 da

&B(1) ~

ty g () Tty o (D)

( ) n3q3,n2q2(ts T) N

”1 9 3,43

(46)

Note that the results summarized in Egs. (44) and (45) are
very similar to the ones obtained by Dellago and Mukamel
[7] and by Saito and Ohmine [12,13] in the calculation of
nonlinear response functions for fully classical systems. The
advantage of the positive P-representation is that, from
classical-like trajectories and correlation function expres-
sions, we obtain fully quantum-mechanical response func-
tions. Note that we did not need to invoke the rotating-wave
approximation [2].

C. Simulation protocol

We discuss two general schemes for calculating the non-
linear response functions, the nonequilibrium and the stabil-
ity matrix approaches. In the nonequilibrium approach, the
Langevin equation is simulated for the externally driven sys-
tems, and the derivatives appearing in Egs. (28a)—(28¢) are
numerically evaluated. The simulation goes as follows:

(1) Simulate Egs. (20a)—(20d) with three weak pulses and
calculate the polarization according to Eq. (23). We denote
this polarization has P5152€3(t)' The initial conditions of the
trajectories are sampled from Py(a) obtained from Eq. (9).
The system is initially in its ground state, and we have Eq.
(34).

(2) Repeat step 1 three times. Each time, one of the pulses
is turned off. This will give P¢ . o(t), Pe,0¢,(t), and P, (1)

(3) Repeat step 1 again, but w1th only one small amph-
tude pulse turned on P go(?), Poeyo(?), and Ppoe, (1)

Note that Py(t)=0 because the systems remains in its
ground state in the absence of external fields. Upon comple-
tion of this procedure, the third-order response function can
be calculated [5]

provided the pulse amplitudes are sufficiently small. In order
to get the full time dependence of the third-order response
function, the time at which the pulses act must be varied, and
the above three steps repeated.

In the alternative stability matrix approach, we have to
calculate the time evolution of M or M instead of simulat-
ing the trajectories in the externally driven system. They can
be simulated by integrating the equation of motion for the
stability matrix [6]

d da a, ql( 2)

-—M (t2,t)) = 2 - (t211),

(912 et n3,q3 n3 q3(t2) Mz

(48)
and
Fa, ,(t

iM(Z) (12 t) tl) — E a”]’q]( 3)
51‘3 1892 Nady n3.14,43.94 (5’(1”4’44([3) d ans,qs(t3)

x M"444v"242(t3’ tZ)MnSqS,n3q3(l3, tl) .
(49)

The initial conditions to these two stability matrices can be
shown to be

M”lqw”zqz(tl’tl) 5”1”25‘]]Q2 (50)
and
(2 _
nlql,nzqz,n3q3(t27t2’tl) —07 (51)
for all ¢ and r,. For harmonic systems («x=0),

&Zdnlql(t3)/z9an4q4(t3)z9a,,5q5(t3)=0 and dd, 4 (1))/da, , (1)
is constant. This can then be used with the initial condi-
tions on the stability matrices to show that the nonlinear
response of linearly driven harmonic oscillators vanishes.
This well-known result is often understood in terms of
cancellation between Liouville-space pathways. [1,42] The
stability matrix approach guarantees this cancellation
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t0 be maintained as long as (,(0))=0. When «#0,
nlql(t3)/aatl4q4(t3)aansq (t3) and &an (tZ)/aan qz(tZ) are
obtained from the Langevin equations [Eqs (20a) (20d)].
The simulation steps are as follows:
(1) Simulate the Langevin equations, Egs. (20a)—(20d), up
to time ¢ in the absence of field.
(2) For every desired #;, calculate M, nzqz(tz,tl) and
"21)% nzqz,n3q3(t3,t2,t1) using Egs. (48) and (49), respectively.
(3) Evaluate the products appearing inside the averages in
Egs. (35)—(37) using the calculated values for a(r), M, and
M® for the particular trajectory.
(4) Repeat steps 1-3 and take an ensemble average.

IV. RESPONSE OF A SYSTEM COUPLED TO A BATH

Fluctuations due to the coupling with the environment
whose strength depends on temperature cause line broaden-
ing in optical spectroscopy. We now generalize our results to

fdz dzﬁp(aﬁt)<AX—+A>’ -
"da, ool "opr "Bl

n

—— 4 GG ———
X X Ank™~A,mk y v
Ja, d o, day, d o,

1 X X
+ E |: GA,nkGA,mk
1 Gp .G% i Gy .Gk i
+ )
2 B nk B mk an B,:n B,nk B,mk aﬂi aﬁ}

where @ is an array containing all the a,’s, and a,’s (simi-
larly for B). The new A’s and B’s are defined by

~ = i
A=A+ iR =4, = 2 Copay, (54)
B,=Bi+iB=B,+C 55
n— n+l n— n+hcny Y’ ( )
A, =A% +iA), (Qya, +C,a,), (56)
and
= =~ = i
By:By'i'l); %( 7B7+Cnyﬁn) (57)

where A, and B, are given by Egs. (14) and (15), and there is
no summation on the first term of the right-hand side of the
last two equations even if the index vy is repeated. Note that

2G% G 7 AY J
+ +
Bnk Bmkaﬁzaﬁfn 'ya
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include couplings to a bath. We assume a many-body exci-
tonic system linearly coupled to a harmonic bath and de-
scribed by the Hamiltonian

A T T A
H(t) wnma am + Knm @4, Arag

2)\*
— €O iy + pnih + pPd} G, + () dbdla,]

+Cpyfishy + Cp b, + Q51D (52)

where b (by) create (annihilate) an excitation on the oscil-
lator 7y of the bath. The coupling between the system and the
harmonic bath is included through the C,, terms, and the
bath oscillators frequencies are denoted by (), We use Greek
subscript for the bath and Roman subscript for the system.
We also assume that the system only interacts with the field
and this interaction is linear. By following the procedure out-
lined in Sec. II, the time evolution of the density matrix is
calculated from

+2G) G T
A,nk A’mkﬁa”vé’aj;

+Bxi+B)—)A(a B,
’ya y VaBX ’Yaﬁ}

(53)

the G’s are unchanged by the coupling to the bath. They are
defined by Egs. (16) and (17).

The steps described in Sec. II are repeated, and the same
Langevin equations for «, and B,, Egs. (20a)—(20d) are ob-
tained, but with gn and E,, replacing A, and B,. The equa-
tions of motion for the harmonic bath parameters are purely
deterministic as

da i i,
Ey =- EQVQV_ gcnyan (58a)
d,B i

= —97,87+ Cnyﬁn, (58b)

dt

where we combined the real and imaginary part of «, and
B,- These equations can be formally solved as

. ort
_ i i L —i€) (1=
a(t) =" a,(0) - ﬁfo dre " Cyu(7)

(59a)
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.t
B0=™p.0)+ L[ G, 5, (5,

(59b)

When these solutions are inserted in the system’s Langevin
equations, the only remaining bath dependence appears in
the frequencies and the initial conditions.

Using Eq. (59), the Langevin equations for the system’s
parameters become
CarCony [
o

da, . .
0; = Ay + Gy (1) + fi(0) - dre =g (7)

(60a)

d ; C*ICm
%=Bn+GB,nmn;(r)+g3;(r) e f dre /1B, (7).

(60b)

Eliminating the bath variables in the introduction of two
noise variables, f(7) and g*(7),
fin) =

- éCnye_m?/ﬁ’ay(O) (61a)

l . .

gﬁ(t):g w1 B(0). (61b)
The two new terms on the right-hand side of Egs. (60a) and
(60b) are identical to the standard fluctuation and dissipation
terms obtained in classical Langevin equations for a system
in a harmonic bath [43]. In order to specify these two new
noise variables, we need the initial bath parameters distribu-
tion function. We assume that for =0 the system and the
bath are decoupled (C,,=0), the system is in the ground
state, and the bath is described by a canonical distribution

oo

plt=0)= X

19, =1

M
BN 0 (n172)

Ny, ... ,I’lM><6,l’ll,l’lz, ’nM| (62)

for M bath oscillators, where 0 means that all system’s exci-
tons are in their lowest energy state. In this equation, [
=1/(kgT) where kg is Boltzmann’s constant and T is the
temperature. Note that this initial distribution is stationary
only if the bath and the system are decoupled; an approxi-
mation often taken for the initial distribution. This is used
with Eq. (9) to obtain the following initial distribution for the
coherent state system and bath parameters

M x| 2
o 1 BHQ -B
P(a,B) = —(4172)N+Mexp<— gl {—22 + —Yayz
+ (1 _e—,Bth) EL’B’*Z 2:|
2

N 2 2
E[ +<a>;<ﬁ*>+<BY)D. )

n=1
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In particular, it is easy to show that every initial bath param-
eters have zero mean and the variances of

(@ye) =(a)a) = (B,B,) = (B,B)
= [2 - exp(_ ﬁhﬂy)]/[z -2 exp(_ ﬂﬁQy)],

(a)B)) = exp(= BhQ,)/[2 -2 exp(- h€),)] =~ () B);
all other correlations vanish. These relations can then be used
to obtain the statistical properties of f¥(r) and g’(r) which
have zero mean and

FaOFa ) = 5 CyCoye MM 05(0) a(0)

a(0)(0)), (64a)

(O = 15 L G /M B(0) B(0)

+B8(0)8(0)), (64b)

and
. 1 L ,
(fingi (1)) = ﬁCMC,;We"QV = a(0) B5(0)

- a)(0)B(0)).

Note that fi(t) and gn(t) are now correlated and this correla-
tion vanishes exponentially as temperature approaches zero
(in the fully quantum mechanical regime). This analysis
shows that for every exciton in the system, the problem re-
quires the solution of four complex first-order stochastic dif-
ferential equations with extra noise sources due to the pres-
ence of the bath.

In practice, we do not know the C,,y’s and Qy’s. On the
other hand, many models for the bath simplify the numerical
effort and give accurate line broadening [2]. Here we present
one of them. We first assume that each exciton is coupled to
its own bath. In other words, all the C’s are the same and
represent a single coupling for each exciton with it’s bath,
C,,=\,. In such a case, the memory function, M(t), can be
rewritten as

(64¢)

C” C‘k t . )\nQ t
P f d”"”“”“‘ﬂam(r>=a,,m|hz| f dTM(t = D)a,(7),
0 0

(65)

where
M(1) = f dQe MMG(Q), (66)

and G(Q) is the bath density of states. We assumed that the
initial conditions on different baths were uncorrelated. We
also assumed that all excitons were coupled to baths having
the same density of states. A common model for the bath
density of states is the Debye model for solids. [44] More
recent models for baths can be found in the literatures. [2,43]
The extra noise terms can also be expressed in terms of the
density of states as
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fin=- %xn f dQe MU (), (67)
and
g0 = éxz J dQe"™Mg¥(Q), (68)

where we introduced two new noise variables whose vari-
ances are related to the density of states and the temperature
as

2— PO
(FQF(Q)*) = Q- Q’)Q(Q)l_em,
. 2 — PO
(G DG = Q- Q')Q(Q)l_em,
B0
Q)G Q")) = 8(Q - Q')Q(Q)W~ (69)

Hence, the extra friction and dissipation terms in Egs. (50)
can be calculated by performing simple integrals over the
model bath density of states. This suggests a way to reduce
the numerical effort by avoiding sums over all bath degrees
of freedom.

V. COMPARISON OF SIMULATION COST

We now compare the numerical effort required to com-
pute the third-order response function using the nonequilib-
rium and the stability matrix approaches for the model pre-
sented in Secs. II and III.

In the nonequilibrium method, the Langevin equations
must be simulated with the fields turned on. For N degrees of
freedom, the number of multiplications for each time step is
proportional to N* [see Egs. (14) and (15) and Egs.
(20a)—(20d)]. Therefore, the time required to compute the
average polarization for one specific pulse sequence scales as
N*X N, X Niyj» Where N, is the number of time steps taken in
the simulation and N, is the number of trajectories in the
ensemble. Then, the third-order response function can be cal-
culated by varying the time at which the pulses act. If we
assume the system to be at equilibrium at time zero, we set
71=0 and vary 7 and 73 only. We denote the number of
discrete values of 7, and 73 by N, Increasing N, means
higher time resolution of the spectra. The total time required
to calculate the third-order response function with the non-
equilibrium method scales as

tne © N* X N, X N7 X Ny, (70)

In the stability matrix approach, the rate-determining
step is the calculation of the second order stability matrix
Mgf,g(t3,t2,t1). For each time step, the second order stability
matrix requires the integration of N? equations of motion
[Eq. (49)]. The total computation time required in the stabil-

ity matrix approach scales as
tsmocNﬁthXNtraj' (71)

The ratio of the two estimated times is given by

PHYSICAL REVIEW E 82, 046706 (2010)

2
N

o Ni . (72)
Inclusion of the environment only slightly increases the
number of operations to be done at each time step. The sta-
bility matrix approach is ~N? more expensive than the non-
equilibrium approach because the second order stability ma-
trix requires the integration of the equation of motion for all
N? deviations of & with respect to a. On the other hand, as
the time intervals between pulses are varied, new trajectory
calculation is required in the nonequilibrium, but not in the
stability matrix approach. Thus, higher time resolution in-
creases the computational cost of the nonequilibrium simu-
lation.

VI. CONCLUSIONS

This  paper  demonstrates how the  positive
P-representation can be used to compute the nonlinear re-
sponse functions of a many-body bosonic system driven by
impulsive pulses. The response functions can be calculated
using a set of classical-like Langevin equations. Therefore,
previously developed methodologies for calculating response
functions of classical systems [7,12,13] can be directly ap-
plied here, and the memory expensive computation of
excited states wave functions and energies is avoided.

Each boson degrees of freedom is associated with two
complex variables (« and B) in the P-representation, and
their resulting equations of motion are complex conjugates.
The anharmonicity in the system’s Hamiltonian gives rise to
coupling between the « and the S variables. There are three
sources for the noise in the Langevin equations: anharmonic-
ity of the system’s Hamiltonian, nonlinear interaction with
the fields, and interactions with the environment.

The P-representation was used to compute the response of
the system. In the nonequilibrium approach, weak impulsive
temporally well-separated pulses are explicitly kept in the
Langevin equations, and the third-order response function
can be calculated from Eq. (28¢). In the stability matrix ap-
proach, small deviations of & and « are imposed in the tra-
jectory, and the time evolution of the deviations is simulated.
Equations of motion for the stability matrices are obtained
just like for their classical analogs. The third-order response
function can be calculated following Eq. (36). In the non-
equilibrium simulation, the calculation of the stability matrix
can be avoided. However, ensemble averages are required
when the time intervals are varied. Thus, high time reso-
lution increases the computational cost of the nonequilibrium
approach but not of the stability matrix approach. The non-
linear response of linearly driven harmonic systems vanishes
identically because of interfering pathways. One clear advan-
tage of the stability matrix approach is that it enforces this
cancellation provided that the mean of the initial distribution
of a and B vanishes (this is clearly the case when the system
is in its ground state).

The similarity of the Langevin equations with their clas-
sical counterparts allows us to use standard techniques. Cou-
pling the system with a harmonic bath is included in the
Langevin equation as an extra source of noise. It generally
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translates into colored noise and memory terms. The decay
of the correlation of the noise is governed by the bath tem-
perature and the vibrational density of states of the bath,
much like classical systems.

The positive P-representation is not unique [31] and the
convergence of the average polarization may require a large
number of trajectories. As shown in Fig. 1 of Ref. [40], the
number of excitations in a damped 2-bosons systems as pre-
dicted by the P-representation can diverge. On the other
hand, this nonuniqueness could allow the use of other
Gauges like the one proposed in Refs. [31,40,45] to reduce
the numerical effort and get convergence. Deuar et al. [45]
had tested some of these Gauges on a system made of two
coupled anharmonic oscillators and a one-dimensional gas of
bosons and reported the computational cost required to
achieve convergence of relevant statistical quantities (i.e.,
probability of being in a given state). Only after a numerical
implementation of the formalism described in this paper will

PHYSICAL REVIEW E 82, 046706 (2010)

we be able to say how the response function calculation will
be sensitive to the known convergence problems associated
with the positive P-representation. The convergence of the
response function is strongly dependent on the system. In the
future, we plan to implement our formalism on a many-body
bosonic system composed of a few number of sites and dis-
cuss in depth the computational cost for calculating the re-
sponse function with the positive P-representation.

Throughout this paper, we treated the field and the transi-
tion dipoles as scalars, for simplicity. The formalism can be
easily generalizable to include these vector in three dimen-
sions.
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