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We consider a standard microscopic analysis of the transport coefficients, commonly used in nonequilibrium
molecular dynamics techniques, and apply it to the smoothed particle hydrodynamics method in steady-shear
flow conditions. As previously suggested by Posch et al. �Phys. Rev. E 52, 1711 �1995��, we observe the
presence of nonzero microscopic �kinetic and potential� contributions to the total stress tensor in addition to its
dissipative part coming from the discretization of the Navier-Stokes continuum equations. Accordingly, the
dissipative part of the shear stress produces an output viscosity equal to the input model parameter. On the
other hand, the nonzero atomistic viscosities can contribute significantly to the overall output viscosity of the
method. In particular, it is shown that the kinetic part, which acts similarly to an average Reynolds-like stress,
becomes dominant at very low viscous flows where large velocity fluctuations occur. Remarkably, in this
kinetic regime the probability distribution function of the particle accelerations is in surprisingly good agree-
ment with non-Gaussian statistics observed experimentally.
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I. INTRODUCTION

Smoothed particle hydrodynamics �SPH� is a meshless
particle method able to discretize an arbitrary set of partial
differential equations in a Lagrangian framework �1,2�. In
spite of its robustness and flexibility, SPH still suffers of
problems related to its numerical accuracy. The existence of
spurious transport coefficients in the method is well-known
and it is usually associated to the occurrence of disordered
particle configurations and artificial mixing. This is particu-
larly evident for high Reynolds number flows where the par-
ticle inertia is large, effectively limiting the applicability of
standard SPH for accurate direct numerical simulations
�DNS� of turbulent flows �3�.

In �4�, a systematic study of the spurious SPH viscosities
was performed and a direct connection with the numerical
SPH particle diffusion was highlighted. Alternatively, in
�5,6� a different approach was pursued in order to character-
ize the transport coefficients: by invoking the isomorphism
linking the SPH equations describing an inviscid fluid with
the ones governing the motion of an atomistic Lucy fluid, the
authors performed nonequilibrium molecular dynamics
�NEMD� simulations of the latter under homogenous shear
flow to deduce the spurious transport coefficients of SPH.
The presence of two atomistic viscosities in a thermostated
Lucy fluid, analogous to the microscopic kinetic and poten-
tial ones, was reported. Intrinsic viscosity as well as other
transport coefficients �i.e., thermal conductivity� �7� were
later observed and their dependence on applied shear rate
and averaged velocity fluctuations �kinetic temperature� nu-
merically quantified.

An interesting point highlighted by Hoover was that the
continuum interpretation of the two microscopic viscosities
is very different. Indeed, although the potential one has no
continuum analog, the kinetic viscosity which is based on
particle velocity fluctuations, acts formally as a negative av-
eraged Reynolds stress in standard turbulence closures �8�. It
is therefore very important to separate the two contributions

in order to quantify the different source of errors and to
understand whether intrinsic SPH dissipative mechanisms
can be used as sub particle-scale �SPS� turbulent models in
the spirit of implicit large eddy simulations �ILES� �9�.

In this paper, we study the behavior of the SPH spurious
viscosity under homogeneous shear flow differentiating the
several contributions. Unlike the study made in �5�, here no
microscopic Nosé-Hoover �or similar� thermostat is em-
ployed to achieve a nonequilibrium stationary state. The
presence of an input viscosity through the SPH discretization
of the full Navier-Stokes equations �10,11� allows to stabilize
the simulations without imposing a priori a specified level of
velocity fluctuations. As a consequence, particle velocity
fluctuations are unconstrained, emerge naturally and eventu-
ally become dominant in very large Reynolds number flows:
the corresponding regime is denoted in this paper as kinetic
regime. The behavior is studied under different choice of the
Mach number and it is found to be predominant in strongly
compressible situations. In this latter case, we observe a kind
of phase transition in the averaged fluid density correspond-
ing to the onset of the kinetic regime. Although the statistics
of the particle velocity fluctuations remain Gaussian, the
probability distribution function of the corresponding accel-
erations has a stretched exponential shape increasing its kur-
tosis as the effective Reynolds number increases. This inter-
mittency feature has been already observed in Voronoi
simulations �16� and, despite a difference in the Mach num-
ber, it is in surprisingly good qualitative agreement with re-
cent experimental measurements of Lagrangian particle ac-
celerations in fully developed turbulence �17,18� and direct
numerical simulations �19�.

II. SPH METHOD

SPH is a particle method which makes use of a kernel
function to interpolate any function f at the position r, by
using its values defined at a discrete set of disordered points,
that is
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�f�r�� � �
j

1

dj
f jw�	r − r j	,h� , �1�

where f j 
 f�r j�, w�r ,h� is the kernel and dj is the particle
number density at the position r j defined as dj =�kwkj being
wkj =w�	rk−r j	 ,h�. w�r ,h�=w�	r	 ,h� is an even, normalized,
bell-shaped interpolation function with compact support
equal to h. Many choice are possible for w: in this work we
consider the so-called Lucy kernel �1�.

w�r,h� = w0��1 + 3r/h��1 − r/h�3, r/h � 1

0, r/h � 1
� , �2�

where w0=5 / ��h2� in 2D. It can be shown that by convolv-
ing the Navier-Stokes equations with the kernel w, a corre-
sponding set of ordinary differential equations for a system
of particles can be obtained. For example, one possible SPH
discretization of the Navier-Stokes equations is

ṗi = �
j

�Fij
cons + Fij

diss� , �3�

where Fij
cons is a conservative interparticle force which reads

�10�

Fij
cons = − m2
 pi

�i
2 +

pj

� j
2�wij�eij , �4�

m is a constant particle mass, �i=mdi is mass density asso-
ciated to particle i, pi its pressure, eij =rij /rij the unit vector
joining particles i and j and wij� =�rw�r ,h� 	r=rij

. With this
definition of the particle forces, a second-order Lagrangian
discretization of the Euler equations is recovered. Further-
more, in the case of a viscous fluid, an additional dissipative
interparticle contribution is considered which in 2D reads

Fij
diss =

1

3
�0m2 wij�

�i� jrij
�4�eij · vij�eij + 5vij� , �5�

where vij =vi−vi is the relative particle velocity. Analo-
gously, a second-order discretization of the viscous terms in
the Navier-Stokes equations characterized by a shear viscos-
ity �0 is obtained �11�.

In order to close the system of equations, the following
equation of state:

p��� = p0�
 �

�0
��

− 1� �6�

is usually considered, where �0 is the equilibrium mass den-
sity and � is a model parameter; the resulting liquid speed of
sound is cs= ��p0 /�0�1/2.

III. MICROSCOPIC ANALYSIS

The atomistic transport coefficients can be evaluated in
molecular dynamics simulation under equilibrium conditions
at constant temperature by estimating time correlation func-
tions and using the linear response theory, i.e., obtaining the
Green Kubo relations �12�. The other way considered in
NEMD, is to apply a large perturbation creating a flow of
momentum in the material under study and measuring the

resulting pressure tensor. In the specific case of the viscosity,
a simple periodic shear flow is created by applying the so-
called Lees-Edwards boundary conditions �13�. This is a
modification of the standard periodic boundary conditions
obtained by moving periodic upper and lower simulation
boxes with constant velocities V= � �1 /2��̇L, where L is the
box size and �̇ is the desired shear rate.

In the case of SPH, the instantaneous microscopic pres-
sure tensor P is evaluated as the local average of momentum
flux by using

P =
1

V
m�
i

cici + �
i,j	i

rijFij
cons + �

i,j	i

rijFij
diss� �7�

where ci is the particle velocity in the comoving frame, i.e.,
ci= �ci

x ,ci
y�= �vi

x ,vi
y�− ��̇yi ,0� and yi is the particle coordinate

in the direction normal to the shear �see derivation in the
Appendix�. The total liquid shear viscosity � is evaluated by
time-averaging the off diagonal components of the pressure
tensor and dividing them by the applied shear rate �̇ as fol-
lows:

� = −
�Pxy�

�̇
= �kin + �pot + �diss, �8�

where �..� denotes here the time average. In the previous
expression, the kinetic viscosity is �kin= 1

V�̇
�−m�ici

xci
y�.

Analogously, the potential and dissipative contributions are
calculated starting from the corresponding off diagonal terms
in Eq. �7�.

Notice that for consistency, �diss extracted from the simu-
lations should be exactly equal to �0 �input�. Whereas this
viscosity corresponds to the specific dissipation adopted in
the continuum model, the remaining ones �kinetic and poten-
tial� are specific of the particulate nature of the method and
we regard them as atomistic.

IV. SIMULATIONS RESULTS

We consider a viscous SPH fluid defined on a unbounded
domain and apply the Lees-Edwards periodic boundary con-
ditions to generate a nonequilibrium steady-state shearing
flow. We consider a square simulation box �L=1� and apply
a uniform shearing motion by translating upper and lower
periodic box images, respectively, with velocities V0
= ��̇L /2 where �̇=1. Two different speeds of sound cs
=10,0.33 are investigated, which define Mach numbers
based on the velocity difference �
V=2V0�, Ma=
V /cs
=0.1, 3.0. Nevertheless, local Mach numbers based on the
particle fluctuating velocities can be occasionally larger in
the kinetic regime. The equilibrium mass density �0 is set to
1 and a set of simulations corresponding to values of the
input viscosities �0 in �10−5 :1� are performed. In order to
remove artificial effects due to the initial lattice configura-
tion, preruns were considered in each case to relax it. When
an equilibrated disordered state was achieved, the shear per-
turbation was applied and the results extracted. In order to
exclude effects due to the finite time step used in the inte-
grator, simulations were performed first with 
t=2.3
�10−4 ,2.3�10−3 �respectively, for Ma=0.1, 3.0� and then
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repeated with reduced time steps showing identical results.
In order to produce reliable statistics, simulations where con-
tinued for more than 106 time steps once the steady state was
achieved.

We study the influence of the input viscosity �0 on the
output viscosities and check explicitly under which mecha-
nism the averaged output viscosity deviates from its given
input value. An exact numerical method should give �
=�diss=�0 for every �0. Figure 1 shows the different contri-
butions to the total SPH viscosity normalized by the input
model viscosity �0 and corresponding averaged density for
Ma=0.1 �left� and Ma=3.0 �right�. Number of particles was
N=322 and particle overlap of the Lucy kernel was �=3
corresponding to an averaged number of 28 neighbors per
particle.

First we noticed that in both cases the dissipative viscos-
ity �diss is in good agreement with the input value �0 overall
the range considered. This observation is important because
it rules out the dissipative part of the SPH dynamics as main
source of error in the determination of the fluid viscosity.
Main errors must therefore be predominantly associated with
the two additional microscopic contributions �pot and �kin.

In the regime of large input viscosities �0� �10−2 :1�, the
kinetic contribution �kin is very small in magnitude �less than
0.1% of �0� and is found to be very weakly dependent on
both number of particles N and average number of neigh-
bors. Nevertheless, the potential contribution �pot is not neg-
ligible specially at Ma=0.1 ��10% of �0�. Furthermore,
whereas �diss is found to be resolution independent �similar
to �kin�, �pot is strongly affected by the number of neighbor-
ing particles used in the SPH interpolations and we have
explicitly verified that it tends to zero by increasing the cut-
off radius h of the Lucy kernel as already observed in �4�.

This observation enforces the interpretation of �pot as spuri-
ous numerical viscosity related to quadrature errors in the
discrete estimates of the continuum integrals made in SPH
�14�. �pot is therefore directly related to the ‘particulate na-
ture’ of the method, which on the continuum level must be
considered artificial.

For decreasing values of the input viscosity, the relative
potential contribution increases crossing the constant line
equal to 1 for �0�10−3 for Ma=0.1 and at �0�2�10−4 for
Ma=3.0. In order to perform accurate SPH simulations it is
therefore necessary to reduce �pot below a certain acceptable
threshold which is controlled by the particle overlap. Notice
also that the potential error is present only when a disordered
particle configuration occurs. In the special case of particles

FIG. 2. �Color online� Acceleration distribution: probability dis-
tribution function of the x-component of the particle accelerations
corresponding to different fluid viscosities at Ma=3. Black dotted
line represents a Gaussian fit with 
=1.0. Blue line represents a
parameterization of the smallest viscosity using the function P�a�
=exp�−a2 / ��1+ �a� /
���
2�� �17�, with 
=1, �=0.63 and �
=1.56.
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FIG. 1. �Color online� Top: contribution of atomistic viscosities to the total SPH viscosity in a simple shear flow: �Left� Ma=0.1; �Right�
Ma=3.0. Bottom: averaged fluid density vs. �0: �Left� Ma=0.1; �Right� Ma=3.0
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placed on a square grid, the sums involving Fij
cons in Eq. �7�

vanish identically. This observation agrees with the well-
known fact that SPH produces more accurate results when
particles lie on a lattice and the idea has been exploited in a
number of recent remeshing SPH techniques �3,15�.

A second important observation from Fig. 1 is that, in the
small viscosity regime, the dominant viscous contribution is
purely kinetic. The behavior is more pronounced at large
Mach number where for �0�10−4, �kin is already more than
1000 times larger than �0. We should remember that the
value of �kin is strictly related to the level of fluctuations
present in the velocity field and, unlike thermostat-based
NEMD methods, here it is not constrained. The behavior of
�kin is therefore quite peculiar, being naturally small at very
low effective Reynolds number flows and becoming domi-
nant in the opposite limit, a typical feature of turbulent en-
ergy transfer. Stimulated by this analogy, we decided to look
in more details at the SPH fluctuating field statistics by
means of which the kinetic dissipation takes place.

Kinetic regime and non-Gaussian statistics

After evaluating the particle velocity probability distribu-
tion function �pdf� in both, weakly compressible and highly
compressible cases, we did not observe relevant deviations
from Gaussian behavior. Nevertheless, stretched exponential
tails are observed in the pdf of Lagrangian accelerations, see
Fig. 2, in agreement with recent experimental measurements
�17,18�, highly resolved DNS �19� and also confirmed by
analytical theories as the multifractal or simple vortex mod-
els �20,21�. In Voronoi-based simulations �16� a similar in-
termittent behavior was also reported.

More specifically, in our simulation non-Gaussian accel-
eration tails were exclusively observed in the kinetic regime
at Ma=3 where �kin widely overwhelms the input viscosity.
This kinetic regime develops approximately for �0�1
�10−4 and corresponds to a sort of phase-transition in the
average fluid density ��� as it can be seen in the Fig. 1
�bottom-right�. On the other hand, neither transition in the
density nor stretched tails in the acceleration pdf were ob-
served for the case Ma=0.1. It is also quite remarkable that
the pdf’s kurtosis �a4� / �a2� vs. �0

−1 depicted in Fig. 3 is in
surprisingly good agreement with that obtained from experi-
mental measurements of passive tracers in �17�.

In �18�, the intermittency of Lagrangian accelerations was
associated to the presence of coherent small-scale vortical

structures in which tracer particles are occasionally trapped,
undergoing large centripetal accelerations. Evidence of
strong correlations between vortical structures and high
acceleration events was reported also in �19�.

In Fig. 4 we have plotted snapshots of some hydrody-
namic fields at a given time for the case corresponding to
Ma=3 for �0=10−4 just above the transition in the density
�top figures� and for �0=2�10−4 shortly below the transi-
tion. Before the transition, the density field �bottom-right� is
only slightly fluctuating and the corresponding values of the
particle acceleration are quite small �bottom-center�. Also,
the velocity field �bottom-left� although exhibiting small
fluctuations, it is close with the linear velocity profile applied
through the Lees-Edwards boundary conditions.

The top figures correspond to the case where the typical
stretched tails in the acceleration pdf were observed. The
top-left plot depicts a snapshot of the contours of the velocity
field which now appears to be fully chaotic. The high-
acceleration events are associated to typical localized bursts
showed in the top-center plot of Fig. 4 which now reach
maximal magnitudes up to 40 times larger than in the previ-
ous case. In order to understand the origin of these large
particle accelerations, similar to what done in �19�, we have
tried to correlate a�x ,y� with the vorticity field ��x ,y� evalu-
ated from our simulations but without success. Rather, strong
correlation was found between a and the density field �, Fig.
4 �top-right�, suggesting that large pressure gradients causing
expanding/contracting flows, rather than coherent vortical
structures, are the main responsible of the observed non-
Gaussian behavior. Furthermore, bursts are not transported
but appear to be created/destroyed locally in a shocklike
fashion. It should be noticed that the phenomenology ob-
served in �17,18� corresponds to an incompressible fluid
flow. In highly compressible fluids, velocity fluctuations be-
come comparable to the speed of sound producing shocklets,
localized fluid expansions/contractions and the entire turbu-
lent phenomenology can be quite different. In �22� evidence
of shocklets created by a supersonic fluctuating velocity field
was reported. Interestingly similar structures have been ob-
served in our simulations and are responsible for an en-
hanced dissipation implicitly contained in the method. Fur-
ther numerical investigation is currently under work in order
to assess the applicability of the kinetic SPH viscosity as a
sub-particle-scale model in compressible turbulence. Specifi-
cally, it would be very helpful to understand the phenomenon
of non-Gaussian Lagrangian acceleration statistics in highly
compressible turbulent flows. Non-Gaussian statistics in
fully developed turbulent flows have been recently analyzed
in the framework of the Tsallis statistical ensemble �23� and
a multifractal model �MF� for the acceleration pdf developed
which produces quantitative agreement with DNS and ex-
periments �20�. Comparisons of the SPH acceleration statis-
tics with the MF model in a forced three-dimensional turbu-
lent case are currently under way and the results will be
presented elsewhere.

V. CONCLUSIONS

A microscopic analysis of the transport coefficients simi-
lar to what is done in NEMD simulations has been applied to
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the macroscopic SPH method in order to extract its implicit
atomistic viscosities. The spurious potential viscosity, which
is related to stochastic particle locations, represents a non-
negligible part of the total measured output viscosity in the
high viscous regime. There is no analogous physical mecha-
nism in the continuum and therefore it is regarded as spuri-
ous particle-size dependent discretization error. Oppositely,
the kinetic contribution, related to stochastic particle veloci-
ties, corresponds to an average Reynolds-like stress and
dominates at very small input viscosity. When the kinetic
regime is achieved, the pdf of the particle accelerations ex-
hibits non-Gaussian behavior similar to that observed in the
measurements of particle tracers dynamics in fully developed
turbulent flows. Areas of large accelerations cannot be, how-
ever, associated to the presence of coherent vortical struc-
tures as experimentally observed in incompressible fluids.
Nevertheless, statistics of turbulent flows are surprisingly
well captured by the method when applied to highly com-
pressible flows. In order to determine whether these implicit
kinetic viscosity can reproduce some phenomenology of tur-
bulence, our investigations are currently focusing in two di-
rections: from one side the statistical behavior of the system
needs to be more carefully studied, namely higher order La-
grangian structure functions need to be determined; on the
other hand, following the philosophy of Implicit Large Eddy
Simulations, energy spectra of homogenous turbulence ob-
tained from under-resolved simulations are currently under
investigation and should help to clarify the possible use of
the kinetic SPH viscosity as a SPS model.

ACKNOWLEDGMENTS

Financial support from the Deutsche Forschungsgemein-
schaft �DFG� via the grant No. EL503/1-1 is gratefully ac-
knowledged.

APPENDIX: MICROSCOPIC PRESSURE TENSOR

Consider a system of N particles moving according to the
equations of motion

ṙi = vi

miv̇i = �
j

Fij �A1�

where Fij is the pairwise force �that may in principle depend
on the velocities�.

The mass and momentum density fields of a system of
particles are defined by

�̂�r,t� = �
i

mi��r − ri�t��

ĝ�r,t� = �
i

mivi��r − ri�t�� �A2�

We may introduce the velocity field as

ĝ�r,t� = �̂�r,t�v̂�r,t� �A3�

�use a peaked Gaussian instead of a Dirac delta function in
order to avoid the singularities�.

If we take the time derivatives of these fields, we get the
Irving-Kirkwood results �24�

�t�̂�r,t� = − � · �
i

mivi��r − ri�t�� ,

FIG. 4. �Color online� Snapshot of the hydrodynamic fields corresponding to Ma=3. Velocity �left�, acceleration �center� and density field
�right�. Top plots correspond to �0=10−4 �just above the density transition�; Bottom plots correspond to �0=2�10−4 �just below the density
transition�
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�tĝ�r,t� = − � · �
i

mivivi��r − ri�t�� + �
ij

Fij��r − ri�

= − � · ��
i

mivivi��r − ri�t�� +
1

2�
ij

Fijrij

��
0

1

d���r − ri + �rij��
= − � · �̂vv − ��̂ , �A4�

where we have introduced the microscopic stress tensor field
as

�̂�r� = �
i

micici��r − ri�t�� +
1

2�
ij

Fijrij�
0

1

d���r − ri + �rij� ,

�A5�

where ci=vi−v�ri� is the peculiar velocity, and v�r� is the
average of the velocity field v̂. The microscopic stress tensor

field �̂�r� is a function of the particle positions and veloci-
ties.

In situations where we expect that the stress tensor field is
homogeneous and independent of space, we may take a
space average and consider the following microscopic stress
tensor

�̂ =
1

V
� dr��r� =

1

V
�i

micici +
1

2�
ij

Fijrij� , �A6�

where the space average kills the delta functions. This is the
microscopic expression of the stress tensor valid for homo-
geneous situations.

The macroscopic hydrodynamic equations emerge from

the above microscopic equations by an statistical average and
the use of the local equilibrium assumption. In this way, the
stress tensor becomes �without a hat to distinguish it from
the microscopic stress tensor in Eq. �A5��

��r� = P�r�1 − ���v + �vT� + − 
� −
2�

3
��� · v�1 ,

�A7�

which now depends on � ,v, giving a closed form for the
hydrodynamic equations. If we introduce the velocity gradi-
ent tensor �̇ and take �=0 for simplicity, we will have

�̇ 
 �v�r� ,

��r� = P�r�1 − ���̇ + �̇T� +
2�

3
Tr�̇1 . �A8�

A shear flow in 2D is defined by the following average
fields

P�r� = P0,

v�r� = �̇ · r = ��y,0� , �A9�

where

�̇ = 
0 �

0 0
� . �A10�

The average stress tensor that corresponds to this flow will
be, from �VII�

� = P01 − ���̇ + �̇T� , �A11�

which is position independent. Equation �A6� and �A7� allow
one to compute the viscosity from particle simulations.
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