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Effects of rotation on the nonlinear friction of a damped dimer sliding on a periodic substrate
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Rotational effects on the nonlinear sliding friction of a damped dimer moving over a substrate are studied
within a largely one-dimensional model. The model consists of two masses connected rigidly, internally
damped, and sliding over a sinusoidal (substrate) potential while being free to rotate in the plane containing the
masses and the direction of sliding. Numerical simulations of the dynamics performed by throwing the dimer
with an initial center of mass velocity along the substrate direction show a richness of phenomena including the
appearance of three separate regimes of motion. The orientation of the dimer performs tiny oscillations around
values that are essentially constant in each regime. The constant orientations form an intricate pattern deter-
mined by the ratio of the dimer length to the substrate wavelength as well as by the initial orientations chosen.
Corresponding evolution of the center of mass velocity consists, respectively, of regular oscillations in the first
and the third regimes, but a power law decay in the second regime; the center of mass motion is effectively
damped in this regime because of the coupling to the rotation. Depending on the initial orientation of the dimer,
there is considerable variation in the overall behavior. For small initial angles to the vertical, an interesting
formal connection can be established to earlier results known in the literature for a vibrating, rather than
rotating, dimer. But for large angles, on which we focus in the present paper, quite different evolution occurs.
Some of the numerical observations are explained successfully on the basis of approximate analytical argu-

ments but others pose puzzling problems.
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I. MODEL AND ITS EQUATION OF MOTION

This paper is a report of some striking features we have
discovered in a nonlinear model of microscopic friction. The
subject of microscopic friction derives its importance from
its relevance to practical technological aspects as well as the
fact that there is a persistent lack of understanding in some of
its aspects. Although there was a period of inactivity for
centuries after the friction laws were first discovered by Le-
onardo da Vinci [1] and later stated by Amonton [2] and
Coulomb [3], much progress has been made in the field, in
the last thirty years [4—6]. Besides the connection with the
microscopic origin of friction, the nonlinear dynamics that
emerges from the simple system presented in this contribu-
tion is very rich and worthwhile to study. On the other hand,
friction and diffusion are intrinsically related as the Einstein
formula between the diffusion constant and the friction coef-
ficient states. Indeed, the same or very similar models are
frequently used to study such phenomena focusing in either
of the two problems. Particularly, the diffusion of molecules
in potentials [7] is an interesting problem in which rotation
could have an important role. While the richness and pecu-
liarities we observe in the nonlinear dynamics of the simple
system we analyze are restricted to itself, we hope that our
findings will make some contribution toward the understand-
ing of friction and diffusion.

The physical system that stimulated our present work con-
sists of molecules that perform internal motion such as rota-
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tion and/or vibration during the course of their meanderings
over a material surface such as that of a crystal. The model
we study is highly simplified, our purpose here being to un-
derstand the basic effects of nonlinearity in its dynamics as
we have mentioned above, rather than to shed light on ex-
perimental features observed in microscopic friction. The
model consists of a rigid rotating dimer (a pair of masses m)
of length a inclined at an angle 6 to the vertical as shown in
Fig. 1, with its center of mass at location x moving along the
horizontal, subject to a one-dimensional sinusoidal potential
of half amplitude u(, and wavelength b. The masses compris-

FIG. 1. Schematic depiction of the system under study. The
motion of the center of mass of the dimer is along the horizontal.
The two masses experience different substrate forces as a result of
the difference in their locations with respect to the potential. The
length of the dimer is a. The substrate potential has wavelength b
and half amplitude u,. The dimer is shown inclined to the vertical at
two different angles, 6., and 6, whose importance will be dis-
cussed in the sequel. That the two dimer positions share the same
left upper mass location has no significance except drawing
convenience.
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ing the dimer feel, in addition to constraining forces that
maintain rigidly their separation a, the respective forces
27/ b)ug sin[(27/b)(x = (a/2)sin 6)]. The rotational motion
occurs in the plane of the Figure (see Fig. 1) and is damped
but the linear motion of the center of mass, which occurs
along the horizontal, is not. Nevertheless, given that the two
masses feel different substrate forces because their projec-
tions on the horizontal line (along the substrate potential)
experience different phases of the potential, a coupling exists
between the rotation and the center of mass motion. As a
consequence, the center of mass motion is effectively
damped.

The focus of our study is on the effects of this coupling
between the rotation and the center of mass motion, specifi-
cally on the time evolution of the center of mass velocity v(z)
thrown initially with velocity v, along the substrate, along
with the evolution also of the angle of rotation #(¢) and the
angular velocity d6(r)/dt. We will see that fascinating results
emerge, including three different regimes of motion, and that
it is possible to arrive at a partial but satisfactory analytic
understanding of the results.

The Lagrangian of this undamped system is clearly

(dx)z ma2<d9>2 (277)() (Wa sin 0)
m{— | +—| — ] —=2ugcos| — Jcos| — |.
dt 4 \dt b b

In order to facilitate the analysis, we will measure the center
of mass location in units of the substrate potential wave-
length, y=2mx/b, and time in units of the characteristic sub-
strate potential period, 7=#(27/b)\uy/m. Subsequent time
differentiations, denoted by dots placed over the dimension-
less y and 6, will be with respect to this 7. We will also
introduce the important parameter

=),

which is the full length of the dimer measured in terms of the
substrate wavelength. The equations of motion for the center
of mass translational motion and the dimer rotation are then,
respectively,

v = (sin y)cos({ sin 6),

6= (1/¢)(cos y)(cos )sin( sin ) — 8, (2)

where damping has been appended to the Euler-Lagrange
equations via the last term in the second (angle) equation:
dissipation in our system is taken to occur only in the rota-
tion through factors not described explicitly in our model and

to occur at a rate —’)/é.

II. NUMERICAL RESULTS

Equations (2) show explicitly that the dimer rotation and
the center of mass translation are coupled to each other, and
that, although there is no dissipation term in the equations
proportional to its translational velocity, the center of mass
motion is damped effectively because of that coupling. We
have not found it possible to find exact analytic solutions of
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FIG. 2. (Color online) Evolution with respect to the dimension-
less time 7 of the center of mass velocity v(7), the orientation angle
6(7), and the angular velocity d6(7)/dr for y=4 and the initial
condition that the dimer is thrown with dimensionless initial veloc-
ity vo=8m and 6;=1.54. Three time regimes are seen. In the first,
the center of mass velocity oscillates rapidly around a value higher
than the initial value, the orientation remains close to its initial
value, and the angular velocity is essentially zero. In the graph, this
first regime is so long that we have shown it split into a short time
part and a long time part. In the second regime, the center of mass
velocity decreases in power law fashion, the orientation switches to
a different constant around which it oscillates with small amplitude,
and the angular velocity increases its oscillations significantly. The
inset shows that the angle oscillates even where it appears to be a
constant. In the third regime, the center of mass velocity changes its
evolution from the power law to oscillations but now around the
value zero, the amplitude of the oscillations decreasing apparently
not at all or very slowly (not appreciable in the graph). In this third
regime, the orientation switches to another constant value and the
angular velocity vanishes. The transition between the second and
third regimes is quite abrupt.

these equations. We therefore apply standard numerical tech-
niques to determine the evolution. We find that three regimes
of time evolution emerge generally as shown in Fig. 2. The
transition from the first regime to the second is relatively
gradual but that from the second to the third regime is quite
abrupt. Initially, we incline the dimer at a nonzero angle to
the vertical, 6;=1.54, give it zero initial angular velocity, and
throw it along the horizontal with an initial velocity vo=8.
Obviously, no coupling of rotation and translation occurs un-
der these conditions if the initial angle to the vertical is either
0 or 7r/2. If it is different from these extremes, the center of
mass velocity generally oscillates rapidly around a value
higher than the initial value, showing a very small decrease
in amplitude which is hardly discernible. The time for which
this regime lasts exhibits a rather involved structure with
divergences for certain initial angles as will be seen below.
However, superimposed on that structure is a general simple
tendency to increase as the initial inclination to the vertical
increases. In the case shown in Fig. 1, the assumed initial
inclination is close to /2. Consequently, the time span of
the first regime is very long: about 2.43 X 10* in units of the
dimensionless 7. We have displayed this very long time span
in two split sections in the plot, the first lasting 3000 time
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FIG. 3. (Color online) Curious patterns displayed by character-
istic dimer orientations 6., and 6, in the second and third regimes
respectively, and their dependence on the initial angle the dimer
makes to the vertical. The plot is constructed as the result of over a
thousand numerical runs for various initial angles, all carried out for
y=4, {=5m, and vy=8r, but only a subset has been displayed to
make the visual appreciation clearer. Each run has resulted in one
value of 6., the channel angle the dimer stays around in the second
regime (denoted by a square) and one value of 6, the steady state
angle the dimer goes to, in the third regime. Our findings show that,
for a given value of £, two values of 6, correspond to every value
of 6;, whereas 6., is determined uniquely by the initial inclination
to the vertical. Changing the value of ¢ changes the entire family of
each type of orientation.

units and the other starting at 7=2.35X 10*. In the second
regime of the evolution, the center of mass velocity is seen to
exhibit quite different behavior in that v(7) decreases, signi-
fying damping. The decrease of the velocity proceeds in
power law fashion. The third regime starts when the center
of mass velocity reaches zero. Now v(7) oscillates with large
amplitude and very little apparent damping.

Corresponding to these three regimes in translational mo-
tion, the rotational motion also shows three types of behav-
ior. In the first regime, the orientation remains close to its
initial value, the angular velocity being largely zero. In the
second regime, the orientation switches to a different con-
stant around which it oscillates with small amplitude, and the
angular velocity keeps increasing its oscillations signifi-
cantly. In the third regime, the angular velocity vanishes and
the orientation takes on yet another constant value.

Features of these numerical observations that are notewor-
thy include sharp changes in the time evolution in three re-
gimes, the abruptness of the second transition, and the fact
that the two constant values of the inclination to the vertical
attained in the second and third regimes appear to form en-
tire families of angle values with curious properties. Which
member of each family is selected by the system to evolve
into appears to depend on the initial inclination. The families
themselves are, however, independent of the initial condi-
tions. To clarify this numerical observation, we show Fig. 3,
which has been constructed by performing over a thousand
numerical runs, each run resulting in one circle and one
square.

We assign the term “channel angle” to the inclination
around which the dimer stays in the second regime and de-
note it by 6,,. Similarly we use the term ‘steady state angle’
for the value the inclination goes to eventually, i.e., in the
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FIG. 4. Semilogarithmic plot of the time before dissipation be-
gins, i.e., the time span 7; of the first regime of time evolution
before the center of mass velocity begins to decay, as a function of
the initial orientation of the dimer, for a given value of {. The time
generally increases until the initial orientation becomes horizontal
(6;=7r/2) when it becomes infinite. The time also grows without
bound at several intermediate values of €;. We have indicated these
surges to infinity in the plot by placing circumflex symbols on top
of the curve. The corresponding 6; values are precisely 6. Param-
eter values used in the present plot are y=4 and {=5.

third (final) regime, and denote it by 6,,. In Fig. 3, we plot
the dependence of 6, (squares) and 6, (circles) on the initial
angle 6;. We see that 6., exhibits discrete values, 10 such
values being apparent in the plot: 0.1, 0.3, 0.53, 0.78, 1.13,
2.0,2.4 2.6, 2.8, and 3.0. Similarly we can see in the plot 11
values of 6: 0.0, 0.20, 0.41, 0.64, 0.92, /2, 2.2, 2.5, 2.72,
2.94, and 7. All of these 11, except for the central value /2,
have been determined via numerical runs. Simulation time
increases enormously as 6; approaches /2 but it is very
clear from the numerical work that, as we carry out the runs
for longer and longer times, the central value of 6, in all
cases approaches /2. We have shown that limiting value in
the plot. The totality of numerically found values, displayed
in Fig. 3, form a curious pattern in that they are interlaced
(they alternate) and each corresponds to definite finite spans
of 6;. The spans overlap in the case of neighboring 6, but not
in the case of neighboring 6,.,. For every value of 6, the
initial inclination to the vertical, two values of 6, but only
one value of 6., are possible. Which 6 is picked by the
system depends on the initial value of the velocity of the
center of mass. For instance, as shown by the dotted vertical
line drawn at the arbitrarily chosen value 6,=0.8, 6., can
have only the value 0.78 whereas 6,, may become either 0.64
or 0.92.

Initial orientation has a profound effect on the time span
of the first regime, i.e., the time before dissipation begins to
occur in the center of mass motion. We show this in Fig. 4
where we have plotted 7, the time before dissipation, defined
as the time until v(7) begins to drop, as a function of the
initial orientation for the parameter values. We see that 7;
generally increases until the initial orientation becomes hori-
zontal (#=m/2) and then becomes infinite. It also becomes
infinite at smaller values of 6;. Careful inspection reveals that
this happens at ;= 6,,. Parameter values are as shown in the
plot.

The time span of the second regime, 7;;, which begins
when v(7) begins to decay and ends when it reaches 0, also
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FIG. 5. (Color online) Double logarithmic plot of 7y, the time
span of the second regime of time evolution in which the center of
mass velocity drops from its initial oscillations above v, to 0, for
four different values of the damping coefficient as shown. We have
determined the time span by carrying out runs for 6;=6,, which
results in the disappearance of the first regime. The straight lines
signify that v(7) obeys a power law. The slope a+ 1, which the plot
shows to be 4 within experimental error, means that the evolution
proceeds such that dv/dr is proportional to —1/v¢, with a=3. Pa-
rameter values are y=4, 6,=0.7, {=.

shows interesting dependence on the system parameters. In
Fig. 5 we display, through a double logarithmic plot, the
remarkably linear relationship between the logarithms of 7,
and of the initial velocity of the center of mass. The linear
relationship is seen for several values of the damping coef-
ficient 7y and means, obviously, that the dependence of 7;; on
v(7) is of the power law form. The exponent of the power
law is unmistakably 4 within numerical error.

We thus see that the initial orientation of the dimer deter-
mines key elements of the time evolution of the system. Let
us consider Figs. 2-5 as our primary numerical results. Time
evolution with its three regimes separated by transitions,
with power law decay of the center of mass velocity in the
second regime, is the first result. Patterns of characteristic
angles in the second and the third regimes, 6., and 6, and
their special dependence on the initial angle 6; (as well as on
{) constitute the second result. Highly structured dependence
of the time span of the first regime on the initial orientation
forms the third result. And the linear dependence, in a double
logarithmic plot, of the time span of the second regime on
the initial center of mass velocity is the fourth result.

III. ANALYTIC UNDERSTANDING

Of the large number of intriguing numerical observations
that we have collected above, we select a few and begin our
analysis with the following questions:

(1) What is the significance of the specific values we find
for the characteristic angles, 6, and 6,,, and of their inter-
lacing patterns including the overlapping spans of 6; to
which they correspond?

(2) What is the detailed nature of the oscillations dis-
played by the center of mass velocity in the first and third
regimes?

(3) Why is a power law present in the decay of the veloc-
ity in the second regime and why is the power exponent 3?

We address these three questions in Secs. IIT A-III C, re-
spectively. We then carry out a comparison of our simple
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theory to the simulations in 3.4 and explore the relationship
of our rotational model to a vibrational model in 3.5.

A. Characteristic orientations 6,; and 6,,: Understanding Figs.
3 and 4

Our attempts at an analytic understanding of the various
observations described above begin with the second of Egs.

(2). The presence of the dissipative term —y# ensures that at
long times 6 will tend to a constant and both time derivatives
of the angle will vanish. In that steady state, the angle 6 will
be either a multiple of 77/2 or a root of the equation

sin({ sin 6) = 0. (3)

The value of 7/2 corresponds to initially placing the dimer
parallel to the horizontal. The substrate forces which are al-
ways horizontal can produce no torque on the dimer which,
therefore, does not turn at all during evolution. For any other
initial angle, there is a torque at first but it vanishes when the
eventual orientation attained by the dimer is a root of Eq. (3).
All these roots of Eq. (3) indeed turn out to be precisely the
steady state values we have observed in the third regime and
called 6. In the case of the characteristic orientations 6,, of
the second regime, we have found out, empirically, that they
are all very nearly roots of cos({ sin #)=0. For this condi-
tion, the first of Egs. (2) shows that the acceleration of the
center of mass vanishes. We can thus conclude that in the
second regime, the constants to which the dimer orientation
tends, correspond to nearly vanishing center of mass accel-
eration.

There is a curious geometrical interpretation we can as-
sign to both the characteristic angles. When the dimer orien-
tation to the vertical is 6y, the projections on the horizontal
line of the locations of the two masses are precisely in the
same phase of the substrate potential. The horizontal forces
then produce no torque on the dimer and do not contribute to
its rotation. When the dimer orientation is, on the other hand,
0., the projections of the two masses occupy opposite
phases of the substrate potential. The horizontal forces then
produce the maximum torque possible and contribute
strongly to the rotation. This is completely compatible with
the observation from Fig. 2 that the angular velocity is non-
vanishing only in the second regime in which the dimer stays
around 6,,. Of the two dimer orientations that we have de-
picted in Fig. 1 to illustrate the model pictorially, the lower
orientation (smaller angle) corresponds to one possible value
of 6, and the upper orientation (larger angle) to an angle
close to one possible value of 6., In the former case, the
substrate forces are equal in magnitude and direction, and
produce no turning effect on the dimer. In the latter case they
are equal in magnitude but opposite in direction, and so do
produce a turning effect. The torque is maximum at the phase
relative to the substrate potential shown in the plot. Needless
to say, both families of orientations depend crucially on ¢,
i.e., on the magnitude of the length of the dimer relative to
the substrate potential wavelength.

The content of Figs. 3 and 4, gathered directly from the
simulations, can be thus explained simply from the fact that
the characteristic orientations are the roots of Eq. (3) which
yield 6, and of
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cos({ sin 6) =0, (4)

which yield 6., The former condition corresponds to the
eventual inclination into which the dimer settles whereas the
latter marks maximization of the torque on the dimer and
minimization of the center of mass acceleration. We also see
that the first regime of the center of mass velocity evolution,
where the velocity shows no damping, would last forever if
0,=0,,. This is clearly the reason for the surges to infinity
observed in Fig. 4.

B. Oscillations of v(7) in the first and third regimes:
Understanding Fig. 2

Taking advantage of the numerically found observation
that the angle € remains largely constant in each of the three
regimes, first around the initial value 6, then around the
channel value 6., and finally around the steady state value
0,,, let us ask for the solution of the first of Egs. (2) if 6 is
constant. Let us represent the magnitude of cos({ sin 6) by
the symbol A,

A =|cos(¢ sin 6)|. (5)

Let us also recall [8] that the equation

d’Y
d_Z2+Sin Y(2)=0 (6)

encountered in the analysis of the physical pendulum can be
solved in terms of Jacobian elliptic functions dn or cn. Thus,
for instance, if the value of dY/dz at z=0 is denoted by V),
Eq. (6) is known to have the solution

dy(z) (Voz 2)
= Vydn| ==, =), 7
az M Ty, ™

where 2/V) is the elliptic modulus and Vz/2 is the argument
of the dn. We use this result and the scaling z=VAT in the
first of the Egs. (2) to obtain the following solution for an
initial velocity vy,

v() = vodn<M,2\—A>. (8)
2 120
This form of the solution is particularly convenient if vy is
large enough to satisfy vy>2v|cos({ sin 6)|.

It is well known that the dn function has precisely the
qualitative behavior shown by the center of mass velocity in
Fig. 2 in the first regime, with its oscillations around a non-
zero average value. Indeed, it will be shown graphically be-
low (in Fig. 6) how close the coincidence of the numerically
found v(7) in the first regime in Fig. 2 is with the simple dn
prediction of our analytic treatment here.

By the time the third regime is reached, the velocity will
have dropped to low enough values that application of the
same approximate physical pendulum solution as in Eq. (8)
is best done by performing the Jacobi transformation. This
transformation proceeds in the standard manner [8] by
changing the dn function to cn, simultaneously flipping the
elliptic modulus and multiplying the argument and original
elliptic modulus to produce the new argument. Thus, in the
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FIG. 6. (Color online) Comparison of simple analytic theory
with numerical simulations carried out separately in the three re-
gimes. The parameters used to make this figure in the simulations
are {=5/m, 6;,=1.3, vy=8m, y=4. The three insets are the result of
zooming on the three regimes and show remarkable agreement be-
tween simulations and the proposed analytical expressions in terms
of the Jacobian elliptic functions and the power law. The top right
inset shows the simple dn solution of Eq. (8) for the first regime as
the light line and the numerical solution as the dark line. The bot-
tom left inset displays for similarly for the third regime our cn
solution (9) compared to the simulation. The coincidence in both
insets is remarkable. The middle right inset reproduces the average
power law decay given by our Eq. (15) with impressive precision.

third regime, our approximate analytic description from Eqs.
(2) is

1 1

Yo 1 )
U(T)=vlcn(\’AT,—> =v cn(r,—), 9)

0 2\@ 0 >

in which the extreme right hand side has been written using
the fact that in the third regime the orientation attains the
steady state value 6, quickly, after which A has the limiting
value 1. The initial velocity value v(l) in this (third) regime is
not the same as v, but is the maximum value the velocity
takes on after the damping that it undergoes in the second
regime.

The cn function oscillates around the value zero in com-
plete qualitative agreement with what is observed numeri-
cally for the center of mass velocity in the third regime in
Fig. 2. It will be seen below (in Fig. 6) that the quantitative
agreement is excellent also in this regime.

C. Power law decay of v(7) in the second regime:
Understanding Figs. 2 and 5

To understand the power law decay of v(7) in the second
regime, we first turn to the second Eq. (2), use the knowl-
edge that the rotational angle remains in the second regime
close to 6., which means that sin({ sin 6) =1, and rewrite
the equation as

6+ y0=[(1/{)cos 6,,]cos y. (10)

Keeping in mind that the rotational angle undergoes much
faster oscillations in this regime than the center of mass ve-
locity, we may regard this equation as describing the absorp-
tion of energy by a damped free particle driven by a (co)si-
nusoidal force of frequency proportional to the center of
mass velocity. The displacement of the hypothetical free par-
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ticle is 6, the damping rate is vy and the strength of the driv-
ing agency is (1/{)cos 0,

We now borrow an energy balance argument presented in
the context of a related model in the literature consisting of a
dimer like ours moving under the action of a sinusoidal sub-
strate potential and executing internal motion which is vibra-
tional rather than rotational [9—13]. The essence of the argu-
ment as applied to our case here is based on the fact that, as
the result of the coupling provided by the masses feeling
different substrate forces, the internal (rotational) coordinate
absorbs energy from the center of mass motion. The energy
lost by the center of mass can be obtained by calculating the
energy gained by the rotational coordinate. A standard text-
book absorption calculation yields the cyclic average of the
latter. The time rate of the center of mass velocity can be
calculated from the time rate of the center of mass kinetic
energy.

Resolving cos y=cos[[{v(s)ds] into its Fourier compo-
nents with frequencies w; and calling the product of
(1/2)cos 6,;, with each corresponding Fourier coefficient as
B;, we can rewrite Eq. (10) as

6+ y0= >, B, cos w;T. (11)

The angle # may be decomposed into components 6; each of
which satisfies, after transients have died down,

0,(7) = B—zcos(w 7= 3). (12)
\'w + Y
Here the lag factor &; equals tan 6;,=y/w;. Absorption of en-
ergy from the center of mass motion into the rotational co-
ordinate occurs at a rate which equals the product of the
torque and the angular velocity, and is proportional to

cos 06h>2 B;
7( 14 ; o + P

Let us now (i) restrict the analysis as in Ref. [11] to situa-
tions in which we can replace the i sum by a single term
involving an average frequency w,, so that we have

cos f v(s)ds = cos w,T, (13)
0

w, being equal, in the system of units used, to the center of
mass velocity v, (ii) calculate the rate of dissipation of the
center of mass kinetic energy which is proportional to
d/dr(1/2)(2mv?), and (iii) equate the two rates to get the
general power law of decay of velocity,

dv y cos? 0.1,

E’z_zv(vz+ Y)' (14)

If v is much larger then the damping rate vy, which is the case
in our simulations (in the second regime where this decay of
velocity is occurring), we have

dv ycos? 6.,
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For further details we refer the reader to the earlier litera-
ture [11] on the vibrational dimer. The difference in our case
relative to that in Ref. [11] is that the absorbing entity is, as
Eq. (10) shows, a free particle rather than a harmonic oscil-
lator. Equation (15) yields power law behavior with the cor-
rect exponent. The exponent in the velocity decay equation is
3. The solution therefore gives, for 7y, the extent of the sec-
ond regime (of Fig. 2), as shown in Fig. 5, a power law
dependence on initial velocity with exponent 4,

4
Vo

= (16)

2ycos’ 6,

D. Comparison of approximate analytics with numerical v(7):
Understanding Figs. 2 and 6

Equations (8), (9), and (15) provide our (approximate but
simple) analytical description of the evolution of the center
of mass velocity in the three regimes shown in Fig. 2. Jaco-
bian elliptic functions provide the description in the first and
the third regimes and the power law form in the second re-
gime. We display Fig. 6 to show a comparison of our analytic
predictions for the explicit time dependence of v(7) to the
numerical findings. The comparison is displayed separately
for each of the three regimes.

We see a remarkable coincidence in each of the three
regimes. Except for taking the initial v(') from the simulations
and adjusting the phase of the analytic expression for a fit at
a single point of time, no modifications of any kind have
been made to the analytic results as derived. Also, the two
adjustments have been made only in the third regime. The
agreement of the amplitude of the cn solution is essentially
perfect. Also, the analytical prediction and the simulation
remain in phase for a prolonged time. The agreement is also
excellent in the first regime. In this regime the theoretical
curve shows slightly larger amplitude in the case of the dn
solution. This arises from the fact that the very weak decay
of the amplitude is not represented by the solution. The sec-
ond regime fit is also noteworthy. The power law is followed
faithfully on the average as the plot shows.

E. Relationship of the rotational to the vibrational system

It is instructive to compare the rotational dimer we have
investigated in the present paper to the vibrational dimer
analyzed earlier in the literature [ 11-13] and enquire into the
precise relationship that they bear to each other. In both sys-
tems, the masses comprising the dimer experience the sub-
strate forces in essentially the same manner. Because the
substrate forces act only in the horizontal direction, we con-
sider the locations of the two masses in the vibrational sys-
tem but only the projections of the locations along the hori-
zontal in the rotational system. Although the rotational dimer
is rigid, the projection along the horizontal of the location of
one of the masses relative to the other varies in time. The
variation is that of a harmonic oscillator with a finite spring
constant in the vibrational dimer. The corresponding spring
constant is zero in the rotational dimer. This is a very impor-
tant difference. It is responsible for the fact that the energy
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balance argument used in Sec. III C to derive the power law
of the decay of the center of mass velocity looks upon the
internal coordinate as representing a free particle (zero natu-
ral frequency) rather than a bound particle (finite natural fre-
quency) which was true in the case of the vibrational dimer
[11].

Because the natural frequency is zero for the rotational
dimer, one might be tempted to consider the latter to be less
complex than the vibrational dimer. However, it is actually
considerably more complex when viewed from another point
of view: the actual motion (rotation) of the dimer is planar
rather than linear which is the case in the vibrational dimer.
The Lagrangian of the vibrational dimer [11,13] is

4 2 o

(277x> (277x_>
—2ug cos T cos ,

b

where k is the spring constant of the vibration, x=(1/2)(x,
+x,) is the center of mass coordinate and x_=(1/2)(x;—x,) is
the internal coordinate. The locations of the two masses are
denoted by x; and x,. Making the same scale transformations
as made for the rotational case at the beginning of the present
paper, introducing a damping term, and additionally writing
the internal coordinate as

X —X—a  2mx_
a b

£= -1, (17)
we obtain the vibrational counterpart of the starting Egs. (2)
for the rotational dimer analyzed in the present paper,

¥ = (sin y)cos[{(1 + §)],

E+Q%¢=(1/0)(cos y)sin[{(1 + §] - vE. (18)

The natural frequency of the vibration, in the dimensionless

units used, is
2 2k
Q:(—W)\/—. (19)
b MO

Equations (18) are identical to those in Ref. [11], but written
here in our dimensionless units.

Comparison of the rotational Egs. (2) to the vibrational
Egs. (18) reveals the presence of the natural frequency term
in the latter which does not appear in the former case since
rotation has no stiffness. The comparison also shows that the
rotational dynamics has the more complex trigonometric fac-
tors appropriate to rotation. The terms describing the cou-
pling of the center of mass motion to the internal motion are
similar to each other except that the linear factor 1+§& ap-
pears in the vibrational case but the nonlinear sin 6 in the
rotational case.

The evolution of the rotational system for small angles to
the vertical is similar to that of the vibrational system. How-
ever some distinct differences exist. To appreciate the simi-
larities and differences, notice that the vibrational Egs. (18)
can be rewritten without approximation in the form
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v = (sin y)cos {z,

74+ Q%(z—1)=(1/)(cos y)sin {z - vz, (20)

simply by introducing a different internal coordinate z=1
+¢&. This equation can be also obtained from the rotational
Egs. (2) for small angles 6 by approximating sin 8= 6 and
calling this approximated small angle as z. Although the
form of the equations is identical in the two cases, the physi-
cal requirement that z=0 in one case (rotational for small
angles) is incompatible with z=1 in the other (vibrational.)
A basic difference thus persists in addition to the presence of
the stiffness in the vibrational case.

On the other hand, the similarities permit the analytic ar-
guments given for the rotational system in the present paper
to provide a much deeper understanding of our earlier studies
[11-13] of the vibrational system. The vibrational work had
focused only on what we have called the second regime in
the present paper, in particular the power law observed in the
evolution of the center of mass velocity. The present discus-
sion, along with simulations we have now carried out after
the rotational analysis, also shows that the other two regimes
exist in the vibrational system as well.

Inspection of Eq. (20) shows that the damping term is

proportional to —yz that is to —y(cos 6)6. The effective
damping is thus controlled in the rotational system by
v cos 6 and becomes therefore very small for initial orienta-
tions that are nearly horizontal, i.e., for large rather than
small angles. This is so because cos §=0 as = m/2. It is
this smallness of the effective damping for large initial
angles that led us to the observation of the first regime in the
rotational system. The regime was practically invisible in
earlier studies of the vibrational system.

There appears to be one fundamental difference between
the rotational and the vibrational systems, however. In the
third regime, as the orientation settles into one of the values
of 6, the projections of the dimer end locations along the
horizontal acquire equal phases of the substrate potential.
Absence of any spring forces means then that the coupling of
the rotational to the center of mass motion completely van-
ishes. The center of mass (as well as each mass) oscillates
along the horizontal forever and the amplitude of the oscil-
lations does not decay. This is a peculiar result which does
not hold in the vibrational system. At the corresponding
stage of the time evolution, except for special values of ¢,
equivalently of the dimer length to substrate wavelength ra-
tio, the two masses in the vibrational system experience
forces in opposite directions. The coupling persists and the
energy of the entire system, including that resident in the
center of mass velocity oscillations, decays slowly.

IV. CONCLUDING REMARKS

In summary, we have analyzed a simple model of interest
to the subject of molecules experiencing friction while mov-
ing on material surfaces and performing internal motion. De-
spite its simplicity, the model has displayed a richness of
phenomena. We have described only some of them here.
Clearly, all the phenomena we have found and discussed so
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far are responses of the system to an initial translational ve-
locity until the movement of the center of mass ceases. In
other words it is about the transient regime. While that could
be limited to short periods of time, we have to consider that
in many practical situations what is important is precisely
that regime; i.e., when a system is perturbed from its steady
state and we want to understand how the energy dissipates
until it gets to its new equilibrium. There is a whole addi-
tional dimension of effects we have discovered when steady
forces are applied and when the dimer is initially thrown
with a high angular velocity. The steady force simulations
display hysteresis and related effects. The high initial angular
velocity allows the rotational motion to sample all angles and
appear to involve dynamic localization effects [14,15] not
accessible in the regimes we have analyzed here. Generali-
zations of the friction law in the related vibrational dimer,
described by Tiwari et al. [13], also have their counterparts
in the rotational dimer as we have found. [For an example of
the generalizations, see Eq. (14) in the present paper.] We
intend to address these numerous observations in a forthcom-
ing publication.

The underlying equations of motion for the analysis in the
present paper are Egs. (2). The primary findings are in Figs.
2-5. We have provided an explanation of some of the ob-
served features on the basis of very simple analytic argu-
ments. The explained features include the meaning of the
patterns displayed by the characteristic orientations 6, and
6., and their dependence on the ratio of the dimer length to
the substrate wavelength, the source of the power law, the
surges to infinity at some values of the initial orientation, and
the essential source of the time evolution of the center of
mass velocity. Figure 6 compares our simple analytic predic-
tions for the time dependence of the center of mass velocity
with the observed simulations. Our three analytic expres-
sions, two in terms of elliptic functions and the third in terms
of the derived power law, are in remarkable coincidence with
the simulations. The coincidence should leave no doubt that
the essence of the phenomenon has been captured by the
simple analytics we have provided.

Among the features that we have not been able to explain
as yet, to our satisfaction, are the source of the constancy of
the dimer orientations. Indeed our analytical work described
above takes this constancy (observed in the simulations) as
an input and delivers as an output an understanding of the
time dependence of the center of mass velocity (not only
qualitatively but quantitatively as well.) It is also possible to
do the reverse, i.e., taking the observed center of mass mo-
tion as an input we can understand to some extent the rota-
tional features. For instance, notice that the center of mass
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velocity performs rapid oscillations around a constant value
which means that the cosine of the center of mass displace-
ment forces the first term on the right hand side in the second
of Egs. (2) to oscillate very fast from positive to negative
values. The average is vanishing and since the second term
on the right hand side is small (because we start the dimer
with zero angular velocity), the orientation of the dimer re-
mains largely unchanged. This can be considered a partial
explanation of what is observed for the orientational motion
in Fig. 2. It is also interesting to notice that the orientational
dynamics display features of parametric oscillation, the evo-
lution of the center of mass providing the temporal variation
of an effective rotational frequency in Egs. (2). It is our
conjecture that the imperceptibly slow decay of the center of
mass velocity, not discernible in the first regime, eventually
brings the velocity (equivalently the parametric oscillator
frequency) within the so-called parametric window [16] and
that this marks the perceptible power law decay of the ve-
locity, i.e., the beginning of the second regime. We hope that
these open questions that remain unanswered will be ex-
plained by readers of our paper through deeper insights than
we have been able to gain.

Despite the apparent simplicity of the laws of macro-
scopic friction’s laws, the underlying dynamics of sliding
surfaces (macroscopic or not), and the diffusion of molecules
or cluster over surfaces [7] are complex nonequilibrium,
nonlinear phenomena resulting from intricate interplay of
multiple processes [17]. We are well aware that the dynamics
of a single rotating dimer constrained to slide in a one-
dimensional potential is far from able to account for the
many effects that underlie the microscopic origin of friction.
However the richness that emerges from our simplified
model is a sample of how complex and subtle the long stand-
ing problem of the elucidation of friction features can be. By
itself, the simple model considered is able to show a rich
repertoire of intricate dynamical manifestation of micro-
scopic sliding friction of a single dimer: going from almost
frictionless sliding to static friction, through a resonant
strong dissipation, all emerging from the coupling between
rotation and translation. It provides an essential ingredient in
the assembling of an atomistic and realistic model of friction.
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