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In this paper, excitation of parasitic waves near cutoff in forward-wave amplifiers is studied in a rather
general form. This problem is important for developing high-power sources of coherent, phase controlled
short-wavelength electromagnetic radiation because just the waves which can be excited near cutoff have low
group velocities. Since the wave coupling to an electron beam is inversely proportional to the group velocity,
these waves are the most dangerous parasitic waves preventing stable amplification of desired signal waves.
Two effects are analyzed in the paper. The first one is the effect of signal wave parameters on the self-
excitation conditions of such parasitic waves. The second effect is the role of the beam geometry on excitation
of these parasitic waves in forward-wave amplifiers with spatially extended interaction space, such as sheet-
beam devices. It is shown that a large-amplitude signal wave can greatly influence the self-excitation condi-
tions of the parasitic waves which define stability of operation. Therefore the effect described is important for
accurate designing of high-power amplifiers of electromagnetic waves.
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I. INTRODUCTION

At present, there is a strong interest in increasing the
power level of linear-beam amplifiers of coherent electro-
magnetic �EM� radiation at short wavelengths �W-band and
above, up to the terahertz range�. This interest is motivated
by numerous civilian and military applications �1�. In order
to increase the power level and/or the frequency range of
microwave and millimeter-wave amplifiers, it is necessary to
develop sources of coherent EM radiation with a spatially
extended interaction space, i.e., operate at high-order modes/
waves. Various concepts of millimeter-wave amplifiers with
a spatially extended interaction space �sheet-beam traveling-
wave tubes �2–5� and multiple-bean devices overviewed in
Ref. �6�� are presently under study. One of the most critical
issues in developing such amplifiers operating at high-order
waves is excitation of parasitic waves. As a rule, especially
dangerous are parasitic modes which can be excited at the
ends of the passband �2�. Such waves have low group veloci-
ties and, hence, can be strongly coupled to the electron beam.
Therefore they can be excited at lower currents than waves at
frequencies far from cutoff. Excitation of waves near cutoff
in backward-wave oscillators, i.e., in the absence of signal
forward waves, was studied by a number of authors �7–10�.

In this paper, we analyze the excitation of such waves in
amplifiers, i.e., in the presence of a forward signal wave. A
similar problem of excitation of parasitic waves in forward-
wave amplifiers was studied in a rather general form in Ref.
�11� where the analysis was, however, limited by parasitic
waves operating far from cutoff. The excitation of parasitic
waves in the presence of desired modes was also actively
studied in oscillators operating at fast waves because such
oscillators �cyclotron resonance masers �12�, gyrotrons �13�
and free-electron lasers �14�� can operate at very high-order
modes with a dense spectrum of eigenfrequencies. Although
below we restrict our consideration by amplifiers driven by
linear electron beams, the same approach can be used for
analyzing excitation of parasitic waves near cutoff �so-called
gyrotron modes� in gyro-traveling-wave amplifiers �gyro-

traveling-wave tubes and gyrotwystrons� which are fast-
wave amplifiers driven by beams of electrons gyrating in
external magnetic field �12,13,15�.

The excitation of parasitic waves near cutoff can take
place in periodic slow-wave circuits with both, normal and
anomalous dispersions. These two cases are illustrated by
Fig. 1 where corresponding dispersion diagrams are shown;
dispersion diagram of the operating and parasitic waves are

FIG. 1. Schematic of dispersion diagrams for the case when the
parasitic mode has the normal �a� and anomalous �b� dispersion.
The lower dispersion curve shows the signal wave, the upper one
shows the parasitic mode. The straight line shows the beam line for
the case of Cherenkov interaction of linearly moving electrons with
the slow wave.
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shown by the solid and dashed lines, respectively. Here �, kz,
and d are the wave frequency, axial wave number and the
circuit period, respectively. Straight line in Fig. 1 shows the
beam line, i.e., the condition of Cherenkov synchronism �
=kzvz between the wave propagating with the phase velocity
vph=� /kz and electrons with the velocity vz. These diagrams
are shown for the case when in the region of small axial
wave numbers �from zero up to the �-point� the operating
wave has normal dispersion, i.e., the frequency increases
with the wave number. In such a case the group velocity
vgr=d� /dkz of the wave is positive and varies from zero �at
kz=0� to a certain positive value and then goes back down to
zero at the �-point. Figures 1�a� and 1�b� correspond to the
system with normal and anomalous dispersions of the para-
sitic wave, respectively. Most of the periodic slow-wave cir-
cuits �e.g., rippled-wall waveguides� have the normal disper-
sion. In the system with normal dispersion shown in Fig.
1�a�, the dispersion diagram of the parasitic wave is similar
to that of the operating wave. At the cutoff, i.e., at the
�-point �kzd=��, the group velocity vgr=d� /dkz is zero, but
its derivative dvgr /dkz=d2� /dkz

2 is nonzero and for the sys-
tem with normal dispersion dvgr /dkz�0. In the system with
the anomalous dispersion �e.g., a coupled-cavity circuit�
shown in Fig. 1�b�, the dispersion diagram of the parasitic
wave is different from that of the operating wave and at the
�-point dvgr /dkz�0.

Our paper is organized as follows. In Sec. II, we present
the formulation of the problem under study. We distinguish
here the cases of wave excitation far from cutoff and near
cutoff. It is assumed that the signal wave is excited far from
cutoff and operates in the stationary high-gain regime with-
out reflections from the end of a well matched circuit. At the
same time, the parasitic wave operating in the low-gain re-
gime can be excited near cutoff. Details of formulation of the
problem of such excitation are given below. In Sec. III, we
present results of the study. In Sec. IV, we analyze the same
problem in amplifiers with spatially extended interaction
space. In Sec. V, we discuss the results obtained and in Sec.
VI, we summarize the work.

II. FORMULATION

Since our goal is to derive and analyze the self-excitation
conditions for the parasitic wave in the presence of the op-
erating wave, we will assume that the amplitude of the para-
sitic wave is small in comparison with the signal wave am-
plitude and, hence, can be treated as a small parameter.
Correspondingly, our treatment can be made in two steps. At
the first step, we formulate equations describing the steady-
state operation of the forward-wave amplifier, which is a
well-studied problem. At the second step, we formulate
equations describing the self-excitation of the parasitic wave
in the presence of the large-amplitude signal wave. We will
restrict our study by consideration of devices driven by low-
voltage electron beams, i.e., equations for the electron mo-
tion will be treated in the nonrelativistic approximation.
�Generalization of our formulation for the case of arbitrary
electron energies can be done in a straightforward manner.�
Prior to making the steps described above, let us analyze

some distinctions in the equations describing the device op-
eration far from cutoff from that close to cutoff.

A. Wave excitation far and close to cutoff

Below we will neglect the space charge fields. Corre-
spondingly, the electric and magnetic fields of the wave ex-
cited far from cutoff can be represented as

E� = Re�A�z,t�E� p�r���ei��t−kzz�� ,

H� = Re�A�z,t�H� p�r���ei��t−kzz�� , �1�

where A�z , t� is the slowly varying wave amplitude and
E� p�r��� and H� p�r��� are the periodic eigenfunctions of the
empty slow-wave structure defined in the same fashion as in
Ref. �10�.

By using the standard derivation technique described else-
where �10� one can readily derive from Maxwell equations
the wave equation for the wave whose fields are presented by
Eq. �1�,

�A

�t
+ vgr

�A

�z
= −

1

U
�

0

d

dz�
S�

j�� · E� p
�eikzzds�. �2�

In Eq. �2�, U is the microwave energy of the field with a unit
amplitude stored in one period of the slow-wave structure
and j�� is the Fourier component of the beam current density
j�=Re�j��ei�t�. This microwave energy contains contribution
from all space harmonics of the periodic field, while in the
electron interaction with the wave we will take into account
the interaction with the synchronous harmonic only. �A role
of nonsynchronous harmonics was analyzed elsewhere �16�.�
Taking into account the charge conservation law jzdt= j0dt0
and assuming a one-dimensional motion of electrons, Eq. �2�
can be rewritten as

�A

�t
+ vgr

�A

�z

= −
1

U
�

0

d

dz�
S�

j0Epz
� � 1

�
�

0

2�

e−i�td��t0�	eikzzds�.

�2a�

In the case of steady-state operation the time derivative in the
left-hand side of Eq. �2a� is zero.

The one-dimensional motion of nonrelativistic electrons
can be described by the standard equation dvz /dt=−eEz /m
which in the case of steady-state operation can be rewritten
in Lagrangian variables t= t0+
0

zdz� /vz as

�2t

�z2 =
1

vz
3

eEz

m
. �3�

Let us assume that the wave amplitude is relatively small and
therefore the changes in the electron velocity are small, but
the changes in the electron phase with respect to the signal
wave �=�t−kzz can be significant. Then, in the right-hand
side of Eq. �3� the electron velocity can be taken equal to its
initial value vz0, so
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�2t

�z2 =
1

vz0
3

eEz

m
. �3a�

The electronic efficiency can be defined as

� =
vz0

2 − �vz
2�

vz0
2 =

2e

mvz0
2 �

0

L

Ezdz� . �4�

Here angular brackets denote averaging over all initial dis-
tributions in the beam. Above, Eq. �2a� is written for the case
when there is averaging over the electron entrance times and
over the beam cross section.

It should be noted that when the wave group velocity is
much smaller than the electron velocity, the characteristic
time describing the evolution of the wave amplitude ��A
�L /vgr� is much larger than the electron transit time �T
=L /vz0�. In this case one can assume that the wave ampli-
tude remains practically constant for a single electron tran-
siting through the interaction space. Correspondingly, one
can treat the electron motion assuming A=const, but take
into account the slow evolution of the wave amplitude in Eq.
�2a�. Under this assumption one can derive from Eqs. �2a�
and �4� the energy conservation law. To do this one should
multiply Eq. �2a� by A�, add to the equation obtained its
complex conjugate and integrate over the interaction space.
These steps result in the following equation describing slow
temporal evolution of the microwave energy stored in the
interaction space W= �U /4d�
0

L�A�2dz:

dW

dt
+

Uvgr

4d
��A�L��2 − �A0�2� = Pb� . �5�

In Eq. �5� Pb=VbIb= Ib�mvz0
2 /2e� is the beam power, �A0�2 is

the intensity of the signal wave entering the interaction
space, while �A�L��2 characterizes the intensity of the outgo-
ing radiation. This equation shows that the microwave en-
ergy stored in the interaction space increases when the power
withdrawn from the beam �right-hand side �RHS� of Eq. �5��
exceeds the power flow from the structure. The second term
in the left-hand side describes the microwave radiation
losses. We can rewrite it in a standard form as �� /Q�W and
then, as follows from comparison of this term with Eq. �5�
define the diffractive Q-factor as

Q =
�

vgr

�
0

L

�A�2dz

�A�L��2 − �A0�2
. �6�

Certainly, such treatment is valid only in the case of strong
reflections at the ends, when the circuit can be treated as a
cavity.

In the case of the wave excited near cutoff we should
consider the operation in the vicinity of the �-point where
the group velocity is zero. In such a case, in the Taylor ex-
pansion of the wave dispersion characteristic one should take
into account also the next term, i.e., represent the wave fre-
quency as

��kz� = ��kz − k0� = �0 + d�/dkz�k0
�kz − k0�

+ �1/2�d2�/dkz
2�k0

�kz − k0�2, �7�

where �0 and k0 are the frequency and axial wave number at
the �-point where the first derivative of the frequency is
zero. Correspondingly, as shown in Refs. �8,10�, the wave
Eq. �2a� should be replaced by the following one:

�A

�t
−

i

2
�d2�

dkz
2 �

kz=�/d

�2A

�z2 = −
1

U
�

0

d

dz�
S�

j0Epz
�

�� 1

�
�

0

2�

e−i�td��t0�	eikzzds�.

�8�

Repeating the steps described above one can derive a cor-
responding equation describing the temporal evolution of the
microwave energy stored in the interaction space,

dW

dt
+

U

4d
�d2�

dkz
2 �

kz=�/d
�Im��A�

�A

�z
��

z=L
�− Im�A�

�A

�z
��

z=0
�

= Pb� . �9�

Accurate analysis of the boundary conditions for the wave
amplitude and its derivative at both ends was carried out
elsewhere �8,10�. In particular, in Ref. �10� it was explained
how the boundary conditions at both ends of the circuit
should be determined. Without going into details of this pro-
cedure, let us only point out that the second term in the LHS
of Eq. �9� can again be treated as �� /Q�W. This results in the
following definition of the diffractive Q-factor for modes
excited near cutoff,

Q =
�

� d2�

dkz
2 �

kz=�/d

�
0

L

�A�2dz

Im��A�
�A

�z
��

z=L

− Im��A�
�A

�z
��

z=0

.

�10�

Then, Eq. �9� can be rewritten as

dW

dt
+

�

Q
W = Pb� �11�

and the self-excitation of this wave near cutoff can be written
in a standard form as

Pb� �
�W

Q
. �12�

Equation �12� tells that for exciting the microwave oscilla-
tions the power withdrawn from the beam should exceed the
power of microwave losses.

It can be instructive to compare the definition of Q given
by Eq. �10� with the diffractive Q of gyrotron cavities where
the role of cavities is played by slightly irregular smooth-
wall open waveguides excited near cutoff �17�. In such
waveguides, the dependence of the wave frequency on the
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axial wave number is simple:�=��cut
2 +c2kz

2. Correspond-
ingly, its second derivative is d2� /dkz

2 ��cut
=c2 /�cut. Also,

one can assume that the gyrotron cavity is bounded at the
cathode side by the cutoff narrowing, i.e., A�0�=0, while at
the cavity output the radiation condition �A

�z �z=L= ikzA�L�
holds where for the mode with one axial variation the axial
wave number is kz�� /L. Substituting these formulas in Eq.
�10� we get Qdif �4��L /	�2 which is the known definition of
the minimum diffractive Q-factor for gyrotron cavities
�13,17�.

B. Large-signal theory of the forward-wave amplifier

Below we will denote all variables related to the signal
wave by the subindex “1” and later, when we will consider
the parasitic wave, that wave will be denoted by the subindex
“2.” In this subsection we will consider the steady-state op-
eration, i.e., neglect time derivatives. Introducing �1=�1�t
−z /vz0�, normalized axial coordinate 
=z /L �L is the inter-
action length�, electron transit angle �1= ��1 /vz0−kz1�L
= ��1−kz1vz0�T, the normalized wave amplitude Ā1
= ��1T /�z0

2 ��eA1L /mc2� and the normalized beam current pa-
rameter I1= �eIb /mc3���1T /�z0

2 �gr��dL2 /U1� allows us to re-
write equation for electron motion �Eq. �3a�� and the wave
Eq. �2a�, respectively, as

�2�1

�
2 = Re�Ā1E1ze
i�1+�1
�� , �13�

�Ā1

�

= I1

1

Sb
�

S�

�E1z
� ds�� 1

�
�

0

2�

e−i��1+�1
�d�10	 . �14�

This pair of equations forms a self-consistent set describ-
ing the steady-state amplification of the signal wave in an
amplifier with an arbitrary transverse cross section of a
waveguide and arbitrary cross-section of an electron beam.
In transforming Eq. �2a� into Eq. �14� the electron current
density was represented as j0=−�Ib /Sb���R� b� where Ib is the
beam current in Amperes, Sb is the electron beam cross-
sectional area and the function ��R� b� describes the electron
current density distribution over the cross section; the nor-
malization condition for this function is 
S�

��R� b�ds�=Sb.
When all electrons interact with the wave of the same

amplitude, i.e., the function E1z�R� b� for all electrons is the

same, we can introduce Â1= Ā1E1z�R� b� and Î1= I1�E1z�R� b��2.
In the equations derived from Eqs. �13� and �14� with these
notations a new normalized beam current parameter plays

the role of the Pierce gain parameter. So, denoting Î1 by C1
3,

introducing the normalized axial coordinate �=C1
 and the

wave amplitude �1= �Â1 /C1
2�exp�i�1
� we can reduce Eqs.

�13� and �14� to the following set of equations containing the
minimal number of parameters:

�2�1

��2 = Re��1ei�1� , �15�

��1

��
− i�1�1 =

1

�
�

0

2�

e−i�1d�10. �16�

In Eqs. �16� we introduced the detuning �1=�1 /C1 which is
identical to the velocity parameter b used by Pierce. In the
presence of the wave attenuation, the wave number is com-
plex and, hence, this parameter also contains the imaginary
part. The boundary conditions for Eqs. �15� and �16� should
be given at the entrance �=0:�1�0�=�10� �0;2��, ��1 /�� �0
=0, and �1�0�=�10. The electronic efficiency �Eq. �4�� can
be represented as �= �2C1 /�1T��̂ where we introduced the
normalized efficiency

�̂ =
1

2�
�

0

2� ��1

��
d�10. �17�

Equations �15�–�17� were first formulated by Weinstein in
his one-dimensional nonlinear theory of the traveling-wave
tube �18�; results of their studies are essentially the same as
those by Nordsieck �19�. Later, the same equations were used
for studying nonlinear theory of ubitrons �20� and free-
electron lasers �14�.

Repeating the steps described in deriving Eq. �5� above
one can derive from Eqs. �15�–�17� the energy conservation
law in a simple form:

��1�2 − ��10�2 = 4�̂ . �18�

C. Self-excitation of the parasitic wave
in the presence of the signal wave

Assume that the amplitude of the parasitic wave is small
and therefore its effect on the electron motion can be treated
as a small perturbation. Then, in the equation for electron
motion �Eq. �3a��, in the case when an electron interacts with
two waves and �A2�� �A1�, we can represent the electron time
variable as t= t�1�+ t�2�. Here the first term t�1� describes the
effect of the first wave and the corresponding equation was
transformed into Eqs. �13� and �15� above. The second term
t�2� describes the effect of the second wave. A corresponding
equation for electron motion follows from Eq. �3a� which,
being linearized with respect to �A2�, can be written as

�2t�2�

�z2 =
1

vz0
3

e

m
Re�A2E2pz�R� b�exp�i��2t�1� − kz2z��� , �19�

where the phase factor in the RHS can be rewritten as
�2t�1�−kz2z= ��2 /�1��1+ ��2− ��2 /�1��1�z. Correspond-
ingly, in the RHS of Eq. �8� the exponential term can be
represented as exp�−i�2t��exp�−i��2�t�1���1− i�2t�2��. After
averaging over the electron entrance phases in Eq. �8� only
the last term proportional to t�2� is there nonzero. This re-
duces Eq. �8� to

�Ā2

�t
+ i��

�2Ā2

�
2 = − iI2
1

Sb
�

S�

�E2z
� ds�

�� 1

�
�

0

2�

�t�2��e−i�d�10	 . �20�

In Eq. �20�, we introduced ��=�2�2 /�kz2
2 �k2=�d

/2�z0cL, nor-
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malized time t�= t /T �in Eq. �20� the prime is omitted� and
the beam current parameter I2= �eIb /mc3���2TdL2 /U2�z0

3 �
which is similar to that of the signal wave in Eq. �14�. We
also used the notation �= ��2 /�1��1+ ��2− ��2 /�1��1�
.

When all electrons are equally coupled to the parasitic
wave, we can reduce Eqs. �19� and �20� to the following set:

�2t�2�

�
2 = Re�Â2ei�� , �21�

�Â2

�t
+ i��

�2Â2

�
2 = − iI2� 1

�
�

0

2�

t�2�e
−i�d�10	 . �22�

These equations yield the energy conservation law which can
be written in the following form:

dW2

dt
+ Ploss = − 2I2� 1

�
�

0

2� �
0


out

t�2� Im�Â2ei��d
d�10	 .

�23�

Here the second term in the left-hand side represents all sorts
of losses: Ploss= P�+ PL+ PR where P�= �� /Q��W2 de-
scribes the Ohmic losses in the circuit and two other terms
describe the wave power flow through the left �
=0� and
right �
=
out� cross sections, respectively. When Ohmic
losses are negligibly small and the waveguide on the left
�cathode side� is below cutoff for the parasitic wave the loss

power is equal to Ploss= PR=2��h2L�Â2�
=1��2. Here the de-
viation of axial wave number about the �-point h should
match the sign of the second derivative of the frequency in
order to give the positive value of the power flow out from
the circuit. It is obvious that the self-excitation of the para-
sitic mode takes place when the power withdrawn by the
second mode from the beam �RHS of Eq. �23�� exceeds the
power of microwave losses. Correspondingly, the self-
excitation condition of the second mode, for example, in the
case of only diffractive losses via the output cross section
can be written as

− Î2� 1

�
�

0

2� �
0


out

t�2� Im�Â2ei��d
d�10	
� ��h2L�Â2�
 = 1��2. �24�

Since the entrance and exit cross sections of the circuit are
not matched for the parasitic wave we can assume that there
are strong reflections of the waves forming this mode from
both ends and therefore these waves form a mode with the
standing pattern. So the amplitude of this mode can be pre-

sented as Â2=A2�t�f2�
� that allows us to rewrite the self-
excitation condition in variables normalized to the Pierce

gain parameter of the signal wave ��=C1
, �2= Â2 /C1
2, �

=C1�t /T�, and �=C1��� as follows:

G2 � �f2��out��2
�E1z�r�b��2

�E2z�r�b��2
U2�1

U1�2

1

�g1
�h2� d�g2

dh2
�

h20

� . �25�

Here the right-hand side contains the ratio of parameters
characterizing the beam coupling to the waves and the en-

ergy propagation of both waves through the circuit. Also in
Eq. �25� the function

G2 = − 2 Im� 1

2�
�

0

2� ��
0

�out

f2ei��2�+�1�

���
0

� �
0

��
f2

�e−i��2��+�1�d��d���d�	d�10� �26�

describes the interaction of the beam modulated by the signal
wave with the parasitic mode and can be called the gain
function of the second mode in the presence of the signal
wave. In Eq. �26�, the phase �1 is the electron phase with
respect to the phase of the signal wave defined by Eq. �15�
above and �2=�2 /C1 is the detuning of the second mode
normalized to the Pierce gain parameter of the signal wave.
Performing integration by parts one can rewrite Eq. �26� in a
more compact form as

G2 =
�

��2

1

2�
�

0

2� ���
0

�out

f2ei��2�+�1�d��2�d�10. �27�

Equation �27� contains the derivative of the spectral intensity
of the EM force acting upon electrons, so it indicates that in
a certain sense our system has the gain function property
referred to as Madey’s theorem �21�. Note that quite similar
is the expression defining the beam-loading conductance in
linear-beam klystrons in the kinematic approximation �22�.
As known, the negative value of this conductance determines
so-called monotron instability �22,23�. Our case under study
is specific in the sense that here the gain function of the
second mode depends on the electron interaction with the
first mode.

III. RESULTS

A. Signal wave operation

In this section we present some results illustrating the
amplification of the signal wave in the stationary regime.
These results are identical to well known results of the one-
dimensional nonlinear theory of the TWT in Pierce param-
eters �18� and are given here just for completeness of the
study. In Fig. 2, the axial dependence of the wave amplitude
is shown for three initial values:�10=0.001, 0.01 and 0.1.
Figures 2�a�–2�c� correspond to different values of the detun-
ing �1 :0, −1.0 and 1.0. As one can see, the distance at which
the device reaches the saturation shortens as the input ampli-
tude increases. When the system reaches the saturation the
maximum normalized efficiency �Eq. �17�� practically does
not depend on the initial amplitude �when this amplitude is
small enough�, but strongly depends on the detuning. In Fig.
3, this maximum normalized efficiency �̂ is shown as the
function of the detuning �1.

B. Effect of the signal wave on the self-excitation
condition of the parasitic mode

We analyzed the self-excitation of the second mode as-
suming that this mode is formed by the superposition of the
forward and backward waves operating in a low-gain regime
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in a circuit with strong end reflections. The wave amplitude
in the low-gain regime varies slightly along the device axis,
so, due to the strong reflections these two waves have almost
constant amplitudes along the axis. The backward wave with
the axial wave number kz�−� /d is far from synchronism
and therefore does not contribute significantly to the energy
exchange with electrons �16�, so it can be ignored. However,
the forward-wave component propagating in z-direction with
the axial wave number kz�� /d �d is the structure period� is
synchronous with electrons and should be considered accu-
rately. When the beam line intersects the dispersion curve of

a SWS in the vicinity of the �-point, its axial wave number
can be written as kz=� /d+�kz. In the vicinity of this inter-
section point also the wave of the same frequency with kz
=� /d−�kz exists. When ��kz�L�2�, such a wave synchro-
nously interacts with electrons. The wave with �kz�0,
which is located in the dispersion diagram shown in Fig. 1
on the right from the �-point has a negative group velocity,
while the wave with �kz�0 located on the left has a positive
one. The axial structure of the parasitic wave consisting
of these two can be given in Eqs. �26� and �27� as
f���= �1 /2��1+cos ��� where �=2�kzL /C1. In the case of
�=0 this function is equal to 1.

The effect of the signal wave on the excitation of the
parasitic mode with such axial structure is illustrated by the
results shown in Figs. 4 and 5. In Figs. 4�a�–4�c� the gain
function G2 given by Eqs. �26� or �27� characterizing the
self-excitation conditions of the parasitic mode is shown as
the function of the detuning �2 for �=0 and several values of
the detuning of the signal wave: �a� �1=0, �b� �1=0.5, and
�c� �1=1.0. The interaction distance in all the cases shown in
Fig. 4 is equal to �out=10. Figure 4�d� illustrates the effect of
departure of operation from the �-point. Clearly this depar-
ture weakens the gain function of the second mode. Solid,
dashed, and dotted lines in figures �a�–�c� correspond to the
initial amplitudes equal to 0.001, 0.005, and 0.01, respec-
tively. At small values of the initial amplitude this function is
practically the same as in the absence of the signal wave �cf.
Fig. 4.2 in Ref. �14�; the difference in the absolute values of
the gain function is due to different normalizations of the
function describing the axial structure of the field�. As the
initial value of the signal wave amplitude increases, the peak
of this gain function G2, as seen in Fig. 4, becomes much
smaller that corresponds to the suppression of the parasitic
mode. When the interaction distance is shorter, significant
deformation of the gain curves for the parasitic mode takes
place at larger values of the input amplitude of the signal
wave. For example, in the case of �out=5 �not shown here�
the gain curves for initial amplitudes of the signal wave

FIG. 2. Axial dependence of the signal wave amplitude for sev-
eral values of the detuning between the signal wave and electrons:
�a� �1=0, �b� �1=−1.0, �c� �1=1.0.

FIG. 3. The maximum normalized efficiency �solid line� and the
optimal interaction length �dashed line� as functions of the detuning
�1. The optimal length is shown for the initial wave amplitude equal
to �10=0.01. At smaller amplitudes the optimal length is larger and
the break of the field in the region of large absolute values of the
detuning �1 �in the left part of the figure� occurs at smaller detun-
ings ��1�.
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equal to 0.001 and 0.01 are practically identical, but their
deformation becomes significant when the input amplitude is
close to 0.1. So in this regard the system under consideration
behaves very similar to the gyrotron where the effect of sup-
pression of the parasitic mode by the first excited operating
mode was shown elsewhere �24,25�.

It should also be noted that in the region of small detun-
ings �2 �less than about −0.5−0.6� the value of the gain
function G2 increases with the initial amplitude of the signal
wave. This indicates that in this region of the detunings an-
other effect known as the nonlinear mode excitation �25� or
the cross-excitation instability �26,27� takes place. The non-
linear mode excitation means that the presence of one mode
lowers the start current of another mode just making its ex-
citation possible in the region where this mode could not be
excited in the absence of the first mode.

Contours of equal values of the gain function G2 in the
plane of detunings of two modes are shown in Fig. 5 for the
normalized interaction length equal to �out=5 and several
values of the initial amplitude of the signal wave. Figures
�a�, �b�, and �c� show contours of the gain function equal to
1.0, 6.0, and 10.0, respectively. So these contours determine
the regions of excitation of the parasitic mode in the case of
corresponding ratios of the coupling impedances of the beam

to both waves given by the condition of self-excitation �Eq.
�25��. Black, red, green, and blue lines correspond to initial
amplitudes of the signal wave equal to 0.01, 0.1, 0.2, and
0.25, respectively. At small amplitudes the lines of the gain
function do not depend on the frequency detuning of the
signal wave, which indicates that the signal wave has prac-
tically no effect on the condition of excitation of the parasitic
mode. For example, in the case shown in Fig. 5�a�, the region
of parasitic mode self-excitation at so small input amplitude
occupies the range of detunings of the second mode from
−1.23 to about 0. Also, another region of excitation takes
place at the detuning smaller than −1.87 where another peak
of the gain function of the parasitic mode exists. Contours of
larger values of the parasitic mode gain function have
slightly different boundaries �cf. Figs. 5�a�–5�c��.

The increase in the input amplitude of the signal wave
causes deformation of these contours as shown in Fig. 5.
First, when the input amplitude increases from 0.01 to 0.1
these contours in all figures deform to the left in the region
of the signal wave detunings close to zero, i.e., in the middle
of the amplification region of the signal wave. Then, con-
tours of larger values of the parasitic mode gain function �see
Fig. 5�c�� exhibit more complicated deformation: when the
input amplitude of the signal wave equals 0.2 the left contour

FIG. 4. The gain function of the second mode as the function of the second mode detuning �2 for several values of the signal amplitude
at the entrance and different values of the detuning between the signal wave and electrons: �a� �1=0, �b� �1=0.5, �c� �1=1.0. Figure 4�d�
illustrates the effect of the departure of the operating point from the �-point. Solid, dashed and dotted lines corresponds to �=0, � /20�out

and � /10�out, respectively. The normalized length is equal to �out=10.
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has a peak moving to the right, while the right contour rap-
idly moves to the left. With the further increase in �10 these
contours merge and, as shown in Fig. 5�c� for �10=0.25 �blue
lines�, the region of the parasitic mode gain function larger
than 10.0 does not exist in the middle of the signal wave
amplification zone. This deformation clearly demonstrates

the effect of suppression of the parasitic mode by the signal
wave. Quite similar deformation takes place for the contours
G2=7.0 �not shown here�, but the tendency weakens for con-
tours of the smaller values of this gain function.

For example, contours of G2=1.0 shown in Fig. 5�a� show
that the deformation of the right boundary with the increase
in �10 is not as strong as the deformation of the left bound-
ary. As the result, the region of excitation of the parasitic
mode in the case of equal coupling impedances of both
waves to the beam �see the right-hand side of Eq. �25�� ex-
pands that indicates that in this case the effect of nonlinear
mode excitation dominates. In general, results shown in Fig.
5 clearly demonstrate that the self-excitation conditions of
such parasitic waves in amplifiers operating in large-signal
regimes cannot be correctly estimated without account for
the effect of the signal wave on the parasitic mode.

IV. EXCITATION OF PARASITIC MODES
IN SYSTEMS WITH A SPATIALLY

EXTENDED INTERACTION SPACE

Above, we analyzed interaction between the waves
equally coupled to all beam electrons. As discussed in Intro-
duction, for increasing the power of EM radiation it is nec-
essary to develop devices with a spatially extended interac-
tion space. This is why in recent years so much attention was
paid to such concepts as multiple-beam and sheet-beam con-
figurations; proper references to original contributions on
multiple-beam klystrons can be found in �28,22,6�, sheet-
beam traveling wave tubes and sheet-beam klystrons had
been studied, respectively, in �4,5� and �23,29� �see also ref-
erences therein�.

One of the effects occurring in high-power sources of EM
radiation with spatially extended interaction space which was
absent in conventional systems having cylindrical symmetry
is the coupling between modes. Indeed, as a rule, the EM
fields of empty circuits are described by a set of orthogonal
nondegenerate functions. Therefore, in the presence of an
electron beam having the same symmetry, the normal modes
of such devices remain orthogonal. This means that when the
amplitude of EM fields is small each of them can be excited
independently on others. At large amplitudes the nonlinear
effects lead to the coupling between modes and this coupling
is usually interpreted as the mode or wave interaction.
Above, we considered the effect of the signal wave operating
in the large-signal regime on the parasitic mode assuming
that all electrons are equally coupled to each of these modes.
Now we will analyze the effect of the difference in the cou-
pling of an extended electron beam to these modes.

In a steady-state regime the amplification of the signal
wave by a spatially extended electron beam can be described
by Eqs. �13� and �14�. Correspondingly, the excitation of the
parasitic wave can be described by Eqs. �19� and �20�. In
both sets of equations, the transverse structures of axial com-
ponents of the wave fields, which are given by functions E1z
and E2z, respectively, in the region occupied by the beam is
now important.

Let us restrict our study by a simple example of a one-
dimensional nonuniformity in one of transverse directions.

FIG. 5. �Color online� Contours of equal values of the gain
function of the second mode ��a� G2=1.0, �b� G2=6.0 and �c� G2

=10.0� in the plane of detunings �1 versus �2 for several values of
the signal wave amplitude at the entrance: �10=0.01 �black solid
lines�, 0.1 �red dashed lines�, 0.2 �green dotted lines� and 0.25 �blue
dash-dotted lines�. The normalized length is equal to �out=5.0.
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Assume that an electron beam with a given value of the
beam current is infinitely thin in y-direction and uniformly
distributed in x-direction from −Lbx /2 to +Lbx /2. Also as-
sume that the spatial distribution of axial components of the
signal wave and the parasitic mode in the x-direction can be
approximated by the functions �1,2=cos�q1,2�Kx̂ /2�, respec-
tively. Here the mode indices are not equal, q1�q2, the
transverse coordinate is normalized to the beam width,
x̂=2x /Lbx and the parameter K=Lbx /L is the ratio of the
beam width Lbx to the width of a circuit L. This parameter
can be treated as the filling factor. Then, the amplification of
the signal wave can be described, instead of Eqs. �15� and
�16�, by the following equations:

�2�1

��2 = Re��1ei�1 cos�q1
�

2
Kx̂�� , �28�

��1

��
− i�1�1 =

1

�
�

0

2� � 1

2
�

−1

+1

e−i�1 cos�q1
�

2
Kx̂�dx̂�d�10.

�29�

Correspondingly, the normalized efficiency can be defined
instead of Eq. �17� as

�̂ =
1

2
�

−1

+1 � 1

2�
�

0

2� ��1

��
d�10�dx̂ . �30�

Similarly, the gain function of the second mode, instead of
Eq. �27�, can be defined as

�G2� =
1

2
�

−1

+1

G2dx̂ , �31�

where the function G2 is defined by Eq. �27� in which the
function f2��� describing the axial structure of the mode
should be replaced by the function f2����2�x̂� which is the
product of two functions describing both the axial and trans-
verse distributions of the parasitic mode.

The effect of the filling factor K on the normalized effi-
ciency of the signal wave is illustrated by Fig. 6 where this
efficiency is shown as the function of the frequency detuning
�1. Here and below we consider the signal wave with one
variation in the transverse direction q1=1. Figures �a� and �b�
correspond to different initial amplitudes of the wave. The
peaks of these curves are displaced in the region of negative
detunings in accordance with results shown in Fig. 3 and, as
the input amplitude increases, this displacement becomes
larger. At low input power level �see Fig. 6�a� where �10
=0.1�, as the filling factor increases, these peaks decrease.
This effect can be explained by the fact that at low initial
amplitudes the wave growth doesn’t reach saturation �cf. re-
sults shown in Fig. 2�. Therefore expansion of the beam in
the region of lower coupling to the wave lowers the growth
rate of a whole beam even further that results in the effi-
ciency degradation. At larger initial amplitudes �see Fig. 6�b�
where �10=0.25� the wave growth saturates and even more,
in a certain range of detunings, the efficiency starts decreas-
ing at the end due to electron overbunching. Correspond-
ingly, in this range of detunings located to the right from the
optimal one, the beam widening mitigates the effect of over-

bunching and, as a result the efficiency becomes approxi-
mately equal at different values of the filling factor �cf.
curves for K=0.0, K=0.25 and K=0.5 in Fig. 6�b��.

The effect of the beam widening on the excitation of the
second mode is illustrated by Figs. 7 and 8. In Fig. 7, the
gain function of the second mode is shown as the function of
the second mode detuning �2 in figures �a�, �b�, and �c� for
the cases when this mode has one, two, and three variations,
respectively. These figures are plotted for specific values of
the input amplitude and detuning of the signal wave ��10
=0.01, �1=−0.5� and different values of the filling factor.
Clearly, in all three figures the curves for a pencil beam �K
=0� are the same. In the first case �q2=1� shown in Fig. 7�a�,
the transverse structure of the second mode is the same as
that of the signal wave. Therefore the transverse expansion
of the beam causes gradual lowering of the peak of the gain
function because the beam coupling to the parasitic wave
averaged over the beam cross-section becomes smaller.

FIG. 6. �Color online� Effect of the beam widening on the effi-
ciency of the signal wave at different values of the initial amplitude:
�a� �10=0.1, �b� �10=0.25. The normalized interaction length
equals to 5.0.
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However, when the parasitic mode has more variations �see
Figs. 7�b� and 7�c� for q2=2 and q2=3, respectively� corre-
sponding changes are not so monotonic. For example, in the
case of the parasitic mode with two variations shown in Fig.
7�b�, the expansion of the beam from K=0.5 to K=0.75 does
not cause significant changes in the gain curve of the second
mode because when the beam enters the region of two peaks
of this mode the average beam coupling to the parasitic
mode does not change significantly. This effect is even more
pronounced in the case of the parasitic mode with three
variations q2=3 shown in Fig. 7�c�. Here, when the beam
expansion takes place within the central peak, the increase of
the filling factor K reduces the gain function. However, at
larger values of the filling factor, i.e., when the beam is ex-
panded in the regions of all peaks, the gain function in-
creases with K �cf. the gain curves for the cases K=0.5 and
K=0.75 in Fig. 7�c��.

The topology of the gain curves in the plane of detunings
of both modes is essentially the same as those shown in Figs.
5�a�–5�c�. Therefore we will not present them here. Rather,
we will illustrate the effect of beam widening on suppression
of the parasitic mode by Fig. 8 where the case of the parasitic
mode with three transverse variations q2=3 is shown. This
case is shown for the input amplitude of the signal wave
�10=0.1, fixed threshold value of the gain function of the
parasitic mode �G2�=10 and different values of the filling
factor K. Initially, the region of excitation of this parasitic
mode shrinks as the filling factor increases �cf. this region for
zero filling factor with those for K=0.2 and 0.4�. However, at
larger values of the filling factor, as the filling factor in-
creases, the region of parasitic mode excitation widens �cf.
this region for K=0.4 restricted by green lines with that for
K=0.6 shown by blue lines� because the beam enters the
region of side peaks of the parasitic mode where electrons
are coupled to the parasitic mode stronger than to the signal
wave.

FIG. 7. �Color online� Gain function of the parasitic mode as the
function of its detuning for different values of the beam filling
factor in the cases of modes with different transverse indices: �a�
q2=1, �b� q2=2, �c� q2=3. Results are shown for the input ampli-
tude of the signal wave �10=0.1 and its detuning �1=0.

FIG. 8. �Color online� Contours G2=10 of the gain function of
the parasitic mode with three variations q2=3 in the plane of detun-
ings �1 versus �2 for the signal wave amplitude at the entrance
�10=0.1. Black, red, green, and blue curves show contours for the
filling factor equal to 0.0, 0.2, 0.4, and 0.6, respectively.

NUSINOVICH, SINITSYN, AND ANTONSEN PHYSICAL REVIEW E 82, 046404 �2010�

046404-10



V. DISCUSSION

To illustrate the importance of the problem studied above
let us reproduce in Fig. 9 the dispersion diagram for a
coupled-cavity slow-wave structure designed for a sheet-
beam Ka-band �35 GHz� traveling-wave tube at Naval Re-
search Laboratory �30�. Here the curve 1 is the dispersive
curve of the operating forward wave which is surrounded by
several parasitic backward waves. The analysis �30� showed
that the most dangerous among them are the backward waves
2 and 4 which can be excited near cutoff and whose starting
length in the absence of the forward wave is equal to 0.91
and 0.27 inches, respectively. Some possibilities to suppress
this parasitic excitation for providing zero-drive stability
were analyzed in Ref. �2�. The theory presented above dem-

onstrates the importance of studying in such amplifiers also
the effect of the operating forward waves on the excitation of
parasitic modes.

It should be noted that the analysis of excitation of para-
sitic waves in active systems with various types of dispersion
can also be of interest for people studying such new prob-
lems as the use of metamaterials for high-power microwave
applications.

VI. SUMMARY

The theory describing the excitation of parasitic backward
waves near cutoff in forward-wave amplifiers is presented.
This theory allows one to analyze not only the zero-drive
stability, but also the effect of the signal wave on self-
excitation conditions of parasitic waves. It is shown that de-
pending on operating parameters not only suppression of
parasitic waves by the forward wave, but also their nonlinear
excitation �also known as cross-excitation instability� is pos-
sible. It is also shown that in amplifiers with a high aspect
ratio where electron beams of a sheet configuration are uti-
lized the beam extension in a wide direction may cause vari-
ous effects depending on the transverse structure of compet-
ing forward signal and parasitic backward waves. The fact
that the presence of a large amplitude signal wave can
greatly modify the region of the parasitic mode self-
excitation is especially important for accurate designing of
high-power boosters operating in the regime of deep satura-
tion �31�.

ACKNOWLEDGMENT

This work was supported by the Air Force Office of Sci-
entific Research.

�1� M. Rosker, IEEE International Vacuum Electronics Confer-
ence, IVEC-08, Monterey, CA, 2008 �IEEE, Piscataway, NJ
2008�.

�2� P. Larsen, D. K. Abe, S. J. Cooke, B. Levush, T. M. Antonsen,
Jr., and R. E. Myers, IEEE Trans. Plasma Sci. 38, 1244 �2010�.

�3� G. S. Nusinovich, S. J. Cooke, M. Botton, and B. Levush,
Phys. Plasmas 16, 063102 �2009�.

�4� B. E. Carlsten, Phys. Plasmas 9, 5088 �2002�.
�5� J. Joe, J. Scharer, J. Booske, and B. McVey, Phys. Plasmas 1,

176 �1994�.
�6� G. S. Nusinovich, B. Levush, and D. Abe, NRL Memo 6840–

03–8673 �March 2003�.
�7� A. P. Kuznetsov and S. P. Kuznetsov, Radiophys. Quantum

Electron. 23, 736 �1980�.
�8� A. P. Kuznetsov and S. P. Kuznetsov, Radiophys. Quantum

Electron. 27, 1575 �1984�.
�9� L. V. Bulgakova and S. P. Kuznetsov, Radiophys. Quantum

Electron. 31, 155 �1988�.
�10� S. M. Miller, T. M. Antonsen, Jr., B. Levush, A. Bromborsky,

D. K. Abe, and Y. Carmel, Phys. Plasmas 1, 730 �1994�.
�11� G. S. Nusinovich, M. Walter, and J. Zhao, Phys. Rev. E 58,

6594 �1998�.

�12� K. R. Chu, Rev. Mod. Phys. 76, 489 �2004�.
�13� G. S. Nusinovich, Introduction to the Physics of Gyrotrons

�The Johns Hopkins University Press, Baltimore; London,
2004�.

�14� H. P. Freund and T. M. Antonsen, Jr., Principles of Free-
electron Lasers, 2nd ed. �Chapman & Hall, London, 1996�, p.
7.

�15� M. Blank, K. Felch, B. G. James et al., IEEE Trans. Plasma
Sci. 30, 865 �2002�.

�16� E. B. Abubakirov and M. I. Petelin, Sov. Phys. Tech. Phys. 33,
635 �1988�.

�17� S. N. Vlasov, G. M. Zhislin, I. M. Orlova, M. I. Petelin, and G.
G. Rogacheva, Radiophys. Quantum Electron. 12, 972 �1969�.

�18� L. A. Weinstein, Radiotekh. Elektron. �Moscow� 2, 319
�1957�; 2, 331 �1957�.

�19� A. Nordsieck, Proc. IRE 41, 630 �1953�.
�20� R. M. Phillips, IRE Trans. Electron Devices ED-7, 231

�1960�.
�21� J. M. J. Madey, Nuovo Cimento Soc. Ital. Fis., B 50B, 64

�1978�.
�22� G. Caryotakis, in Modern Microwave and Millimeter-Wave

Power Electronics, edited by R. J. Barker, J. H. Booske, N. C.

FIG. 9. �Color online� Dispersive characteristics of a sheet-beam
coupled-cavity Ka-band slow-wave structure �reproduced from Ref.
�30��. �Copyright 2010 IEEE.�

EXCITATION OF PARASITIC WAVES NEAR CUTOFF IN … PHYSICAL REVIEW E 82, 046404 �2010�

046404-11

http://dx.doi.org/10.1109/TPS.2010.2043690
http://dx.doi.org/10.1063/1.3143123
http://dx.doi.org/10.1063/1.1516782
http://dx.doi.org/10.1063/1.870931
http://dx.doi.org/10.1063/1.870931
http://dx.doi.org/10.1007/BF01080592
http://dx.doi.org/10.1007/BF01080592
http://dx.doi.org/10.1007/BF01039225
http://dx.doi.org/10.1007/BF01039225
http://dx.doi.org/10.1007/BF01039179
http://dx.doi.org/10.1007/BF01039179
http://dx.doi.org/10.1063/1.870818
http://dx.doi.org/10.1103/PhysRevE.58.6594
http://dx.doi.org/10.1103/PhysRevE.58.6594
http://dx.doi.org/10.1103/RevModPhys.76.489
http://dx.doi.org/10.1109/TPS.2002.801658
http://dx.doi.org/10.1109/TPS.2002.801658
http://dx.doi.org/10.1007/BF01031202
http://dx.doi.org/10.1109/JRPROC.1953.274404
http://dx.doi.org/10.1109/T-ED.1960.14687
http://dx.doi.org/10.1109/T-ED.1960.14687
http://dx.doi.org/10.1007/BF02737622
http://dx.doi.org/10.1007/BF02737622


Luhmann, Jr., and G. S. Nusinovich �IEEE-Press; Wiley-
Interscience, Piscataway, NJ, 2005�, Chap. 3.

�23� G. Nusinovich, M. Read, and L. Song, Phys. Plasmas 11, 4893
�2004�.

�24� I. G. Zarnitsyna and G. S. Nusinovich, Radiophys. Quantum
Electron. 17, 1418 �1974�.

�25� G. S. Nusinovich, Int. J. Electron. 51, 457 �1981�.
�26� B. Levush, T. M. Antonsen, Jr., A. Bromborsky, W. R. Lou,

and Y. Carmel, IEEE Trans. Plasma Sci. 20, 263 �1992�.
�27� C. Grabowski, E. Schamiloglu, C. T. Abdallah, and F. Hegeler,

Phys. Plasmas 5, 3490 �1998�.
�28� E. A. Gelvich, L. M. Borisov, Y. V. Zhary, A. D. Zakurdayev,

A. S. Pobedonostsev, and V. I. Pugin, IEEE Trans. Microwave
Theory Tech. MTT-41, 15 �1993�.

�29� E. R. Colby, G. Caryotakis, W. R. Fowkes, and D. N. Smithe,
in High Energy Density Microwaves, edited by R. M. Phillips,
AIP Conf. Proc. No. 474 �AIP, Woodbury, New York, 1999�, p.
74.

�30� P. B. Larsen, D. K. Abe, S. J. Cooke, B. Levush, and T. M.
Antonsen, Jr., International Vacuum Electronics Conference,
IVEC-2010, Monterey, CA, 2010 �IEEE, Piscataway, NJ,
2010�.

�31� C. R. Smith, C. M. Armstrong, and J. Duthie, Proc. IEEE 87,
717 �1999�.

NUSINOVICH, SINITSYN, AND ANTONSEN PHYSICAL REVIEW E 82, 046404 �2010�

046404-12

http://dx.doi.org/10.1063/1.1793175
http://dx.doi.org/10.1063/1.1793175
http://dx.doi.org/10.1007/BF01039820
http://dx.doi.org/10.1007/BF01039820
http://dx.doi.org/10.1080/00207218108901349
http://dx.doi.org/10.1109/27.142828
http://dx.doi.org/10.1063/1.873065
http://dx.doi.org/10.1109/22.210224
http://dx.doi.org/10.1109/22.210224
http://dx.doi.org/10.1109/5.757252
http://dx.doi.org/10.1109/5.757252

