
Proton stopping using a full conserving dielectric function in plasmas at any degeneracy

Manuel D. Barriga-Carrasco
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain

�Received 7 June 2010; published 25 October 2010�

In this work, we present a dielectric function including the three conservation laws �density, momentum and
energy� when we take into account electron-electron collisions in a plasma at any degeneracy. This full
conserving dielectric function �FCDF� reproduces the random phase approximation �RPA� and Mermin ones,
which confirms this outcome. The FCDF is applied to the determination of the proton stopping power. Differ-
ences among diverse dielectric functions in the proton stopping calculation are minimal if the plasma electron
collision frequency is not high enough. These discrepancies can rise up to 2% between RPA values and the
FCDF ones, and to 8% between the Mermin ones and FCDF ones. The similarity between RPA and FCDF
results is not surprising, as all conservation laws are also considered in RPA dielectric function. Even for
plasmas with low collision frequencies, those discrepancies follow the same behavior as for plasmas with
higher frequencies. Then, discrepancies do not depend on the plasma degeneracy but essentially do on the
value of the plasma collision frequency.
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I. INTRODUCTION

The stopping power of plasmas, when a charged particle
traverses it, is a topic of long-standing theoretical and experi-
mental interest. A comprehensive treatment of the stopping
has important applications in astrophysics �1,2�, solid-state
physics �3–6�, and energy deposition of a particle driven in
the inertial confinement fusion �7,8�. Dielectric formalism
has become one of the most used methods to describe this
stopping power. The use of this formalism was introduced by
Fermi �9�. Subsequent developments made it possible to ex-
tend the dielectric formalism to provide a more comprehen-
sive description of the stopping of ions in matter �10,11�. For
dilute plasmas, the dielectric formulation of the energy-loss
rate was first studied by Pines and Bohm �12�, Akhiezer and
Sitenko �13�, and other scientists. Large number of calcula-
tions of the stopping of ions and electrons in plasmas has
been carried out since then using the classical linear response
function in the random phase approximation �RPA� �see �14�
for a complete list�. This approximation consists of consid-
ering the effect of the particle as a perturbation, so that the
energy loss is proportional to the square of the particle
charge. Then the theory of slowing down is reduced to a
treatment of the properties of the medium only, and a linear
description of these properties may be applied. The linear
properties of an infinite gas of free electrons can be described
by its dielectric function.

Theoretical studies of the RPA dielectric function are usu-
ally focused on two main domains of plasma physics. �a�
Dense plasmas at low temperatures, usually described with
degenerate electron gas models and the use of quantum me-
chanical methods, as plasmas of interest for inertial confine-
ment fusion �ICF�, see �14�. �b� Dilute plasmas at high tem-
peratures, usually described with nondegenerate electron gas
models and the use of a classical description; it includes the
case of plasmas of interest for magnetic confinement fusion
�MCF�, see �14�. The transition from nondegenerate to de-
generate plasmas in the range of high densities �ne
�1023–1027 ecm−3� is a subject of much interest for current

studies of ICF. The approach to those extreme conditions is
being tested nowadays using ion beams generated by lasers
�15–21�. Then next works have extended the calculations to
consider an electron gas of any degeneracy. In the past, Sk-
upsky �22�, Arista and Brandt �23�, and Maynard and Deut-
sch �24� have considered the calculation of the energy loss in
a quantum mechanical plasma of arbitrary degeneracy but
without including plasma electron collisions.

The RPA is usually valid for high-velocity projectiles and
when plasma electron-electron collisions are not considered.
Nevertheless, for real plasmas, RPA is not sufficient and
these collisions must be taken into account. Mermin �25� and
later Das �26� derived an expression for the dielectric func-
tion caring for the plasma electron collisions and also pre-
serving the local particle density. Mermin dielectric function
has been successfully applied to solids �dense degenerate
electron gas� �27�, for classical plasmas �nondegenerate elec-
tron gas� �28,29� and also for partially degenerate plasmas
�30�. For solids, Mermin dielectric function was used obtain-
ing the electron collision frequency from experiments
�31–33�, but this frequency must be calculated a priori for
plasmas. Many works have been devoted to calculate this
frequency �34–36�, others treat it as a free parameter
�37–40�, but in the present investigation this value is taken
from a previous work �41�.

The aim of this work is to study the influence of plasma
electron-electron collisions on the stopping power of a
plasma at any degeneracy when protons move trough it via
dielectric formalism. For this, the paper is divided into three
main sections. In Sec. II, the RPA and Mermin dielectric
functions of plasmas at any degeneracy are calculated, but,
as it is said before, Mermin function only obeys the density
conservation law. Then in Sec. III, a new dielectric function
is established where the electron collision events are con-
strained by all the conservation laws: the full conserving
dielectric function. Finally in Sec. IV, we use latter dielectric
function to calculate proton stopping power of plasmas at
any degeneracy.
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II. RPA AND MERMIN DIELECTRIC FUNCTIONS AT
ANY DEGENERACY

The RPA dielectric function is developed in terms of the
wave number k and of the frequency � provided by a con-
sistent quantum mechanical analysis. We use atomic units
�a.u.�, e=�=me=1, through all the paper.

The RPA analysis yields to the expression �10�

��k,�� = 1 +
1

�2k2� d3k�
f�k� + k��� − f�k���

� + i� − �Ek�+k�� − Ek���
, �1�

where Ek� =k2 /2. The temperature dependence is included
through the Fermi-Dirac function

f�k�� =
1

1 + exp���Ek − ���
, �2�

being �=1 /kBT and � the chemical potential of the plasma
with electron density ne and temperature T. In this part of the
analysis, we assume the absence of collisions so that the
damping constant approaches zero, �→0.

Analytic RPA dielectric function �DF� for plasmas at any
degeneracy can be obtained directly from Eq. �1� �42�

�RPA�k,�� = 1 +
1

4z3�kF
�g�u + z� − g�u − z�� , �3�

where g�x� corresponds to

g�x� = �
0

� ydy

exp�EF�y2 − ��� + 1
ln� x + y

x − y
� , �4�

u=� /kvF and z=k /2kF are the common dimensionless vari-
ables �10�. D=EF� is the degeneracy parameter and vF=kF
=	2EF is Fermi velocity in a.u.

As mentioned in the introduction, the RPA is not suffi-
cient for partially coupled plasmas and the target electron
interactions have to be taken into account. The first correc-
tive effect taken to rectify this situation was carried out by
Mermin �25�, who was able to derive a DF which conserved
electron number during collisions

�M�k,�� = 1 +
�� + i����RPA�k,� + i�� − 1�

� + i���RPA�k,� + i�� − 1�/��RPA�k,0� − 1�
,

�5�

where the RPA dielectric function is taken from Eq. �1�.
Electron collisions are considered through their collision fre-
quency, �. It is easy to see that when �→0, the Mermin
function reproduces the RPA one.

III. FULL CONSERVING DIELECTRIC FUNCTION

Mermin dielectric function violates the two remaining
conservation laws, momentum, and energy, thus we need to
introduce a model: the one-component system of electrons
whereby electrons are only scattered by other electrons. Con-
sequently the dynamics of such scattering events are con-
strained by all the conservation laws. The one-component
model has the additional virtue of allowing us to calculate

dynamical local field corrections of the dielectric function
arising entirely from electron-electron correlation effects
�43�. Here, the expression for the FCDF is obtained by an
extension of the relaxation-time approximation �44�

�FCDF�k,�� = 1 + V�k�
C0 + E

1 + F
, �6�

where

E = � C2

�i/� − 1
�C2B0 − C0B2

D4B0 − D2B2

and

F =
i�

� + i�

D2C2 − D4C0 −

i��C2

k2ne
�C2B0 − C0B2�

D4B0 − D2B2
− 1�

+
i��C0

k2ne
�7�

are the conserving damping corrections.
Bn is the nth momentum of the integrand of the static

Lindhard polarizability function,

Bn�k� =
2

�2��3� d3p�p�n
f�k� + k��� − f�k���

Ek�+k�� − Ek��

and related dynamic functions

Cn�k,�� =
2

�2��3� d3p�p�n
f�k� + k��� − f�k���

� + i� − �Ek�+k�� − Ek���

and

Dn�k,�� =
i�Cn − �Bn

� + i�
.

From the general form of Eq. �6� we can obtain the other
models revised in this work. The RPA dielectric function, Eq.
�1�, corresponds to the choices E=0, F=0 and �→0; when �
is not zero we get the damped RPA one. The Mermin dielec-
tric function, Eq. �5�, is retrieved for E=0, nonzero � and

F =
− i�

� + i�
�1 +

C0

B0
� .

Finally the FCDF is given by Eq. �6� with nonzero �.
To check the reliability of our model at any degeneracy,

we can calculate the real and imaginary parts of the dielectric
functions for a plasma at any degeneracy. For example we
choose T=10 eV and ne=1023 cm−3, i.e., with degeneracy
parameter D=0.785, see Fig. 1. Solid lines represent RPA
dielectric function from Eq. �3�. To include electron-electron
collisions in the calculations, we need the exact relaxation
frequency, �=0.252 �p, where �p=	4�ne is the plasma fre-
quency. This value is obtained from �41� regarding only
electron-electron collisions. When we consider the electron
collisions in the relaxation-time approximation �RTA� dielec-
tric function, the real and imaginary values are damped, but
we do not recover the same RPA results in real case in the
static limit, �→0. To resolve this issue, we can use the
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Mermin DF. In this case the values are less damped but we
recover same results as in the RPA case for the static limit.
But we know that the Mermin DF only conserves the number
density violating the two remaining conservation laws. If we
consider three conservation laws, we expect an important
variation of all values approaching the RPA values. It is not
surprising that as we include more conservation laws the
behavior of the DFs resembles more closely to the RPA, a
model where all the conservation laws are enforced.

IV. PROTON STOPPING POWER

For proton energy-loss calculations, it is worth defining
the energy-loss function �ELF�

Im� − 1

�x�k,��� , �8�

where �x�k ,�� is any of the dielectric functions stated before.
Once we have calculated the plasma energy-loss function,

which includes its electron-electron collisions, we can esti-
mate the energy loss by a proton that traverses our plasma.
This energy loss will be mostly due to proton interaction
with the plasma electrons. To calculate this electronic energy
loss we use dielectric formalism. In the dielectric formalism,
we can determine the energy loss by the electronic stopping,
defined as the electronic energy loss per path unit, Se
=dE /dx. The formula to calculate the electronic stopping for
a pointlike ion with charge Z traveling with constant velocity
v through a plasma is very well known �9,10�

Se�v� =
2Z2

�v2�
0

� dk

k
�

0

kv

d�� Im� − 1

�x�k,��� , �9�

which depends on the plasma only through its Elf. Then, we
can compare the electronic stopping that results from the
different DLFC functions for plasmas at any degeneracy.

Next figures represent proton electronic stopping for dif-
ferent plasma degeneracies and different dielectric functions,
normalized to S0= �ZkF�2, as a function of its velocity, nor-
malized to the plasma electron thermal velocity, vth=	kBT.
All stopping calculations are contrasted with Bethe formula
at high velocities to check them.

The first case analyzed is a plasma with the same tem-
perature and electronic density values as in Fig. 1, these fea-
tures correspond to a partially degenerate plasma, D=0.785,
see Fig. 2. Solid line corresponds to the calculation with the
RPA dielectric function, i.e., not considering target electron-
electron collisions, Eq. �3�. Dashed line is the result consid-
ering the electron collisions through the Mermin dielectric
function, Eq. �5� and dotted line refers to the result consid-
ering the electron collisions through the full conserving di-
electric function, Eq. �6�. This plasma has a large enough
collision frequency, �=0.252 �p, to discriminate between the
various dielectric functions. When target electron collisions
are taken into account the stopping values decrease a great
deal. Then if we include momentum and energy conservation
laws in the dielectric function, FCDF, the result becomes
similar, but a bit larger, than in the RPA model, where every
conservation law is enforced.

To check the reliability of our model at any degeneracy,
we can repeat the calculation of the stopping of the former
dielectric functions for other plasma parameters. First, we
examine a degenerate plasma with T=0.056 eV and ne=6
	1022 cm−3, i.e., with degeneracy parameter D=99.727, see
Fig. 3. As we see all results look very similar, this is due to
a rather small relaxation frequency, �=0.039 �p. Then, there
are no large discrepancies among dielectric functions. But
the behavior is the same as in the partially degenerate case;
when we care for collisions with the Mermin dielectric func-
tion, the stopping values are slightly damped. On the other
hand, when momentum and energy conservation laws are

FIG. 1. �Color online� Real and imaginary parts of different
dielectric functions �DF� as a function of � /EF for a partially de-
generate plasma, T=10 eV and ne=1023 cm−3 �D=0.785�. The
wave vector is k /kF=0.2 and the finite relaxation frequency is �
=0.252 �p.
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FIG. 2. �Color online� Proton electronic stopping, as a function
of its velocity, normalized to S0= �ZkF�2. The plasma target is the
same as in Fig. 1. Solid line corresponds to the result with RPA DF,
dashed line is the one with Mermin DF and dotted line is the one
with FCDF. Symbols feature Bethe formula at high velocities.
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included in the full conserving dielectric function these val-
ues feature the RPA ones as in the partially degenerate case.

Finally, we study the stopping using the same dielectric
functions as before but this time for a nondegenerate plasma,
see Fig. 4. The plasma parameters are T=1 eV and ne=2
	1018 cm−3, with degeneracy parameter D=5.8	10−3. In
this case the relaxation frequency is even small than for the
degenerate case, �=2	10−3 �p, so we expect minimal dis-
crepancies among the calculations with different dielectric
functions. Using Mermin dielectric function results in a re-
mote relaxation of the stopping values while using the FCDF
results in a similar, or a little bit higher, values than in the
RPA case.

V. CONCLUSION

In conclusion, the first thing we can say it is that we have
been able to calculate a dielectric function which includes
the three conservation laws �density, momentum, and en-
ergy� when we take into account plasma electron-electron
collisions for plasmas at any degeneracy. This full conserv-
ing dielectric function reproduces the former very well
known dielectric functions stated in the bibliography, the
RPA, and Mermin ones, which confirms our outcome.

Then we have applied this full conserving dielectric func-
tion to the determination of the proton stopping power in

plasmas at any degeneracy. This estimation has been com-
pared with the same calculation derived from other dielectric
functions. Discrepancies in the proton stopping power calcu-
lation are not very relevant if the plasma collision frequency
is not high enough. We have seen that only in the partially
degenerate plasma, D=0.785, the collision frequency is suf-
ficiently large to produce important variations in the stopping
calculation. These variations are around 10% between RPA
values and the Mermin ones, and around by 2% between the
RPA ones and FCDF ones at maximum stopping value. It is
not surprising that as we consider more conservation laws
the behavior of the dielectric functions yields back the RPA,
a model with every conservation law enforced. Even though
discrepancies for degenerate and nondegenerate cases are not
very relevant, they follow the same behavior as for the par-
tially degenerate case. Then we can assert that variations do
not depend on the plasma degeneracy; but they essentially
rely on value of the plasma collision frequency.
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