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Ferrofluids are suspensions of magnetic nanoparticles which respond to imposed magnetic fields by chang-
ing their viscosity without losing their fluidity. Prior work on modeling the behavior of ferrofluids has focused
on using phenomenological suspension-scale continuum equations. A disadvantage of this approach is the
controversy surrounding the equation describing the rate of change of the ferrofluid magnetization, the so-
called magnetization relaxation equation. In this contribution the viscosity of dilute suspensions of spherical
magnetic nanoparticles suspended in a Newtonian fluid and under applied shear and constant magnetic fields is
studied through rotational Brownian dynamics simulations. Simulation results are compared with the predic-
tions of suspension-scale models based on three magnetization relaxation equations. Excellent agreement is
observed between simulation results and the predictions of an equation due to Martsenyuk, Raikher, and
Shliomis. Good qualitative agreement is observed with predictions of other equations, although these models
fail to accurately predict the magnitude and shear rate dependence of the magnetic-field-dependent effective
viscosity. Finally, simulation results over a wide range of conditions are collapsed into master curves using a
Mason number defined based on the balance of hydrodynamic and magnetic torques.
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of magnetic nano-
particles that exhibit normal liquid behavior in the absence of
magnetic fields, but respond to imposed magnetic fields by
changing their viscosity without loss of fluidity. In a suspen-
sion of magnetic particles with particle-locked magnetic di-
pole moments under the influence of a shear flow field the
particles will rotate with their axes of rotation parallel to the
vorticity of the flow �1�. As long as there is no external
magnetic field and the particle concentration is not too high,
the properties of the suspension are close to the properties of
the suspending liquid, and the viscosity satisfies the formula
obtained by Einstein �2�

� = �0�1 + 5
2 �̃� . �1�

Here �0 stands for the viscosity of the carrier liquid, � stands
for the viscosity of the suspension in the absence of a mag-
netic field, and �̃ denotes the volume fraction of all sus-
pended materials. If a magnetic field is applied to the sus-
pension the particles will rotate relative to the fluid resulting
in a change in viscosity, and the Einstein result is no longer
applicable. The increase in viscosity due to the magnetic
field is often termed the rotational viscosity or magnetovis-
cosity of the fluid.

The first experimental report of changes in viscosity due
to a magnetic field was published by Rosensweig et al. in
1969 �3�, who carried out experiments over a wide range of
variables such as solvent viscosity, ferric induction, particle
diameter, temperature, applied field, shear rate, and number
concentration. They observed viscosity increments in ferrof-
luids under shear and magnetic fields. The viscosity of the

fluid in a magnetic field was also estimated by dimensional
analysis and verified experimentally. Subsequently McTague
�4� described the magnetoviscosity of a highly dilute colloi-
dal suspension of cobalt particles in a Hagen-Poiseuille flow.

Suspension-scale models to describe the effect of mag-
netic fields on the viscosity of ferrofluids have been devel-
oped by Shliomis �Sh� �5,6�, Martsenyuk et al. �7�, Felderhof
�8�, and others �9,10�. These models often differ in the as-
sumptions made for the so-called magnetization relaxation
equation �5–8,10,11�, underscoring the controversy found in
the macroscopic description of ferrofluid flow, even in the
infinitely dilute limit. The most commonly used magnetiza-
tion equation was developed by Shliomis in 1972 �5�. Shlio-
mis’ analysis stems from the use of a macroscopic ad hoc
phenomenological magnetization equation obtained as a
modification of the Debye relaxation equation and is given
by

dM

dt
= � � M −

1

�
�M − M0� −

1

6��
M � �M � H� . �2�

Here, M stands for the ferrofluid magnetization under the
magnetic field H and the flow vorticity �= 1

2 � �v. In Eq.
�2� �B=3�V /kBT stands for the characteristic Brownian re-
laxation time of rotational particle diffusion, since the par-
ticles are assumed to possess particle-locked magnetic di-
poles. At equilibrium in a stationary field, M0 is described
well by the Langevin function

M0 = nmL���
H

H
, � =

mH

kBT
, L��� = coth � − �−1, �3�

where m is the magnetic dipole moment of a single particle,
n is the number density of the particles, and � is the Lange-
vin parameter. Considering rotational motion of the particles
relative to the carrier liquid and Eq. �3�, Shliomis derived an
equation for the rotational viscosity in a planar Poiseuille or
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Couette flow under the influence of a constant uniform mag-
netic field. The result is

�r = 1
4��M0H , �4�

where ��=2�B / �2+�L���� is the relaxation time of the
transverse �to the field� component of the magnetization. Ac-
cording to Shliomis �5�, in the limit of low shear rate and
short magnetization relaxation time, ��B�1, the rotational
viscosity is given by

�r��� =
3

2
��0

� − tanh �

� + tanh �
sin2 � , �5�

where � is the angle between field and vorticity.
Shortly thereafter, Martsenyuk, Raikher, and Shliomis

�MRSh� �7� proposed another magnetization equation de-
rived microscopically from the Fokker-Planck equation.
They employed for this purpose an effective-field method
which results in closure of the first moment of magnetiza-
tion. The MRSh magnetization equation is then

dM

dt
= � � M −

H�H · �M − M0��
��H2 −

H � �M � H�
��H2 ,

�6�

where �� =d ln L��� /d ln � and ��= �2L��� / ��−L������ are
the parallel and transverse relaxation times. Using Shliomis’
definition for the rotational viscosity �Eq. �4��, Martsenyuk
et al. �7� obtained for the rotational viscosity

�r��� =
3

2
��

�L2���
� − L���

. �7�

Tsebers �12� compared the Sh�72 and MRSh equations
using numerical simulations of the Brownian motion of fer-
romagnetic particles to study the field dependence of the
magnetization relaxation time. These simulations indicated
that the MRSh equation provides an excellent description of
the dynamics of fluid magnetization in the absence of shear.
Although this work was an important step in evaluating these
equations, further work is needed to understand the effect of
shear and compare predictions for the magnetoviscosity for
both equations.

Several years later Shliomis �6� proposed yet another
magnetization equation derived from irreversible thermody-
namics and employed it in the calculation of the rotational
viscosity in a magnetic field. This third magnetization equa-
tion is

dHe

dt
= � � He −

1

�
�He − H� −

1

6��
He � �M � H� . �8�

In Eq. �10� the effective field He is that corresponding to the
nonequilibrium magnetization, obtained from the inverse
Langevin function. For low field strength, Eq. �8� predicts
the same dependence, described by Eq. �5�, of rotational vis-
cosity on the magnetic field strength as Eq. �2�.

It will be seen in the simulations discussed below that the
shear rate 	̇, parametrized through the rotational Péclet num-
ber Per= 	̇ /Dr, where Dr is the rotational diffusivity of the
magnetic particles, has a significant effect on the magneto-

viscosity. Hence, it is important to know the predictions of
the above mentioned relaxation equations for the shear rate
dependence of the magnetoviscosity. In order to obtain the
shear rate dependence of the rotational viscosity predicted by
the various magnetization equations, it is convenient to pass
from the fields H and He to their nondimensional values of �
and 
. According to Shliomis �6�, both Eqs. �2� and �8� admit
a steady solution in which the effective field tracks the true
field with lag angle 	. The dependence of the effective field,

 and 	, and true field � on �� for Eq. �2� is given by

��2 − 
2 =
2���


2� + 
2L�
�
, cos 	 =




�
. �9�

Taking into consideration Eqs. �4� and �9�, the rotational vis-
cosity is then

�r =
3

2
��


2L���
2� + 
2L�
�

. �10�

Similarly for the MRSh equation �Eq. �6��, the effective field

 and field � are related by

��2 − 
2 =
2��
L�
�

 − L�
�

, cos 	 =



�
, �11�

which results in the following expression for the rotational
viscosity:

�r =
3

2
��


L2�
�

 − L�
�

. �12�

Finally, for the third relaxation equation �Eq. �8��, the effec-
tive field 
 and field � are related by

��2 − 
2 =
2��


2 + 
L�
�
, cos 	 =




�
, �13�

which results in

�r =
3

2
��


L�
�
2 + 
L�
�

. �14�

Several researchers �13–17� have experimentally investi-
gated the rheological properties of ferrofluids using rota-
tional rheometers. Most of these studies compared experi-
mental results with theoretical models of the magnetic
viscosity �17–20�. For example, Patel et al. �21� compared
the viscosity of a magnetic fluid obtained experimentally
with the MRSh and Felderhof �8� magnetoviscosity expres-
sions. However, in contrast with most analyses, in the work
of Patel et al. the magnetic field was applied perpendicular to
the axis of the capillary viscometer; hence, the direction of
the field was not uniformly perpendicular to the vorticity of
the flow. In analyzing their data, Patel et al. assumed that the
magnetoviscosity depends on the angle � between the vor-
ticity and magnetic field according to Eq. �5�, which is with
a correction factor of sin2 �, and used this correction factor
to compare the predictions of Sh�72, MRSh, and Felderhof
to their measurements using a capillary tube. Note that al-
though the sin2 � dependence in Eq. �5� for the Sh�72 mag-
netization relaxation equation was derived analytically, this
result is only applicable for small fields and shear rates, and
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the predicted sin2 � is not necessarily applicable for the other
equations tested by Patel et al. Whether this assumed depen-
dence is correct is subject to further inquiry and is discussed
below.

Because ferrofluids are opaque, measurement of bulk flow
profiles is challenging �22,23�. On the other hand, there are
no methods to measure the average rate of spin of the par-
ticles �the so-called spin velocity�. In addition, it is not al-
ways possible to orient the direction of the applied field uni-
formly in a direction that is perpendicular or parallel to the
vorticity of the flow. Also, most ferrofluids used in experi-
ments contain high particle concentrations, resulting in
particle-particle magnetic interactions such as chaining, the
effects of which are not captured by the preceding theories.
Finally, because most ferrofluids consist of nanoparticles sus-
pended in low-viscosity carrier fluids, the shear rates typi-
cally obtained in experiments are not sufficient to explore the
full shear rate dependence predicted by theory. The preced-
ing experimental limitations make direct particle-scale simu-
lations an attractive tool to improve the understanding of the
macroscopic behavior of dilute ferrofluids, to explore the ap-
plicability and limitations of suspension-scale governing and
constitutive equations, and to develop new applications.

The rheological properties of ferrofluids have been stud-
ied by numerical simulations such as in the work of
Morimoto et al. �24�, who studied the so-called negative vis-
cosity effect predicted theoretically by Shliomis and Moro-
zov �25�. Morimoto et al. studied this effect in a two-
dimensional magnetic fluid composed of disklike particles
subjected to shear flow and alternating magnetic fields. They
found that the rotational viscosity is high when the frequency
of the magnetic field is low, and it becomes negative in an
intermediate frequency range. Satoh and Ozaki studied the
influence of the magnetic field strength, shear rate, and rota-
tional Brownian motion on transport coefficients such as vis-
cosity and diffusivity in dilute suspensions of rodlike �26�
and spherocylinder �27� particles. The results in both cases
show that the orientation distribution is dependent on the
relative ratio of magnetic field and shear rate. Sánchez and
Rinaldi �28� used rotational Brownian dynamics simulations
to study the rheological properties of ellipsoidal particles in
magnetic and shear flow fields. They found that ellipsoidal
particles show a significant effect of aspect ratio on the in-
trinsic magnetoviscosity of the suspension. In addition, they
also found that it is possible to fit the data for ellipsoids to a
master curve by defining an effective Péclet number Per,ef f
=Per�Dr,max /Dr,ef f�, where Dr,ef f is obtained from averaging
the rotational diffusion tensor Dr� around the magnetic axis of
the particle. More recently, Sánchez and Rinaldi �29� used
Brownian dynamics simulations to study the effect of alter-
nating and rotating magnetic fields on the viscosity of mag-
netic nanoparticle suspensions. These simulations demon-
strated that the so-called negative viscosity effect is more
pronounced under the application of rotating magnetic fields
when the field corotates with the vorticity of the flow.

The purpose of this contribution is to offer additional in-
sight into ferrohydrodynamics and the validity of the various
magnetization relaxation equations in describing the so-
called magnetoviscosity. In the present work we study the
intrinsic magnetoviscosity of a magnetic fluid composed of

noninteracting spherical permanently magnetized particles
and subjected to a magnetic field and shear flow by Brown-
ian dynamics simulations and compare the results with pre-
dictions of continuum level models. We also study the effect
of the angle between the magnetic field and the vorticity on
the magnetoviscosity. Finally, simulation results over a wide
range of conditions are collapsed into master curves, which
provide insight into the scaling laws relating magnetoviscos-
ity, magnetic field strength, and shear rate, introducing a ro-
tational Mason number. In Sec. II we introduce our model
and magnetoviscosity calculation, in Sec. III we discuss the
results obtained, and in Sec. IV we present our concluding
remarks.

II. ROTATIONAL BROWNIAN DYNAMICS SIMULATIONS

A. Algorithm formulation

Rotational Brownian dynamics simulations are based on
the integration of the stochastic angular momentum equation
in a way to obtain the orientation of each particle. There are
three kinds of torques acting on the particle: Th due to hy-
drodynamic effects, Tm due to magnetic effects, and TB due
to Brownian motion. Because inertia is negligible for the
usual particle size in ferrofluids, the torque balance that gov-
erns the rotational motion of the particles is

Th� + Tm� + Tb� = 0 . �15�

Here, the prime indicates a vector with respect to particle-
locked coordinates. The torque due to hydrodynamic effects
is given by

Th� = − �0�Kr��� − 1/2 � � v��� . �16�

Here, �0 is the viscosity of the fluid carrier, Kr=8�r3 the
hydrodynamic rotational resistance coefficient, and �� and
1 /2� �v� are the angular velocities of the particle and the
fluid, respectively. The magnetic torque is given by

Tm� = �0�m� � H�� , �17�

where �0 is the permeability of free space and H�=A ·H is
the applied magnetic field, transformed to the body fixed axis
using the transformation matrix A, which is related to the
Euler parameters by �30�

A = 	e0
2 + e1

2 − e2
2 − e3

2 2�e1e2 + e0e3� 2�e1e3 + e0e2�
2�e1e2 − e0e3� e0

2 − e1
2 + e2

2 − e3
2 2�e3e2 + e0e1�

2�e1e3 + e0e2� 2�e3e2 − e0e1� e0
2 − e1

2 − e2
2 − e3

2 
 .

�18�

In order to reduce the number of variables in the angular
momentum equation, time was nondimensionalized with re-
spect to the rotational diffusion coefficient Dr=kBT��0Kr�−1,
and the vector variables were nondimensionalized with re-
spect to their corresponding magnitudes, as explained in

prior work �28�. Setting d�̃�=�̃�dt̃, where d�̃� is the infini-
tesimal rotation vector, integrating from time t̃ to t̃+t̃ using
a first-order forward Euler method, and applying the
fluctuation-dissipation theorem to the Brownian term �31�,
we obtain
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�̃� = ���̃� � H̃��t̃ − Per �̃ f�t̃ + w̃�. �19�

The vector w� is a random vector which follows a Gaussian
distribution with mean and covariance given by

�w̃i�� = 0, �w̃i�w̃i�� = It̃ . �20�

The algorithm proceeds from a starting configuration by cal-
culating the change in orientation at each time step. After
each time step the quaternion parameters of each particle are
normalized. All runs were performed starting from a random
configuration, using 105 noninteracting particles, a time step
of t̃=0.01, Langevin parameters of 0.1���100, and di-
mensionless shear rates of 0.1�Per�100. Angles between
the magnetic field and vorticity varied between 0���� /2.

B. Magnetoviscosity Calculation

In our simulations the magnetic dipole moment of the
particle �� is directed along the z� axis, the simple shear
flow is along the y axis, and the magnetic field H may have
components along the x and z axes, according to the pre-
scribed angle between field and vorticity. If the shear rate is
denoted by 	̇, then the unperturbed flow velocity v and the
vorticity of the fluid � f are given by

v = 	̇ziy, � f = − 1
2 	̇ix. �21�

The apparent viscosity of the suspension due to the antisym-
metric part of the viscous stress tensor is given by
�zy

m =�zy
m / 	̇, which is referred to as the magnetoviscosity of

the suspension. For a dilute suspension, the intrinsic magne-
toviscosity ��zy

m � is defined as

��zy
m � = lim

�→0

�zy
m

��0
. �22�

Using the transformation matrix the magnetoviscosity equa-
tion is expressed in terms of the quaternion parameters. The
resulting equation is

��zy
m � = − 3

�

Per
�2�e2e3 − e0e1�H̃z�zy , �23�

regardless of the angle between the magnetic field and vor-
ticity.

III. RESULTS

A. Comparison with continuum level models

Figure 1 shows the intrinsic magnetoviscosity of a sus-
pension of spherical particles as a function of the Langevin
parameter � and for different values of the rotational Péclet
number �32�. At high values of � the intrinsic magnetovis-
cosity approaches a saturation value, indicating that the mag-
netic dipole moments of the particles are aligned with the
magnetic field due to the preponderance of the magnetic
torque over the Brownian and hydrodynamic torques. More-
over, the simulations do not predict a hysteresis of the mag-
netoviscosity at high shear and high field as calculated by
Shliomis �5� and He et al. �33� using the ferrohydrodynamics

equations and the Sh�72 magnetization relaxation equation.
Now we proceed to comparing the predictions for the

magnetoviscosity of the various magnetization relaxation
equations to the results of our simulations. In the case of
Per�4, corresponding to ���1 in Shliomis and MRSh’s
analyses ���=Per /4�, Eq. �7�, obtained from the Sh�72 and
Sh�01 equations, agrees with results obtained from our simu-
lations at low and high �’s but deviates from our results at
intermediate values of �, as shown in Fig. 2. On the other
hand, Eq. �9�, obtained using the MRSh magnetization equa-
tion, is in excellent agreement with our results over the
whole range of �, which indicates that the introduction of the
concept of an effective field is a good approximation to the
behavior of dilute ferrofluids.

When the ferrofluid is subjected to a sufficiently large
shear rate, ���1, the flow induces demagnetization since
the magnetic particles tend to be rotated out of alignment
with the magnetic field. Formally, this effect results in de-
creasing the parameter 
 determined by Eqs. �11�, �13�, and
�15�.

Results for different values of �� for the Sh�72 equation
�Eq. �12��, the MRSh equation �Eq. �14��, and the Sh�01
equation �Eq. �16�� are also shown in Fig. 2, compared with
our simulation results. As seen from the figure, the higher the
shear rate the larger the discrepancy between viscosity values
predicted by the Sh�72 and Sh�01 equations and our results.
On the other hand, the MRSh equation is in excellent agree-
ment with our results under all conditions tested.

One might argue that for the commonly used low-
viscosity ferrofluids it is difficult to achieve shear rates suf-
ficient to see the effects of Fig. 2; however, this is not always
the case. High-viscosity ferrofluids can be prepared for
which the shear rate range typically accessible in rheometers
should be sufficient to see these effects. More importantly
and practically, ferrofluids are applied in fluid bearings such
as in hard drive shafts. In such applications very high shear
rates can be experienced by the ferrofluid. For example, in
the work of Miwa et al. �34� ferrofluids are subjected to

FIG. 1. Intrinsic magnetoviscosity of an infinitely dilute suspen-
sion of spherical particles with embedded dipoles as a function of
the dimensionless magnetic field magnitude �, for different values
of the dimensionless shear rate Per.
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nominal shear rates as high as 108 s−1. For a typical ferrof-
luid with 10-nm-diameter nanoparticles and a base fluid vis-
cosity of 10 cP this would correspond to a rotational Péclet
number greater than 1000. Finally, the important point of the
result of Fig. 2 is the demonstration that of the three magne-
tization relaxation equations being evaluated here, it is only
the MRSh equation which yields results in quantitative
agreement with direct simulations of the rotational dynamics
of noninteracting Brownian magnetic nanoparticles over a
wide range of values of the shear rate and magnetic field
strength. Sh�72 and Sh�01 only yield results in qualitative
agreement with the direct simulations. We note further that
although the Sh�01 equation seems to be in better agreement
with our simulations than the Sh�72 equation, the Sh�01
magnetization relaxation equation fails to correctly predict
the relaxation dynamics of a ferrofluid from an applied equi-
librium magnetic field, as shown in the Appendix.

Figure 3 shows the intrinsic magnetoviscosity of the sus-
pension as a function of the magnetic field for different val-
ues of the angle � between the magnetic field and vorticity.
Clearly, the factor sin2 � in Eq. �5� is not uniformly valid.
This indicates, for example, that in the work of Patel et al.
�21� the assumed relationship between the angle � and the
magnetoviscosity is incorrect, except for very low or very
high magnetic fields and shear rates. The fact that the often
assumed sin2 � dependence of the magnetoviscosity on the
angle � is incorrect has important implications for experi-
ments aimed at determining the magnetic-field-dependent
rheology of ferrofluids, as it indicates that experiments must
be carried under conditions such that the vorticity and mag-
netic field are perpendicular throughout the sample. This
constraint is particularly important if accurate determinations
are desired under moderate magnetic fields and shear rates.

FIG. 2. Intrinsic magnetoviscosity as a function of the dimensionless magnetic field magnitude �, for different values of the dimension-
less shear rate Per, compared with the predictions of the Sh�72, Sh�01, and MRSh magnetization relaxation equations.

FIG. 3. Intrinsic magnetoviscosity normalized with respect to sin2 � as a function of the dimensionless magnetic field magnitude �, for
different values of the dimensionless shear rate Per and of the angle � between the magnetic field and vorticity.
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B. Scaling of the magnetoviscosity using a Torque-based
Mason number

As has been seen above, our direct simulations of the
rotational dynamics of magnetic nanoparticles in shear and
magnetic fields demonstrate that the continuum equations in-
cluding the MRSh magnetization relaxation equation ad-
equately describe the shear rate and magnetic field depen-
dence of the magnetoviscosity of dilute ferrofluids. Another
approach to the interpretation of the shear and magnetic field
dependences of the viscosity of ferrofluids is the use of char-
acteristic dimensionless parameters that capture the basic
physics of the phenomena. In the closely related field of
magnetorheological fluids, recent work has demonstrated
that magnetorheological measurements over a wide range of
conditions can be collapsed into master curves through the
introduction of an appropriately defined Mason number �35�.
This approach has also been adopted with respect to inverse
ferrofluids �36� and magnetite-based ferrofluids �14,37�. In
all these cases the working hypothesis is that the shear and
magnetic field dependences of the viscosity of the suspen-
sion arise due to chain formation, with the magnetic field
promoting chain formation and the shear field tending to
destroy these chains. In these cases the particles are magne-
tizable; that is, their magnetic dipole moments are aligned
with the local magnetic field and rotate freely within the
particle. Chains form because of dipole-dipole interactions
pulling particles together such that their dipoles align end to
end. On the other hand, the shear field exerts a hydrody-
namic force tending to pull the particles apart. On the basis
of this balance of forces the Mason number is defined as

Mn 
F	̇

FH
, �24�

where F	̇ is the hydrodynamic force due to the shear and FH
is the magnetic force between dipoles. Using this definition
of the Mason number the following expression is obtained
�34,38,39�:

Mn =
�0	̇

2�0��2H0
2 , �25�

where �= ��−�0� / ��0+2���1 is the magnetic contrast fac-
tor.

Although the Mason number defined according to Eqs.
�24� and �25� has been appropriate for magnetorheological
fluids and semidilute to concentrated ferrofluids composed of
magnetic nanoparticles, it should be clear that it cannot be
suitable to describe the magnetic field and shear dependences
of the viscosity of infinitely dilute ferrofluids consisting of
suspensions of nanoparticles with permanent magnetic di-
poles �i.e., Brownian ferrofluids�, for which Eqs. �5� and �7�
apply. This is because in the infinitely dilute limit chains
cannot form. However, as will be shown below, the magnetic
field and shear dependences of the viscosity of these fluids
can be adequately described using a Mason number defined
as the ratio of hydrodynamic and magnetic torques on the
particles.

For the following it will make more sense to recast the
results shown in Fig. 1 as intrinsic magnetoviscosity as a

function of dimensionless shear rate Per. This is shown in
Fig. 4, wherein it is seen that the intrinsic magnetoviscosity
for low Per has a plateau value which is a function of the
magnetic field strength, parametrized by �. With increasing
Per the intrinsic magnetoviscosity is seen to decrease, that is,
the fluid shear thins. It is seen that the critical Per for shear
thinning is a function of �; however, the curves for each �
have similar shape, suggesting that an appropriate scale may
exist that collapses the data. Here, we show how this can be
done using a Mason number defined as the ratio of magnetic
to hydrodynamic torques on the particles.

Figure 5 illustrates the orientation distribution of the mag-
netic dipoles for a series of simulations at a constant value of
the parameter �. The value of �=30 was chosen as this
produces a shaper distribution around an average orientation.
It is seen that as Per increases from 0.1 to 60 the average
orientation of the particles increases from an angle of almost
0 to close to 90 with respect to the direction of the magnetic
field. This range of values of Per correspond to the plateau

FIG. 4. Intrinsic magnetoviscosity of a suspension of spherical
particles as a function of rotational Péclet number for different val-
ues of the Langevin parameter

FIG. 5. �Color online� Orientation distributions of the magnetic
dipole moments of the magnetic particles of �a� Per=1.0, �b�
Per=20.0, �c� Per=40.0, �d� Per=50.0, �e� Per=60, and �f�
Per=75 and �=30.0. Each dot corresponds to a particle with its
magnetic dipole moment aligned with the corresponding point in
the unit sphere. The directions of the magnetic field H and vorticity
of the flow � f are shown.
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region of the intrinsic magnetoviscosity for �=30, shown in
Fig. 4, and to the situation in which the dipoles do not, on
average, rotate due to the balance of hydrodynamic and mag-
netic torques. On the other hand for Per�60 the particles
begin to rotate as the hydrodynamic torque exceeds the mag-
netic torque. This range of values of the Péclet number cor-
respond to the shear thinning region of the intrinsic magne-
toviscosity for �=30, shown in Fig. 4. These observations
suggest that an angle of 90° between the average particle
orientation and the magnetic field corresponds to the critical
condition for which shear thinning occurs in the fluid.

As discussed above, the magnetic field and shear depen-
dences of the viscosity of magnetorheological and chain-
forming ferrofluids can be described using the so-called Ma-
son number. Here, we obtain a Mason number based on the
balance of hydrodynamic and magnetic torques on the par-
ticles. We proceed by recognizing that the source of the mag-
netoviscosity in an infinitely dilute suspension of Brownian
nanoparticles is the hindered rotation arising from the ten-
dency to align the particle’s dipoles with the applied mag-
netic field. Such hindered rotation results in increased energy
dissipation in the fluid surrounding the particles, and hence
in an increased suspension-scale viscosity. The magnetic
torque hindering the particle’s rotation is opposed by the
hydrodynamic torque exerted by the fluid on the particles. A
shear-dependent decrease in the magnetoviscosity of the fer-
rofluid �shear thinning� is observed when the hydrodynamic
torque exceeds the maximum magnetic torque on the par-
ticles, and hence the particles begin to rotate with the sur-
rounding fluid. We define a torque-based Mason number
MnT for this case as

MnT 
T	̇

TH
, �26�

where T	̇ is the hydrodynamic torque exerted by the sur-
rounding fluid on the particle, given by

T	̇ = 8�r3�0
	̇

2
, �27�

and TH is the maximum magnetic torque, corresponding to
the condition when the particle’s dipole is perpendicular to
the applied magnetic field, given by

TH = �0�H . �28�

Substituting Eqs. �27� and �28� in Eq. �26� yields

MnT =
8�r3�0	̇

2�0�H
=

Per

2�
. �29�

Comparing Eqs. �25� and �29� it is interesting that both de-
pend on the relative magnitudes of the shear rate 	̇ and mag-
netic field H. Both Mason numbers are linear in the shear
rate; however, the force-based Mason number in Eq. �25� is
proportional to the inverse square of the magnetic field,
whereas the torque-based Mason number in Eq. �29� is pro-
portional to the inverse of the magnetic field.

The results for the magnetoviscosity for all of our simu-
lations in which the magnetic field and vorticity are perpen-
dicular are plotted as functions of the torque-based Mason

number in Fig. 6. For comparison purposes the predictions of
the MRSh equation are shown as solid lines for selected
values of Per. It is evident from this figure that for each value
of the dimensionless shear rate, Per, the intrinsic magneto-
viscosity is initially constant and equal to 3/2 and then de-
creases as a power law for high values of MnT, wherein
��zy

m �=A MnT
−2, with A being a Per-dependent proportionality

factor. Note that for large values of Per the results collapse
into a single master curve, that is, A eventually asymptotes to
a constant value.

A critical Mason number MnT,crit can be defined to char-
acterize the transition between approximately constant intrin-
sic magnetoviscosity and shear thinning following power-
law behavior. This is done by extrapolating the power-law
region to intercept the line corresponding to ��zy

m �= 3
2 , result-

ing in the relationship

3

2
 A MnT,crit

−2 . �30�

Note that this definition of MnT,crit implies

��zy
m � =

3

2
�MnT,crit

MnT
�2

, �31�

in the shear thinning region, which allows us to determine
the values of MnT,crit.

Figure 7 illustrates the Per dependence of the critical Ma-
son number MnT,crit. There it is seen that the critical Mason
number initially increases linearly with Per but eventually
saturates to a value of 0.85. Interestingly, the calculated val-
ues of MnT,crit follow a curve reminiscent of the Langevin
function, with

MnT,crit � 0.85L�Per� = 0.85�coth Per −
1

Per
� . �32�

Combining Eq. �31� with Eq. �32� yields the as-of-yet ad hoc
expression

FIG. 6. Intrinsic magnetoviscosity as a function of the torque-
based Mason number for various values of the dimensionless shear
rate Per. The solid lines correspond to the predictions of the MRSh
equation for Per=0.25, 0.75, 2, and 75, from left to right.
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��zy
m � � 2.1�L�Per�

MnT
�2

�33�

for the shear thinning region.
Figure 8 shows how Eq. �33� can be used to reduce all of

the simulation results into a single master curve describing
the magnetic field and shear rate dependences of the magne-
toviscosity of dilute ferrofluids, by plotting the intrinsic mag-
netoviscosity as a function of MnT /L�Per�. By combining the
observation that for low MnT the magnetoviscosity is given
by ��zy

m �= 3
2 , whereas for large values of MnT it is given by

Eq. �33� that results in the following correlation for the mag-
netoviscosity over the complete range of MnT and for all
values of Per in the simulations:

��zy
m � =

3/2

1 + 1.4� MnT

L�Per�
�2 . �34�

The predictions of Eq. �34� are shown as a solid line in Fig.
8, showing excellent agreement with all of the simulation
results.

IV. CONCLUSIONS

The rheology of dilute suspensions of spherical magnetic
nanoparticles suspended in a Newtonian fluid and under ap-
plied shear and constant magnetic fields was studied through
rotational Brownian dynamics simulations. For suspensions
of spherical particles, excellent agreement was observed be-
tween predictions of the Martsenyuk, Raikher, and Shliomis
�MRSh� relaxation equation and our direct simulations. The
intrinsic magnetoviscosity calculated from Shliomis’ 1972
equation deviates from the results of our simulations for in-
termediate values of the Langevin parameter. The use of an
approximate phenomenological equation �Sh�72� for the
change in magnetization results in the discrepancies ob-
served. Similarly, the equation obtained from irreversible
thermodynamics, Sh�01, presents good qualitative agreement
with our results, but not quantitative agreement. Further-
more, we note that this equation incorrectly predicts the field
dependence of the relaxation from equilibrium magnetization
of a collection of magnetic dipoles �see the Appendix�;
hence, this equation cannot provide an accurate representa-
tion of the behavior of dilute ferrofluids. Our simulations
also show that the assumed sin2 � dependence of the mag-
netoviscosity on the angle � between the vorticity and the
magnetic field is only valid for low fields and high shear
rates. Finally, it was shown that the magnetoviscosity of di-
lute ferrofluids can be described using a currently defined
rotational Mason number given by MnT=�	̇ /�=Per /2�,
which collapses the simulation results into a single master
curve. According to this analysis, there is a critical ratio of
Per and � for which the suspension becomes shear thinning.
This critical ratio is initially a linear function of Per and then
saturates for high values of Per. Furthermore, in the shear
thinning region the magnetoviscosity is seen to possess
power-law dependence on MnT with an exponent of −2.
Combining these observations yields a correlation for the
calculated magnetoviscosity in the complete simulated MnT
and Per range with the single dimensionless parameter
MnT /L�Per�, where L�Per�=coth Per−1 /Per.
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APPENDIX: PREDICTIONS OF THE VARIOUS
MAGNETIZATION RELAXATION EQUATIONS

FOR THE RELAXATION FROM AN
ARBITRARY EQUILIBRIUM FIELD

Differences between the magnetization relaxation equa-
tions are also manifested in their predictions for the relax-
ation from equilibrium magnetization in a quiescent ferrof-
luid after the external field is suddenly switched off. In that

FIG. 7. Critical Mason number MnT,crit as a function of the
applied dimensionless shear rate Per. The solid line corresponds to
the Langevin function with argument Per, from Eq. �32�.

FIG. 8. Intrinsic magnetoviscosity from all simulations reduced
to a single master curve using the dimensionless parameter
MnT /L�Per�. The solid line corresponds to Eq. �34�.
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case the transient magnetization of the suspension is such
that �=0 and both M and He are always parallel to H.
Under these conditions Eq. �4� reduces to

dM

dt
= −

�M − M0�
�

, �A1�

whereas the MRSh equation �8� and the Sh�01 equation �10�
reduce to

dM

dt
= − �1 −

H

He
�M

�
, �A2�

dHe

dt
= −

�He − H�
�

, �A3�

respectively. These equations were integrated numerically,
and the predicted relaxation is shown in Fig. 9. For Eqs. �29�
and �30� the decay in reduced magnetization follows an
exponential behavior, while Eq. �31� only predicts exponen-
tial behavior in the limit of ��1. Direct solution of the
particle orientational distribution function for the case of
noninteracting particles yields exponential decay regardless
of the magnitude of the initial field �40�, hence indicating
that the Sh�01 equation incorrectly predicts the dynamic re-
sponse of dilute ferrofluids to a step decrease in the magnetic
field strength.
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