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The modeling of buoyancy driven turbulent flows is considered in conjunction with an advanced statistical
turbulence model referred to as the BHR �Besnard-Harlow-Rauenzahn� k-S-a model. The BHR k-S-a model is
focused on variable-density and compressible flows such as Rayleigh-Taylor �RT�, Richtmyer-Meshkov �RM�,
and Kelvin-Helmholtz �KH� driven mixing. The BHR k-S-a turbulence mix model has been implemented in
the RAGE hydro-code, and model constants are evaluated based on analytical self-similar solutions of the model
equations. The results are then compared with a large test database available from experiments and direct
numerical simulations �DNS� of RT, RM, and KH driven mixing. Furthermore, we describe research to
understand how the BHR k-S-a turbulence model operates over a range of moderate to high Reynolds number
buoyancy driven flows, with a goal of placing the modeling of buoyancy driven turbulent flows at the same
level of development as that of single phase shear flows.
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I. INTRODUCTION

Turbulence in complex, high speed, and high Reynolds
number flows has been of intrinsic interest and research
across many fields that include variable-density mixing. In
particular, predictive capabilities for inertial confinement fu-
sion �ICF� have relied on modeling the effects of material
mixing, as well as enhanced momentum and thermal trans-
port, induced by buoyancy driven turbulence. The focus of
our work is to describe multimaterial, compressible,
variable-density turbulence, and mixing in which different
materials may or may not be initially mixed; with emphasis
on flows that include Kelvin-Helmholtz �KH� �1,2�,
Rayleigh-Taylor �RT� �3,4�, and Richtmyer-Meshkov �RM�
Instabilities �5,6�. The potential applications of such flows
range from laser driven ICF, where the mixing of the outer
shell and the inner fluid results in a reduction of neutron
yield �7,8�, to applications such as supernova explosions �9�,
buoyant jets �10�, atmospheric instability associated with
cold air overlaying warm air in the atmosphere �11�, oceanic
overflow problems and also combustion applications where
interaction of a shock wave with a flame results in
deflagration-to-detonation transition �12�. All of the above
applications involve fluid flows that are unsteady, with more
than one material of differing density.

Turbulent mixing induced by buoyancy driven hydrody-
namic instabilities has a number of distinct features com-
pared with classical turbulent flows, that makes modeling of
such flows extremely challenging. In particular, anisotropy
and inhomogeneity resulting from initial and boundary con-

ditions, a preferred direction due to acceleration, presence of
shocks and material discontinuities, as well as baroclinic ef-
fects due to variable-density and vorticity production at ma-
terial interfaces. Turbulence models that attempt to analyze
and characterize these flows attend to issues associated with
initialization of the turbulent field variables, which are con-
sidered as a serious problem for generalized turbulence theo-
ries �13�. Ideally, a good turbulence model should be able to
mimic the early growth phase of the instability, followed by
transition to turbulence, and the fully developed late time
turbulent mixing stage. Traditionally, three different ap-
proaches have been taken when attempting to model buoy-
ancy driven turbulence. The simplest �first� type of model
uses ordinary differential equations for the width of the
RT/RM mixing layer, where the bubble or spike amplitudes
are described by balancing inertia, buoyancy and drag forces
�14–17�, so called “buoyancy-drag” models. However, such
heuristic models have limited utility as they are not readily
extended into two- or three-dimensions, and fail when there
are multiple mixing interfaces whose amplitudes overlap.
Demixing has been investigated �18–20� in a number of
flows. Kucherenko et al. �20� as well as Smeeton and Youngs
�18� accomplished this in RT flows by changing the accel-
eration during the self-similar growth stage of the turbulent
mixing zone. In another example, Stafford �19� achieved un-
stable stratification by heating an initially stably stratified
solution of water over saline solution, and then removed the
heating. Buoyancy forces mixed the two fluids while heating
was taking place, but once removed, a partial demixing was
observed because the two fluids did not completely mix at
the molecular level. Such problems have been addressed by a
second type of models known as the two-fluid model
�21–23�; in which each fluid has a velocity and a mass frac-
tion. In these �two-fluid� models, a body force �gravity� in-
duced different accelerations on each fluid fragment causing
different fluid velocities, and hence, different drag on the
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fluid fragments. Youngs �23,24� refers to this phenomenon as
sifting and thus suggested the use of the two-fluid model to
capture correctly the relative motion of the fluid fragments.
A two-fluid model was deemed necessary, rather than a tur-
bulence model that used a dissipation type gradient approxi-
mation for closure of the triple correlations, to capture the
effects of a counter gradient mass/energy flux. Youngs �25�
used a two-fluid model to investigate late-time turbulent
mixing of RT instability and found good agreement with the
rocket rig experiments �26�. Andrews �27,28� also used a
similar two-fluid model to predict both the RT mixing width
and late-time demixing. The two-fluid model was found to be
necessary as the turbulent mixing layer comprised fragments
of different density fluids, and tracking the individual fluids
was key to predicting the demix process. It should be noted
that the model described by Zhou et al. �17� is a hybrid
model that is based on the buoyancy-drag and the two-scale
concepts �29� and consisted of both the buoyancy drag and
two-equations models. A third type of buoyancy driven tur-
bulence model uses a Reynolds decomposition for a single
field and maintains individual species mass fractions, but as-
signs a single velocity for the mixture �13,30–32�. Such
models incorporate turbulent dissipation and are similar in
complexity to multifluid models. Reasonable agreement with
experiments is readily achieved with calibrated adjustment of
turbulence model constants. Such models are able to handle
multidimensions, multifluids, and variable accelerations;
however, their results are not universal as model “constants”
must be properly calibrated from experiments. In addition,
such a gradient-diffusion based model cannot capture the de-
mix process.

This paper describes validation studies for the single-
point BHR turbulent-mix model. The BHR turbulent-mix
model was introduced �33� as an adaptation of single-point
engineering models for describing fluid flow involving large
variations in density. Evolution equations were developed
from second-order correlations and gradient-diffusion ap-
proximations were applied to close the system of equations.
Using a mass weighted averaged decomposition, the original
BHR model �Ref. �13�, henceforth referred to as BHR92�
included full transport equations for Reynolds stress tensor,
turbulent mass flux, density fluctuations and the dissipation
rate of the turbulence kinetic energy. The starting point for
the BHR92 model was the Navier-Stokes equation, the con-
tinuity equation and the species transport equation. In par-
ticular, the species transport equation employed a Fickian
model for molecular diffusion.

The goal of this paper is to simplify the model equations
presented in BHR92 to a reduced model �henceforth referred
to as the BHR k-S-a� that involve a turbulent kinetic energy,
length scale and mass flux to describe instability-driven �KH,
RT and RM� turbulence accurately. The different types of
instabilities driven by pressure-gradients that are encom-
passed by the equations include RT instability; its shock-
driven counterpart, RM instability; and shear driven instabil-
ity, commonly known as KH instability. The model results
are compared with a large test database available from ex-
periments, and direct numerical simulations of RT, RM, and
KH instabilities. The BHR k-S-a model is unique in the
sense that it is the first effort to include all the three insta-

bilities; i.e., KH, RT and RM. The k-L model of Dimonte and
Tipton �30� does not fare well with KH instabilities. Gregoire
et al. �34� reports the usage of their model only to RM in-
stabilities. The rest of this paper is organized as follows.
Section II describes the governing equations and the model-
ing inherent in BHR k-S-a. In Sec. III, the model equations
are then evaluated based on a similarity solution technique
that serves to baseline the model constants. The BHR k-S-a
model simulations are then compared in Sec. IV with a large
database of experiments and numerical simulations for RT
�16,35,36�, RM �37,38�, and KH �39,40�. Section V closes
the paper with conclusions and future directions of develop-
ment for the BHR model.

II. GOVERNING EQUATIONS AND BHR MODEL
REDUCTIONS

The usual convention of single-point turbulence modeling
decomposes the flow field variables �density, �, velocity, ui,
and pressure, p� into mean and fluctuating quantities using
Reynolds decomposition as

� = �̄ + ��, ui = ui + ui�, p = p̄ + p�, �1�

where the over bar denotes the uniformly weighted ensemble
�time� average part and the prime denotes the fluctuating
part. However, for variable-density flows, a mass-weighted
averaging �Favre decomposition� procedure for the velocity
is used which is defined as

ui = ũi + ui�; where ũi =
�ui

�̄
, �2�

ui� denotes the mass weighted fluctuation with �ui�=0. The
Favre decomposition leads to a conservative form of the
Reynolds stress tensor, Rij, in the averaged momentum equa-
tions, where Rij =�ui�uj�. The mass-weighted average velocity
ũi can be rewritten by applying the Reynolds decomposition
to momentum density �ui as

ũi =
�ui

�̄
= ui +

��ui�

�̄
= ui + ai. �3�

The quantity ai �=��ui� / �̄� is the velocity associated with the
mass-flux relative to a ui frame of reference. A relationship
between ai and ui� can be established by inserting Favre and
Reynolds decomposition into Eq. �5� and ensemble averag-
ing to obtain,

ai = − ui� �4�

and �̄ai is the turbulent mass flux. Another important quan-
tity which appears in the current set of model equations is the
density self correlation, b, defined as

b = − ���1

�
��

. �5�

Alternatively, because: −���1 /���=+��̄−�� /�, then

BANERJEE, GORE, AND ANDREWS PHYSICAL REVIEW E 82, 046309 �2010�

046309-2



b = �̄�1

�
� − 1. �6�

A third useful alternative is

b = − ��� 1

�̄ + ��
−

1

�̄
� = ����2/��̄ , �7�

which implies that b is non-negative and that b�����2 / ��̄�2

at low Atwood number flows, i.e., if ����̄. Based on these
definitions, the generalized Reynolds stress tensor Rij can be
written as

Rij = �ui�uj� = �̄ui�uj� − �̄aiaj + ��ui�uj�. �8�

A set of transport equations for second-order correlations,
namely turbulent mass-flux ��̄ai�, density self correlation
�Eq. �5�� and Reynolds stresses �Eq. �8�� are then derived
from the Navier-Stokes equations. Gradient-type diffusion
approximations developed from mean flow variables are ap-
plied to some, but not all, of the second and higher order
correlations to provide an appropriate closure to the system
of model equations �41–43�. For the purpose of this paper, it
was assumed that the entire flow field is divergence free,
since the applications discussed in this work are turbulent
mixing of incompressible fluids which are driven by either of
KH, RT or RM instabilities. Consequently, the internal en-
ergy equation is not discussed. For the incompressible case
involving only two species, a species transport equation can
be derived directly from conservation of mass equation
�13,33,42�.

A. Equation for turbulence kinetic energy and length scale

In the BHR92 model, a transport equation is derived for
Rij. This transport equation is derived in a rigorous, but un-
closed form, from the Navier-Stokes equations. To construct
a transport equation for Rij, the variables are decomposed
into mean and fluctuating parts using Favre decomposition,
and transport equations from �ui� and ui� are derived. The two
transport equations are multiplied by ui� and �ui�, respec-
tively, and the equations are added and ensemble averaged to
create a transport equation for Rij. Details about this deriva-
tion can be found elsewhere �13,33,44�. In the current work,
instead of transporting the full Reynolds stress tensor Rij, a
transport equation for the turbulent kinetic energy per unit
mass, k, is derived by using the definition: Rnn=2�̄k giving

� �̄k

�t
+

� �̄kũn

�xn
= an

� p̄

�xn
− Rnm

� ũm

�xn
+

�

�xn
��̄�t

�k

�xn
� − �̄� .

�9�

From this transport equation for turbulent kinetic energy, di-
mensional arguments �13,33,42� can be used to establish a
transport equation for the decay of turbulent kinetic energy, �
as

� �̄�

�t
+

� �̄�ũn

�xn
= C3�

�

k
an

� p̄

�xn
− C1�

�

k
Rnm

� ũm

�xn

+ CD�

�

�xn
��̄

k2

�

��

�xn
� − C2��̄

�2

k
. �10�

The k and the � equations have been combined into a trans-
port equation for length scale, S �=k3/2 /�� and the resulting
equation can be written as

� �̄S

�t
+

� �̄Sũn

�xn
=

�

�xn
� �̄�t

��

�S

�xn
� +

S

k
��3

2
− C4�an

� p̄

�xn

− �3

2
− C1�Rnm

� ũm

�xn
	 − C3�̄S

� ũn

�xn

− �3

2
− C2��̄
k . �11�

We have used both Eqs. �10� and �11� in our earlier studies
and have found consistent results. In this work, we choose to
use the S equation due to comparative ease in initialization
and the use of ensuring self-similarity through h�S.

B. Equation for turbulent density-velocity correlation

The BHR92 model also transports the net mass flux ve-
locity, ai, which appears in the mean flow pressure gradient
terms of the transport for Rij, k, �, and S. The transport
equation for ai is derived from the Navier-Stokes equations
in rigorous, but unclosed form, and then closed through mod-
eling. The equation for conservation of mass is multiplied by
u� and the equation for conservation of momentum is multi-
plied by ��. The flow variables are then decomposed into
mean and fluctuating parts, and the equations ensemble av-
eraged �BHR92� to obtain a transport equation for ��u�,
namely,

���ui�

�t
+ ui�

���̄un� + ��ũn + ��un��
�xn

+ ũn��
�ui�

�xn
+ ��un�

� ũi

�x

+ ��un�
�ui�

�t
= − � ��

�̄ + ��
� ��p̄ + p��

�xn
. �12�

The density-pressure correlation can be simplified as

− � � − �̄

�̄ + ��
� ��p̄ + p��

�xn
= ��̄�1

�
� − 1	 � p̄

�xn
+ �̄�1

�
� �p�

�xn

= b
� p̄

�xn
+ �̄�1

�
� �p�

�xn
. �13�

The resulting unmodeled transport equation for ai becomes
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� �̄ai

�t
+

� �̄aiũn

�xn
= b

� P̄

�xi
−

Rin

�̄

� �̄

�xn
+ �̄

�aian

�xn
− �̄an

��ũi − ai�
�xj

+ �̄�v�
�P�

�xi
− v�

�	in�

�xn
� − �̄ui�

�un�

�xi

− �
�

�xn
���ui�un�

�̄
� . �14�

In BHR, a gradient-diffusion approximation is used to model
the triple correlations as

��ui�un� = −
��T

�a

�ai

�xn
. �15�

The modeling of the density-pressure correlation of the ai
equation is split into two parts: the first part corresponds to
the mean flow gradients, and the second part represents a
decay term of ai. With the above modeling assumptions, the
transport equation for ai in the BHR k-S-a model becomes

� �̄ai

�t
+

� �̄aiũn

�xn
= b

� P̄

�xi
−

Rin

�

� �̄

�xn
+ �̄

�aian

�xn
− �̄an

��ũi − ai�
�xn

+
�

�xn
���T

�a

�ai

�xn
� −

Ca1�̄
k

S
ai. �16�

C. Equation for density self-correlation

The density self-correlation, b, is coupled to the principal
driving term in the ai equation �fourth term of RHS of Eq.
�16��. A transport equation for b is derived by using the Rey-
nolds decomposition on the equation for specific volume, 

�=1 /�� derived from the conservation of mass equation as

� 
̄

�t
+ un

� 
̄

�xn
= 
̄

�un

�xn
+ 
�

�un�

�xn
− un�

�
�

�xn
. �17�

Substituting Eq. �5�, an exact transport equation for b is ob-
tained, which on simplification can be written as

�b

�t
+ un

�b

�xn
= −

b + 1

�̄

� �̄an

�xn
− �̄

�un�
�

�xn
. �18�

BHR92 modeled the velocity-specific volume correlation
term �first term on RHS of Eq. �18�� as a gradient-diffusion
term, and the specific-volume-velocity gradient correlation
term was modeled as a dissipation term. The BHR92 b equa-
tion is thus of the form

�b

�t
+ un

�b

�xn
= −

b + 1

�̄

� �̄an

�xn
+

�

�xn
� �̄�t

�b

�b

�xn
� − C1b


k

Sb
b .

�19�

For the current study we assume no interspecies diffusion
�two separate fluids�, so the b equation has no decay term.
Consequently, the b equation is replaced by two-fluid expres-
sion for b �44�,

b =
�1�2��1 − �2�2

�1�2
. �20�

D. Equation for conservation of species

The ensemble average equation for species � inter-
diffusing in a mixture is obtained from conservation of mass
by applying Fick’s law of diffusion with a constant diffusion
coefficient D, and separating the variables into mean and
fluctuating components. The ensemble average unmodeled
equation for the mass fraction of species �, c� is

� �̄c̃�

�t
+

� �̄ũnc̃�

�xn
+

�

�xn
�un�c�� =

�

�xn
��̄D

� c̃�

�xn
�

+
�

�xn
��D

�

�xn
c��� . �21�

Once again, we identify that the last term on the left hand
side of Eq. �24� denotes turbulent diffusion of mass fraction
and can be modeled as follows:

�

�xn
�un�c�� = −

�

�xn
� �̄�t

�c

� c̃�

�xn
� . �22�

Therefore, using the modeled term in �25� and assuming that
molecular diffusivity is negligible, the modeled version for
species is written as

� �̄c̃�

�t
+

� �̄ũnc̃�

�xn
=

�

�xn
� �̄�t

�c

� c̃�

�xn
� . �23�

E. Simplified BHR (k-S-a) model equations

Implementation of Eqs. �9�, �11�, �16�, and �20� in a mul-
tidimensional hydrodynamic code is tedious. Therefore, it is
of interest to simplify the BHR92 model equations; one such
simplification is undertaken in the current work to incorpo-
rate the BHR k-S-a model equations in the RAGE hydrocode
�45�. The 1D BHR model equations solved by RAGE are as
follows:

� �̄

�t
+

� �̄ũ

�z
= 0, �24a�

� �̄ũ

�t
+

� �̄ũ2

�z
= −

�

�z
�p̄ + Rzz� + �̄g , �24b�

� �̄k

�t
+

� �̄kũ

�z
= a

� p̄

�z
− Rzz

� ũ

�z
+

�

�z
��̄�t

�k

�z
� − �̄� , �24c�

� �̄a

�t
+

� �̄aũ

�z
= b

� p̄

�xi
−

Rzz

�̄

� �̄

�z
− Ca1

�̄a
k

S
, �24d�

� �̄S

�t
+

� �̄Sũ

�z
=

S

k
��3

2
− C4�a

� p̄

�z
− �3

2
− C1�Rzz

� ũ

�z
	

− C3�̄S
� ũ

�z
+

�

�z
� �̄�t

��

�S

�z
� − �3

2
− C2��̄
k ,

�24e�
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b =
�1�2��1 − �2�2

�1�2
, �24f�

� �̄c̃�

�t
+

� �̄ũc̃�

�z
=

�

�z
� �̄�t

�c

� c̃�

�z
� ; �t = C�S
k; � = k3/2/S ,

Rij =
2

3
��̄k − 2�̄�t

� ũ

�z
� ; �̄ = �1�1 + �2�2; �1 + �2 = 1.

�24g�

The BHR k-S-a model Eqs. �24a�–�24g� may be considered a
variable-density extension of the more traditional k-� model,
coupled with a modeling methodology suitable for variable-
density flows.

F. About RAGE with mix

RAGE �Radiation Adaptive Grid Eulerian� is a three-
dimensional multimaterial Eulerian radiation hydrodynamics
code developed Los Alamos National Laboratory and SAIC
�Science Applications International Corporation�. RAGE uses
a continuous �in time and space� adaptive-mesh-refinement
�CAMR� algorithm to follow interfaces and shocks, and gra-
dients of physical quantities such as material densities and
temperatures. RAGE incorporates a second-order-accurate
Godunov hydrodynamics scheme, and is a fully compress-
ible code. Here we have set the code to a one-dimensional
Cartesian geometry to mimic both flows considered here. All
materials defined in a multimaterial problem are present in
each cell, and the code conserves mass, momentum and en-
ergy. The transport equations of the BHR k-S-a model �Eq.
�24�� have been implemented in RAGE with K, S, a and c�

being the transported model variables. The mass, momen-
tum, and internal energy in RAGE are then updated by incor-
porating the effects of turbulent diffusion on each quantity
such that

� �̄c�

�t
+ � · ��̄c�ũ� = � · � �̄
t

�c
� c�� ,

� �̄ũ

�t
+ � · ��̄ũũ� = − �p̄ + � · R , �25�

where: �̄c�= � M
V ��

m�

M �=
m�

V ; �
m�

V = �̄; M =total mass and V
=total volume. The current model uses a one-dimensional
validation for KH, RT, and RM instabilities. The initial con-
ditions used in our BHR k-S-a/RAGE simulations are impor-
tant for comparing the model simulations with experimental
or DNS data sets. The current work used initial top-hat pro-
files for k and S. The mass-flux velocity, a, was zero at the
start of the run.

III. EVALUATION OF BHR k-S-a MODEL CONSTANTS

Here we describe a one-dimensional self-similar solution
for the low Atwood number Rayleigh Taylor experiments of
Banerjee et al. �35�. The solution method is similar to the
one used by Andrews �27,28�, Spitz and Haas �46�, Snider

and Andrews �32�. In the low Atwood number gas channel
experiment �47�, two gas streams, one containing air and the
other a helium-air mixture, flow parallel to each other at the
same velocity separated by a thin splitter plate. The streams
meet at the end of the splitter plate leading to formation of an
unstable interface, and thereafter buoyancy driven mixing.
The BHR model equations may be readily simplified to de-
scribe a low At=0.04 air-helium experiment. The mean ver-
tical and horizontal velocities are set to zero in a Galilean
frame moving with the mean velocity �i.e., ū=v̄=0�, and
from the low Atwood hot-wire measurements �35,48�, we
know that ��u��0, and similarly ��v��0. Consequently, the

mass averaged horizontal velocities: ũ= ū+ ��u�
�̄

�0 and ṽ
�0. The mass averaged vertical velocity fluctuation can be
written as a normalized mass flux in the vertical direction:

w̃= w̃+ ��w�
�̄

= ��w�
�̄

=az. The Reynolds stress tensor can be writ-
ten as

R =�
2

3
�̄k +

2

3
�̄�t

�w̃

�z
0 0

0
2

3
�̄k +

2

3
�̄�t

�w̃

�z
0

0 0
2

3
�̄k −

4

3
�̄�t

�w̃

�z

 .

�26�

The model Eqs. �24c�–�24e� thus reduce to

�k

�t
+

��kaz�
�z

=
az

�̄
� � p̄

�z
� −

2k

3

�az

�z
+

4�t

3
� �az

�z
�2

+
�

�z
��t

�k

�z
�

−
k3/2

S
, �27�

�S

�t
+

��Saz�
�z

=
S

k
�3

2
− C4�az

�̄

� p̄

�z
−

2S

3
�3

2
− C1� �az

�z

+
4S�t

3k
�3

2
− C1�� �az

�z
�2

− C3S
�az

�z

+
�

�z
� �t

��

�S

�z
� − �3

2
− C2�
k , �28�

�az

�t
+

�az
2

�z
= b

� p̄

�z
−

2k

3�̄

� �̄

�z
+

4�t

3�̄

�az

�z

� �̄

�z
− Ca1

az

k

S
.

�29�

The species transport equation is recast in terms of density as

��

�t
+

�

�z
�az�̄� =

�

�z
� �t

�t

� �̄

�z
� . �30�

Initial conditions are as follows

at t = 0 for z  0; �̄ = �2, k = 0, S = 0, az = 0,

DEVELOPMENT AND VALIDATION OF A TURBULENT-MIX … PHYSICAL REVIEW E 82, 046309 �2010�

046309-5



at t = 0 for z � 0; �̄ = �1, k = 0, S = 0, az = 0.

Exterior quiescent fluid boundary conditions are applied at
the mixing layer boundary as

for z � hb; �̄ = �2, k = 0, S = 0, az = 0,

for z � − hs; �̄ = �1, k = 0, S = 0, az = 0.

The set of Eqs. �30�–�32� have self-similar solutions using
the similarity variables,

� =
z

t2 ;k�t,z� = t2k̂���;S�t,z� = t2Ŝ���, b�t,z� = b̂���,

�̄�t,z� = �̂���, ay�t,z� = tây��� .

Substituting similarity variables into Eqs. �30�–�32�, the fol-

lowing ordinary differential equations for k̂ , Ŝ and âz are ob-
tained as

2k̂ − 2�
dk̂

d�
+

d�k̂âz�
d�

= âzg −
2k̂

3

dâz

d�
+

4C�Ŝk̂1/2

3

dâz

d�

+ C�

d

d�
�Ŝk̂1/2 dk̂

d�
� −

k̂3/2

Ŝ
, �31�

2Ŝ − 2�
dŜ

d�
+

d�Ŝâz�
d�

=
Ŝâzg

k̂
�3

2
− C4� −

2Ŝ

3
�3

2
− C1�dâz

d�

+
4C�Ŝ2

3k̂1/2
�3

2
− C1��dâz

d�
�2

− C3Ŝ
dâz

d�

+
C�

��

d

d�
�Ŝk̂1/2 dŜ

d�
� − �3

2
− C2�k̂1/2,

�32�

âz − 2�
dâz

d�
+

dâz
2

d�
= bg −

2k̃

3�̄

d�̂

d�
+

4C�Ŝk̂1/2

3�̄

dâz

d�

d�̂

d�

− Ca1
âzk̂

1/2

S̃
. �33�

The equations may be integrated by assuming approximate

profiles chosen to represent k̂ , Ŝ , âz and �̂. Here, we choose to
represent the turbulent kinetic energy and mass flux as ap-
proximated by a parabolic profile, and density within the
mixing layer is approximated by a linear profile �48�. It is
shown later that these profiles are reasonable approximations
to actual profiles obtained from experiments. The approxi-
mate profiles are

k̃ = Ck�1 − �̃2�, S̃ = CS�1 − �̃2�1/2, ã = Ca�1 − �̃2� ,

�̃ = C��̃ + �̃1,

where the length-scale is normalized based on the mixing
half width, Cw=hb,s / t2,

�̃ =
�

Cw
=

z

hb,s

Ck, CS, and Ca are constants. For the linear density profile,
C�=

�2−�1

2 =− ��
2 and �̃1=

�2+�1

2 , where At=
�1−�2

�1+�2
. The self-

similar form of the equations is integrated across the mixing
layer from −1��̃�1 and the constants are calculated from
the algebraic relationships,

4Ck +
Ck

3/2

CS
= Cag +

16

15
C�CSCk

1/2Ca
2, �34�

4CS + �3

2
− C2�Ck

1/2 = �3

2
− C4�CSCag

Ck

+
4

3
�3

2
− C1�C�CS

2Ca
2

Cw
2 Ck

1/2 , �35�

Ca1 =
CS

CaCk
1/2�3

2
Cbg −

2CkC�

3Cw�̄
− 3Ca	 . �36�

The constants C4, C�, Ca1, and Ca2 �see Table I� are evalu-
ated based on measurements of k, a, b, and h from the air-
helium At=0.4 experiments �35,48�. In addition, C1 was set
based on nominal shear layer growth rate, C2 was based on
nominal decay rate in homogeneous turbulence, and �� was
based on the profiles of S from Ristorcelli and Clark �49�.
The BHR k-S-a /RAGE simulations are initialized with rea-
sonable initial values of k0=1 cm2 /s2 and S0=0.1 cm with
top-hat distributions across an initial mixing width for all the
cases. The value of a at the start of the simulation is always
zero. For majority of the RANS type models, the values of
the initial conditions are usually considered to be not impor-
tant for RT and KH. However, we believe that a proper char-
acterization of initial conditions is important for direct com-
parison of the BHR results with KH experiments, RT
experiments and direct numerical simulations �DNS� and
transient RM experiments. However, if the Reynolds number

TABLE I. BHR constants for KH-RT-RM flows set by an itera-
tive match to mainly compressible experiments. The constants listed
under Gas Channel �35� were evaluated using a self-similar solution
technique.

Model
constants

KHI RTI RMI

BM
�39�

Gas Channel
�35�

LEM
�16�

DNS
�36�

Poggi
�37�

VS
�38�

C1 1.44 1.44 1.25 1.44 1.44 1.44

C2 1.92 1.92 1.92 1.92 1.92 1.92

C3 0 0 0 0 0 0

C4 0.58 0.58 0.80 0.80 0.58 0.58

C� 0.28 0.28 0.09 0.28 0.28 0.28

Ca1 7.0 7.0 2.25 7.0 7.0 7.0

Ca2 0.25 0.25 1.0 0.20 0.2 0.2

�� 0.1 0.1 0.1 0.1 0.1 0.1

�c 0.6 0.6 0.6 0.6 0.6 0.6
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at the start of the calculation is sufficiently large, then initial
conditions seeded into the flow has little role in our BHR-
RAGE calculations. On-going work is seeking to capture the
time-dependent transition to turbulence as detailed in the
works of Zhou �50� and co-workers �51,52�.

IV. COMPARISON OF BHR RESULTS WITH
EXPERIMENTAL AND NUMERICAL DATA SETS

A. KH instability: Comparison with low-speed shear flows

Next, we describe how the BHR k-S-a model is tested for
its ability to describe KH instability �shear flows�. The low
speed air/air shear layer set-up of Bell & Mehta �39� was
used for comparison. The free-stream velocity of the two
streams was 15 and 9 m/s, thus giving a velocity ratio of 0.6.
The model simulations are initialized with the value of the
initial length-scale, S0, corresponding to the boundary layer
thickness ��99� at the end of the splitter plate �39�. The BHR
k-S-a model results for the mean stream-wise velocity pro-
files, normalized by the velocity deficit between the two
streams, are compared with the experiment in Fig. 1, and the
comparison reveals a good agreement. Figure 2 compares the
profile of turbulence kinetic energy �k� from the model with
the experiment. Although the model simulations were initial-
ized with the same initial length scale �S0�, there seems to be
a mismatch between the experimental data and BHR k-S-a
results at the center line that we attribute to incomplete char-
acterization of the initial conditions in the flow.

B. RT instability (buoyancy driven flow)

The BHR k-S-a model was tested for its ability to de-
scribe RT instability driven fluid mixing with constant accel-
eration. The model constants were calculated from the low
Atwood number �At=0.04� statistically steady RT experi-
mental data sets of Banerjee et al. �35�, using the analytical
self-similar solution of the model equations of �30�. The
evaluated model constants were then used in BHR
k-S-a /RAGE simulations and the results compared with RT

experimental and simulation data �16,35,36�. Upon valida-
tion at low Atwood number flows �At=0.04�, the BHR model
was then used to model the high Atwood number experi-
ments �0.1�At�0.9� of Dimonte and Schneider �16�, and
the numerical simulations �DNS at At=0.5� of Cabot and
Cook �36�. Our attempts to use the model over such wide
range of Atwood numbers �0.04 to 0.9� posed several chal-
lenges are described next.

1. Comparison with low Atwood number RT experiments

The low Atwood number RT experimental data obtained
in the air-helium gas channel facility of �35,47� was used as
a foundation data set to calibrate the BHR k-S-a model equa-
tions in RT flow. In the experiment, two gas streams, one
containing air and the other containing helium-air mixture,
flow parallel to each other separated by a thin splitter plate.
The streams meet at the end of a splitter plate leading to the
formation of an unstable interface and of buoyancy driven
mixing. This buoyancy driven mixing experiment allows for
long data collection times, short transients, and is statistically
steady. The statistically steady RT setup provides large sta-
tistical data sets using hot-wire anemometry �16,35,36� to
obtain Reynolds stresses, mix profiles, velocity-density cor-
relations, and measures of molecular mixing. Numerical
simulations were performed with two fluids with constant
densities of �1=1.0833 g /cm3 and �2=1.0 g /cm3, that
matched the experiment. Model constants were evaluated us-
ing self-similar solutions of the model equations as described
above, and the model results compared with the experiment
to facilitate model constant evaluation.

The following comparisons are made once the flow has
attained self-similarity. The computed volume fraction pro-
files are compared with the Gas Channel measurements at
At=0.04 in Fig. 3. The model shows a linear variation for the
volume fraction across the RT mixing layer, with slight
rounding at the edges �within the limits of the experimental
errors� attributed to the shape of the plumes at the RT mix
edge, and it compares well with the experimental volume
fraction profiles. Scaled turbulence kinetic energy profiles

FIG. 1. Mean stream-wise velocity profiles: comparison of the
experiments from Bell and Mehta �39� with BHR/RAGE model
simulations.

FIG. 2. Comparison of the turbulence kinetic energy �k� for the
experiments of Bell and Mehta �39� with BHR/RAGE model
simulations.

DEVELOPMENT AND VALIDATION OF A TURBULENT-MIX … PHYSICAL REVIEW E 82, 046309 �2010�

046309-7



k��=k / �Atgt�2� across the mix are compared in Fig. 4. The
figure shows that computed and experimentally measured
profiles of k are approximately parabolic with a peak cen-
tered at the geometric centerline of the RT mixing layer.
Similar parabolic profiles are observed for the plots of mass
flux �drift� velocity, a��=a /Atgt�, as seen in Fig. 5. Both Figs.
4 and 5 show reasonable agreement between the experiments
and BHR k-S-a simulations, with the peak centerline values
being underpredicted perhaps due to initial condition uncer-
tainty. The density self-correlation, b, across the mix is plot-
ted in Fig. 6. The current work uses a two-fluid expression
for b �see Eq. �23�� and good agreement is obtained between
the model simulations and experimental measurements, thus
justifying our assumption of neglecting interspecies diffusion
in the b equation �the decay term is in balance with the
production term�. The gas channel experiment of �35� has no
shear; gravity drives the vertical velocity fluctuations, gener-
ating the characteristic “mushroom” shape of a Rayleigh-
Taylor instability, and so w� dominates over u� everywhere
across the RT mixing layer. The measured w� /u� ratio across
the RT mixing layer is plotted in Fig. 7, and is approximately

constant across the RT mixing layer at �1.8. This suggests
an existing equilibrium between u� and the w� kinetic energy
production terms everywhere in the RT mixing layer; the
mushroom shaped structures are convected up and down the
RT mixing layer with little or no change in shape �35�. Since
the BHR k-S-a model equations calculates turbulence kinetic
energy and not the individual components of velocity, it as-
sumes isotropy and the ratio w� /u� obtained from the BHR
k-S-a simulations �1 as seen in Fig. 7 �49,53�.

2. Comparison with high Atwood number RT experiments

The BHR k-S-a model is next compared with the high
Atwood number LEM �linear electric motor� experiments
�16�. Since the LEM data set covers a large range of Atwood
numbers �0.13�At�0.96� and is for immiscible fluids, Ca2
=1.0 and the model constants were modified based on the
self-similar symmetric solutions �see Table I� for measured
bubble penetration observed for large Atwood number runs,
i.e., for At�0.5. The model constants used here were based
on historical values used in the earlier works. Universality

FIG. 3. Comparison of the BHR volume fraction profiles with
the low Atwood number experimental data of Banerjee et al. �35�.

FIG. 4. Comparison of the normalized turbulent kinetic energy
profiles of the BHR simulations with the low Atwood number ex-
perimental data of Banerjee et al. �35�.

FIG. 5. Comparison of the normalized turbulent mass flux ve-
locity profiles of the BHR simulations with the low Atwood number
experimental data of Banerjee et al. �35�.

FIG. 6. Comparison of the density self correlation profiles of the
BHR simulations with the low Atwood number experimental data
of Banerjee et al. �35�.
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may be arrived at with, perhaps, coefficients based on a
Schmidt number. Figures 8�a� and 8�b� compares the volume

fraction profiles at At=0.2 and 0.32 obtained from the BHR
k-S-a simulations with the LEM data. The comparison re-
veals that both cases give good agreement between experi-
ment and model simulations. Next the variation in �b and �s
with the Atwood number is compared with the LEM obser-
vations �see Fig. 9�. �s is consistent with the LEM data.
However, the value of �b from LEM experimental data was
approximately constant over 0.13�At�0.96. The BHR
k-S-a simulations exhibit a slight increase in �b at At�0.7.
The difference may be attributed to measurement uncertain-
ties in the LEM experimental data �16�. Figure 10 plots the
ratio of �s /�b as a function of the density ratio �h /�l. This is
done to exhibit a simple dependence of �s with �h /�l, and
shows a dependence of �s with �h /�l rather than Atwood
number. The BHR model shows good agreement with ex-
perimental results ��s /�b�2� up to �h /�l=10 �At=0.81�.
For �s /�b�2, the comparison between BHR k-S-a and
LEM data are moderate due to the mismatch in the bubble
amplitudes and the large uncertainty reported in the LEM
experimental data.

FIG. 7. Comparison of the ratio of velocity fluctuations �w� /u��
of the BHR simulations with the low Atwood number experimental
data of Banerjee et al. �35�.

(a)

(b)

FIG. 8. Comparison of the BHR volume fraction profiles with
the LEM experimental data of Dimonte and Schneider �16� at At

=0.2 �a� and At=0.32 �b�. The gray lines indicate the uncertainty
bands from Dimonte and Schneider �16�.

FIG. 9. Comparison of the growth constants ��b & �s� obtained
from BHR model with the LEM experimental data of Dimonte and
Schneider �16�.

FIG. 10. Comparison of the ratio of growth constants ��s /�b�
obtained from BHR model with the LEM experimental data of Di-
monte and Schneider �16�.
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3. Comparison with RT direct numerical simulation (DNS)

The BHR k-S-a model was also compared with the large
DNS �30723� data sets of Cabot and Cook �36� at At=0.5, at
three different times during the RT mix development. Figure
11 compares the density profiles across the mix obtained
from the DNS with the BHR k-S-a data. As in earlier cases
of comparison with experiments �Gas Channel and LEM�,
both sets of data show a linear variation for the mixture
fraction was measured across the RT mixing layer, with
slight rounding at the edges attributed to the shape of the
plumes at the RT mix edge. The growth constant � was about
0.04 and was matched using a value of C4=0.8 �see Table I�.
The turbulence kinetic energy profiles across the mix for
both BHR k-S-a and DNS are compared in Fig. 12. It is seen
that scaled profiles of k in DNS are approximately parabolic
with a peak centered at the geometric centerline of the RT
mixing layer. However, the k profiles obtained using BHR
k-S-a model is slightly skewed with the peak occurring to-
ward the spike side in agreement with the results of the
2-fluid model �23�. Similar asymmetries are observed for the
plots of mass flux velocity, a, as seen in Fig. 13. The density
self-correlation, b, across the mix is plotted in Fig. 14, and
again the profile of b obtained from DNS is not symmetric

with the peak skewed toward the spike side. Next we com-
pare the length scale, S, profiles. We use the low Atwood
number ��0.01� DNS of Ristorcelli and Clark �2004� to fix a
value �� that would give good agreement between the DNS
and the model simulations. Large changes in the value of ��

from 1.3 to a value of 0.1 were required to match the DNS
length-scale distribution. Figure 15 plots the BHR k-S-a
model runs with �� set as 1.3 and 0.1, the low value of ��

ensured a top hat profile.We get good agreement with DNS
for the smaller value of ��=0.1. This value of �� was used
throughout this work �see Table I�. Figure 16 compares the
BHR k-S-a length-scale profile �normalized by the total mix
width� with the profile of S /W from the Cabot and Cook
large Atwood DNS.

C. RM instability (shock driven flow)

The BHR k-S-a model has also been applied to RM ex-
periments in shock tubes using the standard values of coef-
ficients listed in Table I. The RM experiments of Vetter and
Sturtevant �38� used a shock tube which was 0.61 m long
with a 0.267 m square test section. Shock Mach numbers
�Ms� of 1.18 to 1.98 were generated in air that propagated
toward a membrane �and mesh� at the interface of sodium

FIG. 11. Comparison of the density profiles obtained from BHR
model with the DNS data of Cabot and Cook �36�.

FIG. 12. Comparison of the normalized turbulent kinetic energy
profiles obtained from BHR model with the DNS data of Cabot and
Cook �36�.

FIG. 13. Comparison of the normalized mass flux velocity pro-
files obtained from BHR model with the DNS data of Cabot and
Cook �36�.

FIG. 14. Comparison of the density self-correlation profiles ob-
tained from BHR model with the DNS data of Cabot and Cook
�36�.
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hexafluoride �SF6�. Flow visualization was done using high-
resolution Schlieren imaging where the light source was a
single spark source that generated a flash of light in the vis-
ible spectrum for �0.5 �s. The optical windows for the
Schlieren visualization system were centered 0.42 m down-
stream of the membrane and were 0.15 m in diameter. We
compared BHR simulations with experimental data at Ms
=1.24 �run no. 88�, 1.5 �run no. 85� and 1.98 �run no. 87�, as
they have the most data points and images. Figure 17 plots
the growth of the interfacial perturbations measured from
Schlieren imaging for a Mach 1.5 shock. The mixing zone
grows to �2 cm before the transmitted shock gets reflected
from the end wall and reshocks it �3.4 ms. The growth rate
from the re-shock exceeds that from the initial shock as the
perturbations �initial amplitudes� are larger. The BHR model
calculations, denoted by solid lines, exhibit an identical be-
havior with similar growth rates as that of the experiment.
Figure 18 plots the mix width from the Mach 1.24 shock
experiment. Little growth ��2 cm� is observed before the
shock interacts with the interface ��9.5 ms�. The growth of
interface between the reflected shock and the arrival of the
reflected expansion wave appears to be linear for both the
experiment �dots� and the BHR simulations �solid line�. For
the Mach 1.98 shock experiment, the BHR simulations devi-
ate from the experimental results, as seen in Fig. 19, espe-

cially for the data points following reshock. This mismatch
in data can be attributed to experimental uncertainty of the
mixing width measurements and the ability to characterize
exact initial conditions in the BHR k-S-a simulations over
the range of shock Mach numbers of the experiments.

It is evident from above that initial conditions play a sig-
nificant role in the RM experiments. So, the effect of initial
conditions on the BHR k-S-a simulations of RM was studied
by varying the initial length scale �S0� in the model. This
mimics experimental differences due to different meshes and
membrane-mesh ordering. Vetter and Sturtevant �38� studied
the influence of membrane placement relative to the mesh on
the mixing for Mach 1.5 shock experiments. In the first con-
figuration, the membrane was placed on the downstream side
of the mesh, and in the second configuration the order of the
mesh and membrane was reversed. Reversing the order of
the mesh and the membrane, with the membrane being on
the upstream side, introduced a perturbation to the interface.
This resulted in a dramatic increase in growth rates between
the two cases. The BHR k-S-a model captured this variation
in the initial perturbations by varying the initial length scale
�S0� by a factor of 10 from a value of 0.1 to 1.0, as the results
in Fig. 20 shows, BHR k-S-a gives reasonably good agree-
ment between experimental �dots and squares� data and the
model simulation �solid line�.

FIG. 18. Comparison of mix-widths at Ms=1.24 for the Vetter
and Sturtevant �38� RM experiment.

FIG. 15. Comparison of the length-scale profiles obtained from
BHR model with the DNS data of Ristorcelli and Clark �49�. Large
changes in original �� were needed to match DNS data.

FIG. 16. Comparison of the length-scale profiles obtained from
BHR model with the DNS data of Cabot and Cook �36�.

FIG. 17. Comparison of mix-widths at Ms=1.5 for the Vetter
and Sturtevant �38� RM experiment.
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The BHR k-S-a model was also applied to the shock tube
experiments of Poggi et al. �37� that were conducted in a test
section 0.3 m long, with a 8 cm square cross section. A Mach
1.45 shock was incident in SF6, and the downstream fluid
�air� was separated by a thin membrane supported by a mesh.
The location of the origin was the initial position of the
interface, and the time origin corresponded to the incident
shock wave crossing this location. The time evolution of the
locations is plotted in Fig. 21�a�, with dots denoting the mix-
ing zone edges from the experiment �based on a 5–95 %
definition�. We find good agreement between the BHR k-S-a
simulation and the experimental results. The width of the
BHR k-S-a computed turbulent mixing zone is compared
with experimental measurement in Fig. 21�b� revealing good
agreement between the two results. Laser doppler anemom-
etry �LDA� probes were located at various downstream loca-
tions �denoted by squares in Fig. 21�a� and 21�b�� giving
measurements of turbulence intensities in the mixing zone
before and after shock crossing, and also quantified the tur-
bulence decrease between two interactions of the shock
waves. Next, in Figs. 22�a�–22�d�, the BHR k-S-a simulation
is compared with the experimental results obtained at four
downstream locations of 51, 161, 169, and 178.5 mm �as
they have most data points�. The axial variance u�2 as a
function is compared at these four locations along the RM
mixing zone. At 51 mm, Poggi et al. �37� divided the period

��51 �s� into three samples to obtain a profile of u�2 with a
statistical error of �23%. On comparison of BHR k-S-a
simulations with the experimental results �see Figs.
22�a�–22�d��, we see that the variance u�2 is of the same
order of magnitude for all the cases. The mixing zone at this
location has been generated by RMI as the incident shock
wave goes through the interface. At further downstream lo-
cations, i.e., 161, 169, and 178.5 mm, both the experiment
and BHR k-S-a simulation predict a strong increase in the
axial velocity variance u�2, with the velocity variance reach-
ing a peak value at 161 mm followed by a global decrease of
u�2. However, the axial velocity variance predicted by the
BHR k-S-a simulation is about a factor of 2 higher than the
experimental data at these three downstream locations. In-
deed, between the locations of 161 and 178.5 mm, there is no
significant turbulence production and diffusion, and dissipa-
tion is the dominant mechanism in the flow. Figure 23 plots
the modeled production and dissipation terms at t=0.3 �s,
0.1 ms, and 3.0 ms after the first shock passes through the
interface. At early times, i.e., t=0.3 �s, the buoyancy pro-
duction term dominates. However at late times �t=1.0 and
3.0 ms�, dissipation is the dominating mechanism.

V. CONCLUDING REMARKS

The BHR k-S-a model implemented in the RAGE hydro-
code has been used to describe the self-similar growth of
KH, RT and RM instabilities. The mean hydrodynamics
equations for a single phase fluid have been supplemented by

FIG. 19. Comparison of mix-widths at Ms=1.98 for the Vetter
and Sturtevant �38� RM experiment.

FIG. 20. Effect of initial conditions for the BHR RM simula-
tions. Comparison of mix-widths at Ms=1.5 for the Vetter and Stur-
tevant �38� RM experiment.

(a)

(b)

FIG. 21. Comparison of the interface positions �a� and mix-
widths �b� at Ms=1.45 for the Poggi et al. �37� RM experiment.
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evolution equations for turbulent kinetic energy �k�, length
scale of the dominant eddies �S�, and a mass-flux velocity
�a�, and an algebraic closure for density self-correlation �b�.
Unknown model constants were determined from experi-
mental data by analytical self-similar solutions �for the RT
case�, and by iterative matching to simulate experimental
results �for the KH and RM case�. The BHR k-S-a model
was used to quantitatively describe a variety of turbulence
experiments and numerical simulations of turbulent flows,
that includes low speed shear layer flow, RT flows over a
wide range of Atwood numbers, and a moderate Atwood
number DNS of RT flows. Accurate prediction of these flows
is important because they occur in ICF implosions, super-
nova explosions, buoyant jets, and combustion applications.
The aim of the model was to generate results that provide the
overall trends for many different classes of flows. The BHR

k-S-a model has been shown to do well when predicting free
and compressible shear flow experiments, RT growth rates
over a wide range of Atwood numbers, as well as predicting
RM growth rates prior to reshock. However, it does a rea-
sonable job in RM flow post reshock, and does not allow
demixing on reversal of a driving force �gravity�. Future
model improvements may be considered that would involve
a nongradient diffusion based multispecies concentration
equation that would allow demixing. Also, improved forms
of Boussinesq approximation may be used for improvement
in early time and reshock environments. Future work might
also pursue additional experiments and DNS to test the
model under a wider variety of test cases �demix, variable
acceleration, impulsive acceleration, multilayer problems,
etc.� and thus understand the effects of initial conditions,
convergent geometries as well as more complex flows.

(a)

(b)

(c)

(d)

FIG. 22. Comparison of turbulent intensities at various downstream locations �a� 51 mm, �b� 161 mm, �c� 169 mm and �d� 178.5 mm for
the Poggi et al. �37� RM experiment with BHR simulation at Ms=1.45.

(a) (b) (c)

FIG. 23. �Color online� Comparison of the production �red�, diffusion �black� and dissipation �blue� terms at three different times after
the first shock �prior to re-shock�.
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