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Dynamics of passive tracers in the atmosphere: Laboratory experiments
and numerical tests with reanalysis wind fields
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Laboratory and numerical experiments are reported on dye advection processes in geostrophic turbulence.
The experimental setup is the classical rotating annulus with differential heating which mimics the most
essential features of midlatitude atmospheric flow. The main control parameter is the temperature contrast.
Fluorescent dye is used as passive tracer, and dispersion is evaluated by digital image processing. The results
are compared with tracer dispersion computations which are performed by means of global reanalysis wind
fields at the pressure height of 500 hPa covering a time interval of one year. Apart from initial transient periods,
the characteristic behavior for intermediate time scales is ballistic dispersion in both systems, where the zonal
extent of the tracer cloud increases linearly in time (Batchelor scaling). The long-time evolution cannot be
followed by the experimental technique, however, the numerical tests suggest a slower diffusive dispersion
(Taylor regime) after 70-80 revolutions (days), in agreement with expectations. Richardson-Obukhov scaling
(superdiffusion with an exponent value of 3/2) is neither observed in the laboratory nor in the numerical tests.
Our findings confirm recent experimental results on the classic prediction by Batchelor that the initial pair

separation is an essential parameter of the subsequent time evolution of tracers.
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I. INTRODUCTION

Anthropogenic emissions often lead to pollution levels
that exceed air quality standards at many locations over both
hemispheres [1-3]. Air quality and pollutant deposition are
also influenced by transport processes at the intercontinental
and global scales. The most spectacular pollution transport
events are related to export from the east coasts of North
America or Asia with subsequent transport to the west coasts
of Europe and North America.

As a topical example, the recent eruption of the subglacial
volcano Eyjafjallajokull in Iceland threw volcanic ash sev-
eral kilometers up in the atmosphere which led to air traffic
disruption in northwest Europe for several days in April and
in May 2010, including the closure of airspace over many
parts of Europe (Fig. 1).

Tracer transport and mixing processes are also relevant in
the aqueous environment [5-7]. On the largest scales, the
same governing equations of motion can be used both in the
atmosphere and oceans, therefore the tools to study tracer
advection are also very similar. Empirical data mostly origi-
nate from drifter experiments, such as the Global Drifter Pro-
gram (http://www.aoml.noaa.gov/phod/dac/gdp.html) or the
recent POLEWARD project [8]. Atmospheric measurements
are running from the seventies, the first large balloon experi-
ments were performed over the southern hemisphere: the
EOLE at 200 mb [9,10], and the TWERLE at 150 mb pres-
sure level [11,12]. Besides numerical simulations [13,14],
laboratory models [15] provide a deeper insight into the
physical basis of the key processes.

Here we compare the results of laboratory and numerical
experiments on tracer dispersion. The key quantities of inter-
est are the mean drift of the “center of mass,” and the spread
of the cloud related to the average pair separation. The lit-
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erature concerning pair dispersion both in two-dimensional
(2D) and three-dimensional (3D) turbulent flows is quite
controversial, in spite of the intense research in the past de-
cades (see Refs. [16,17] and references therein). The main
problem is that the dynamics suffers from a series of cross-
over behavior from exponential to power-law dispersion with
various exponent values, and the crossover points cannot be
easily located since they depend on several factors. A recent
challenging experimental result is that the time evolution
strongly depends on the initial pair separation [17], thus in
usual laboratory or numerical experiments the dynamics re-

Total column of VO-TR and 500 hPa geopotential
Analysis @ 20100525.180000 Actual @ 20100526. 90000

o 10 20 30 40

60 70 80 9 100

50
mg/m2

FIG. 1. (Color online) Example snapshot of emitted volcanic
ash distribution forecast for the Eyjafjallajokull eruption, 05/25/
2010, by the FLEXPART model [4]. (http://transport.nilu.no/)
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FIG. 2. (Color online) The spread of fluorescent dye as a func-
tion of time at parameters AT7=31.5°C, Q=1.62 rad/s, H
=3.4 cm (Ro;=0.0209). (a) 1s, (b) 85, (c) 19 s, (d) 46 s, (e) 120
s, (f) 154 s, (g) 197 s, (h) 235 s, (i) 244 s. The angle 0 characterizes
the zonal range covered by the cloud.

flects a mixed behavior when the evaluation of individual
trajectories is not possible.

Our experiments were carried out in the classical labora-
tory model for midlatitude large-scale flow phenomena,
which is a differentially heated rotating annulus invented by
Fultz [18,19] and Hide [20,21]. Fluorescent dye forms a lo-
calized cloud of passive tracers after geostrophic turbulence
has established, subsequent time evolution can be evaluated
by digital image processing (Fig. 2). The numerical experi-
ments are based on the equations of passive scalar advection,
where the background wind field is provided by the ERA-
Interim data bank of the European Centre for Medium-Range
Weather  Forecasts  (http://www.ecmwf.int/research/era/).
Both systems exhibit very similar behavior. The initial tran-
sients (short time dispersal) cannot be evaluated because of
the macroscopic perturbation induced by dye injection in the
experiments, and because of the limited spatial and temporal
resolution of the reanalysis wind field in the numerical tests.
The dispersal is “ballistic” for intermediate time intervals
characterized by a linear growth of the zonal extent of the
tracer cloud. This dynamics is not expected from theoretical
considerations [16], but it is identified in other numerical
[22,23] and experimental works [17]. When strong correla-
tions produced by coherent structures in the flow decay at
longer times, a switch to diffusive dispersal is expected. We
could identify this regime only in the numerical simulations.

The paper is organized as follows. Section II provides a
description of the physical background, laboratory experi-
ments, and evaluation techniques. The results are listed in
Section III. Section IV gives an overview of the numerical
simulations of tracer dispersion driven by ECMWF reanaly-
sis wind field for the year of 2000. The two sets of results are
compared and contrasted with theoretical predictions in Sec.
V closed by a compact summary.
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II. EXPERIMENTS

The setup, also described in [24], consists of three con-
centric cylinders of radii R;=4.5, R,=15.0, and R;
=20.3 cm which is fixed on a rotating platform. The central
container is filled up with a mixture of ice and water, the
outermost one is regulated by an immersion heater, the work-
ing fluid in the middle annular region is tap water in the
presented experiments. The main control parameters are the
angular velocity ) e[1.54,2.31] rad/s and imposed radial
temperature difference AT €[15.0,40.5] °C in the dish. The
height H of the working fluid is varied in a narrow range of
3.3-4.0 cm in order to warrant that the dynamics is well
inside the geostrophic turbulent regime [25,26]. The conve-
nient nondimensional combination known as thermal Rossby
number (Roy) is defined as

agHAT

Royp= ——5,
°T= 20)212

(1)
where a=~2X107* °C~! is the coefficient of volumetric
thermal expansion for water, g=9.81 ms~2, and L=R,—R,
=0.105 m.

The thermal Rossby number has a fairly transparent ex-
planation by considering a possible stationary situation, the
geostrophic equilibrium, where pressure gradient and Corio-
lis forces balance each other [27]. In that case, the zonal
velocity component u, in a corotating frame of reference is
determined by the radial pressure difference as

1 ap
po2Q ar’

Ug= (2)
where p, is a mean density of the fluid at a reference tem-
perature T|,, and friction is neglected. The pressure difference
is a consequence of radial temperature contrast inducing a
change in density Ap=—apyAT. Using the hydrostatic ap-
proximation p=pgH, the radial pressure difference in a shal-
low layer can be estimated as Ap=—ap gHAT, which gives
an estimate to a relative velocity scale

_ agHAT

20L ®)

A simple comparison with Eq. (1) reveals that the thermal
Rossby number is in full analogy with the “regular” one,
since it is given as the ratio of two characteristic velocity
scales,

(4)

Ror= 2OL

The parameter range Ro; € [0.01,0.1] we implemented is
deeply in the dynamical regime of irregular wave patterns,
similarly to the midlatitude atmosphere. This similarity is
apparent in Fig. 2, where snapshots of a typical experiment
are displayed: after an appropriate spinup period, 1 ml of
standard fluorescent dye (Sodium fluorescein, C,oH;,O5Na,)
is injected through a syringe at a location close to the second
cylinder wall of radius R,, and the development of patterns is
recorded and evaluated by digital image processing. The
dominating patterns clearly indicate strong irregular cyclonic
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FIG. 3. (Color online) Time evolution of 6 (see Fig. 2) at three
different temperature contrasts (see legend). The other parameters
were almost identical, the precise values are Ro;=0.0272, 0.0209,
and 0.0110, corresponding to curves from left to right.

and anticyclonic vortical activity. It is widely accepted that
this dynamics driven by the so called baroclinic instability
reflects the most essential features of midlatitude atmo-
spheric flow (see, e.g., [28,29]).

Two quantities are determined to characterize dye disper-
sion. The first one is the maximal zonal extent of the dye
cloud measured by the central angle # bounding the colored
region [see Fig. 2(b)]. Second, the total number of pixels n
above a contrast threshold is also determined at each frame.
In order to decrease the effects of nonuniformities in UV
illumination (see Fig. 2), an averaging over one revolution is
performed prior to further processing.

Figure 3 illustrates typical time evolution of the bounding
angle 6(¢) for three different temperature contrasts. As ex-
pected, stronger convective drives result in larger slopes
(faster zonal growth). The intermittent nature of the disper-
sion is also clear, slow increments are sometimes followed
by sudden jumps, when a new empty vortex grabs a filament
of dye. The curves for the total pixel number (or cloud area)
n(r) are very similar (see later), however their intermittent
character is much weaker.

III. EXPERIMENTAL RESULTS

Besides the intermittency, the overall tendency of 6(r)
curves seems to be linear (Fig. 3). Since theories predict
diverse behavior from exponential to power-law dispersion
with various exponent values, we evaluated the data by test-
ing all possibilities.

Figure 4 illustrates one example on a double-logarithmic
scale (see symbols, the rightmost curve in Fig. 3). It is cer-
tainly not a pure power law, therefore we show its numerical
integral as well (upper curve, Fig. 4) in order to test the
well-known noise suppression property of integration. Sev-
eral attempts to achieve the best power-law fits have led to
the conclusion that the overall time evolution is close to
linear, therefore we use this assumption in what follows.

To determine characteristic slopes for the 6(z) curves,
both the usual linear form 6(r)=mgy+ 6, and its integral
[6(t)dt=0.5mgt*+ @yt +c are fitted. Figure 5 demonstrates a
reasonable data collapse after rescaling 6(r) values by the
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FIG. 4. The rightmost measured curve of Fig. 3 (symbols) and
its numerical integral (upper curve) on a double-logarithmic scale.
Asymptotic power-law fits are indicated. Parameters: AT
=15.75+0.25 °C, Q=1.56 rad/s, H=3.3 cm (Ro;=0.0110).

individual fitted slopes mg4 and intercepts 6,. Deviations from
pure linear time evolution are clear for any of the specific
records, especially for larger times, however, we did not find
a convincingly better approximation for the general behavior
than a linear growth.

Figure 6 exhibits the dependence of fitted slopes m, on
the experimental control parameter, the thermal Rossby num-
ber Roy of Eq. (1). Note that vertical bars indicate the stan-
dard error of the coefficient given by the fitting algorithm.
Certainly more important error sources such as deficiencies
in the temperature control, significant initial perturbations at
dye injection or thresholding errors in the identification of
dye cloud edges contribute to the scatter of data points, how-
ever, we cannot give a quantitative estimate of these effects.
The apparent uncertainties are especially large for large val-
ues of Roy, where the slopes m, cannot be determined by
direct fitting, because the records are too short and very in-
termittent. Instead, an estimate is given based on the encom-
passing time 7* defined as 6(r*)=360° (red squares in Fig. 6).
Figure 6 suggests a simple linear dependence n,~RoJ. with
y=1.

The large apparent uncertainties in the slopes m, (Fig. 6)
motivated a consistency check based on the encompassing
time ¢* defined above. Values for r* were extracted and ex-
pressed as a dimensionless number N=¢"()/2 7, which is the

800
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FIG. 5. Data collapse using the linear (ballistic) dispersion as-
sumption for 24 measured data sets: 6(r)=m g+ 6.
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FIG. 6. (Color online) Slope of linear fits m, as a function of
thermal Rossby number Roy (circles). The slopes for fast dispersion
processes (red squares) were estimated from the encompassing time
(see text). Heavy line illustrates a power-law fit with an exponent of
v=0.98 = 0.07.

number of revolutions until the leading and tailing edges of
the cloud cross the same “longitude” in the rotating annulus.
In order to minimize the effect of different initial configura-
tions, the measured temporal interval of #(6,— 360°) is ex-
trapolated to #(0—360°) assuming the same average zonal
spreading velocity. The result is plotted in Fig. 7. Note that N
is determined independently of the fitting procedure to obtain
my for the 24 experiments indicated by black circles in Fig.
6, it is calculated directly from the recorded data point at 6
=360°. The relationship is clearly an inverse function N
~R0}' which is consistent with Fig. 6: the stronger the con-
vective drive the lower the number of revolution until a
“hemispheric” encompassing.

As for the second measure, the total size of the dye cloud
n(t) determined in units of pixels exhibits a linear growth as
well. Figure 8 shows data collapse of rescaled curves by two
characteristic crossover parameters 7y and ny. The general
time evolution is clearly linear, which proceeds to a given
time 74, where a crossover to a constant apparent cloud size

200
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FIG. 7. (Color online) Number of revolutions N until the zonal
spread of the dye cloud covers a whole circle as a function of
thermal Rossby number Roz. The inset shows the same data on a
double-logarithmic scale. The continuous line is an inverse relation-
ship N ~R0}1. Shaded rectangle indicates plausible range for the
rotating Earth (see Sec. IV).
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FIG. 8. Scaled total area n/ny covered by the fluorescent dye as
a function of scaled time #/t, for eight representative experiments.
The scaling parameters ny (in units of pixel) and 7y (in units of s)

belong to the crossover values where the apparently linear curves
saturate.

ny is visible (Fig. 8). According to our observations, this
plateau ny (in units of pixels) is not necessarily constant for
each experimental run. This is because the dispersion process
has at least three competing ingredients with different
weights at a particular set of parameters: the most spectacu-
lar changes are due to (chaotic) advection by the background
flow field, meanwhile local shearing contributes to mixing
mostly between vortex walls and cores (sometimes with nice
Kelvin-Helmholtz billows), and additionally diffusional thin-
ning continuously decreases the fluorescent intensity. The
general tendency is that the larger 7 the lower ny. We think
that a further quantitative analysis is not necessary here be-
cause the numerical values for saturation parameters ny and
ty are fully specific for our setup (camera sensitivity and
resolution, geometric parameters, etc.). Instead, we plot the
slopes m, of linear growth n(f)=m,t+n,, as a function of
Royz in Fig. 9. A simple power-law behavior stands out again,
with an approximately quadratic behavior as a function of
the control parameter: mn~Ro? with §~2. (The number of
data points is different in Figs. 6 and 9, because experiments
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FIG. 9. (Color online) Slope of linear fits m, as a function of
thermal Rossby number Roz. The inset shows the same data on a
double-logarithmic scale. Heavy lines illustrate power-law fit with
an exponent of 6=1.93*+0.18.
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with Ro;>0.03 resulted in short and noisy records, thus they
are omitted.)

Note that in the existing literature we could not find any
theoretical prediction for a relationship between the exponent
values y and 6. As we explained above, the dispersion of a
tracer cloud exhibits complex dynamics with various subpro-
cesses resulting in fractal structures (see Fig. 2), therefore we
do not expect that a linear measure (e.g., the zonal extent 6)
has necessarily a trivial relationship with a composite mea-
sure (e.g., total cloud size n).

IV. NUMERICAL SIMULATIONS

In order to check the performance of laboratory experi-
ments in reproducing some basic aspects of midlatitude at-
mospheric transport processes, a plausible method is to com-
pare the results with numerical experiments on tracer
advection [5]. Various methods to compute trajectories have
been developed, and the accuracy of calculated trajectories
has improved a lot in the past decades [30,31]. Theoretically,
atmospheric trajectories can be calculated directly from wind
observations by interpolating between the measuring loca-
tions. In practice, however, trajectory calculations are mostly
based on gridded output of numerical models (weather fore-
casts or reanalyses) such as provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) [32].

In this work, the 3rd generation ECMWF reanalysis ERA-
Interim data bank is exploited, which is almost up to date
from 01/01/1989 [33]. Zonal (u) and meridional (v) wind
velocity components of global geographic coverage at the
pressure level of 500 hPa (an approximate altitude of 5-5.5
km) are evaluated for the whole year of 2000. Four values
are available each day for 00, 06, 12, and 18 h UTC (Uni-
versal Time Coordinated) at each geographic location with a
spatial resolution of 1.5° X 1.5° (at/long). Note that the grid-
ded wind fields are rather smooth, subgrid scale turbulence
or vertical convection are not resolved. Although the wind
velocity at a given site and time represents an instantaneous
value [32], direct comparison with high resolution wind
tower measurements indicates that it is better to regard it as a
6 h mean value [34].

Trajectory calculation are based on the solution of the
advection equation for a given infinitesimal air parcel
[35,36],

= Ir0) (5)

where v[r(7)] is the instantaneous velocity at the position
r(¢). Equation (5) can be solved analytically for simple flow
fields only, more realistic situations require a numerical treat-
ment based on the finite difference Taylor-series representa-
tion [31].

Our primary goal is to give a statistical characterization of
atmospheric dispersal instead of calculating accurate trajec-
tories, therefore we use the simplest approximations wher-
ever possible. The temporal and spatial resolutions of ERA-
Interim wind fields purport the most significant limitation,
therefore very accurate atmospheric trajectories cannot be
expected even by the most advanced numerical methods.
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FIG. 10. (Color online) Example trajectory of a point tracer
advected over the Northern hemisphere. The starting location was
45°N, 0° (lat, long), different colors (greyness levels) indicate con-
secutive circumnavigations.

In contrast to the horizontal wind velocity vector (u,v),
there are no routine observations for the vertical component
w. Estimates can be produced by various meteorological
models, but they are definitely less accurate than the fields of
the horizontal wind. A plausible idea is to compute the 2D
divergence field and estimate w from the results, however it
is known that this has a very large error at the limited reso-
lution of the reanalyses [37]. In the absence of reliable 3D
wind fields, the usual procedure is to follow isobaric (con-
stant pressure), or isentropic (constant potential temperature)
surfaces with matching 2D wind velocity vectors [38]. The
latter has the advantage that atmospheric variables tend to be
better correlated along isentropic surfaces than on constant
pressure surfaces, however, the potential temperature (en-
tropy) of a given air parcel can significantly change when
diabatic processes have an important role along a trajectory
(e.g., in baroclinic stratification, which is common in mid-
latitude tropospheric flows) [30,31]. For this reason we
evaluated the 2D wind field at the 500 hPa pressure level.

The limited spatial and temporal resolutions require the
implementation of some interpolation procedures for the
wind field at the numerical solution of Eq. (5). Several meth-
ods are known and tested in the literature [13,14,39]. For the
time variable 7, the simple linear interpolation provides a
sufficiently accurate solution [39]. Computationally more de-
manding algorithms are used for the spatial interpolation,
such as the inverse quadratic (1/7> weighting) or cubic spline
approximations [40]. As for the numerical integration, the
simple Euler method is implemented [40]. Consistency is
checked with various time-steps of 6, 15, and 30 min (see
below).

Calculated trajectory of a point tracer released from the
middle of the northern hemisphere is illustrated in Fig. 10.
Colors (grayness levels) change when the “particle” repeat-
edly crosses the initial longitude (0°). A couple of closed
loops are easy to identify, however the general tendency is a
steady drift from west to east (due to the Westerlies) along a
wriggled trajectory.

Meridional transport is strongly hindered across the equa-
tor: 202 days are not sufficient for a uniform tracer distribu-
tion, as it is apparent in Fig. 11.

The quantitative evaluation of numerical computations is
much simpler than in dye dispersal experiments. The trivial
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FIG. 11. (Color online) Dispersion of 10° point tracers started
from a square of 1° X 1° from the position 45°N, 0° (lat, long). The
snapshot is taken after 202 days of advection, the color bar (gray-
ness level) indicates tracer density (number of particles per grid
cell).

reason is that individual trajectories can be easily followed.
For example, the mean center-of-mass drift velocity has an
almost constant eastward zonal component of 11°/day
(~870 km/day at 45°N) with a practically zero mean me-
ridional component. This result is obtained from ensemble
averaging over 96 numerical experiments, where clusters of
130 particles distributed on a regular lattice inside of an ini-
tial cell of 10° X 10° are studied. The role of regular spacing
was to avoid small tracer distances, we will return to this
point in Sec. V. The center of 12 different clusters were lo-
cated at equal longitudinal spacing of 30° along the latitudi-
nal circle 45°N, and each initial configuration was simulated
from eight different initial time instants for 500 h long. We
note that the tendency in the experimental tank is very simi-
lar to the numerical results. The snapshots in Fig. 2 are re-
corded by a corotating camera at positive rotation, and it is
absolutely clear that the cloud dispersal is asymmetric: the
right hand (“eastern”) side spreads faster than the left hand
(“western”) edge resulting in an eastward drift of the center
of mass.

The edges of the tracer clouds move with different speeds
than the center of mass. The zonal spread 6(¢) of the cloud is
defined again as the difference between the leading and tail-
ing edges (in angular units), in analogy with the laboratory
experiments (see Fig. 2). The average behavior is illustrated
in Fig. 12: the zonal spreading quickly converges to a ballis-
tic behavior of linear growth.

The covered area fraction A(¢) is determined by the num-
ber of cells of 0.5° X 0.5° where at least a single particle is
located, normalized by the total cell number of the global
mesh. Similarly to the laboratory experiments, ballistic (lin-
ear) growth appears on an intermediate time interval of
15-40 days, see the inset in Fig. 13. The long-time growth
after 3—4 encompassing time periods (~60 days, c.f. Figs.
12 and 13) is close to be diffusive, as it is expected. Note,
however, that the analogy with the experimental situation is
limited, because the number of tracers is strictly conserved in
the numerical tests, but this does not hold for the fluorescent
dye as a consequence of diffusive thinning.

In Fig. 7, the experimental number or revolutions N is
shown until the leading and tailing edges of the dye cloud
cross the same “longitude.” To improve statistics in the nu-
merical tests, the circumnavigation (or zonal return) time ¢,
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FIG. 12. Average longitudinal spread 6 (see Fig. 2) of tracer
clusters formed by 130 particles as a function of time (black line).
Gray band indicates one standard deviation obtained from 96 nu-

merical experiments (see text). Black dashed line marks the average
encompassing time ¢*, white dashed line is a linear fit.

for each individual tracer particle is evaluated. The initial
configuration was a thin cloud of uniformly distributed trac-
ers at 0° (longitude) over the latitude range of 80°S—80°N.
The circumnavigation time 7. has a very broad distribution,
as illustrated in Fig. 14. Note that the encompassing time ¢*
of a dye cloud is related to the width of the distribution of
single-particle circumnavigation time 7.. Broadly speaking,
this width is related to the difference between the fastest and
slowest tracers in a given cloud. Note also the consistency of
the normalized histograms obtained at different time steps of
the numerical integration. The right hand side of the empiri-
cal histograms obeys an almost cubic power-law decay. Due
to the heavy tail, the mean value 7.~ 23.5 days is larger than
the mode (the location of most probable value) 7,
~18.7 days. If we intend to compare these values with the
laboratory experiments, we need an estimate for the thermal
Rossby number Roy in case of the rotating Earth. This is not
a trivial task because of the differential rotation (the Coriolis
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FIG. 13. (Color online) Covered area fraction A—A, as a func-
tion of time for 5 X 103 tracer particles released from clusters of two
sizes (see legend) centered at 45°N, 0° in case (1), top two curves,
and 45°N, 30°E in case (2), bottom curve. Area computations are
performed by a resolution of 0.5° X 0.5°. Dotted lines indicate dif-
fusive growth with /2 behavior. Inset: zoom to the initial part. The
growth is linear for intermediate times (dashed lines).
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normalized frequency

10 tc [day] 100

FIG. 14. (Color online) Empirical probability density distribu-
tion of the circumnavigation time ¢, for three numerical experiments
with 10 tracers and temporal resolutions of 6, 15, and 30 min. The
initial condition was a uniform spatial distribution along the longi-
tude 0° in the range of [80°S,80°N] latitude. The decay obeys an
approximately cubic power-law for large 7, values (note the double-
logarithmic scale).

parameter changes with the latitude) and the different ther-
mal boundary conditions. Still, when we assume that the
laboratory setup adequately models midlatitude atmosphere
between 30°—70° [24], an approximate mean temperature
difference can be AT=25-30 °C. Relevant length scales are
H=10 km, L=4500 km, a mean Coriolis parameter [replac-
ing 2 in Eq. (1)]is f~10™* s7!, and an average coefficient
of volumetric expansion for air is =4 X 1072 °C~!. An es-
timated thermal Rossby number [see Eq. (1)] should fall in
the range [0.05-0.07]. By comparing Figs. 7 and 14, we can
see that numerical results are consistent with the laboratory
experiments and thus with the underlying assumptions.

The last presented numerical result in Fig. 15 cannot be
compared with the laboratory experiments. It illustrates an
interesting focusing effect in the atmosphere that is tracers
started from a uniform meridional distribution have a ten-
dency to drift toward the middle latitudes on both hemi-
spheres during the advection. The results of four experiments

T | L L L L L L L L | L L L L

T — spline, 30 min, 300 pts
— 14, 30 min, 1000 pts |[_
— 147, 15 min, 1000 pts ||
— 1%, 6min, 1000 pts ||

latitude of return [deg]
‘ I I (=]
L

1 T T T T T T T T T T T T T T T
0.000 0.005 0,010 0.015 0.020
normalized frequency

FIG. 15. (Color online) Asymptotic empirical probability den-
sity distribution of the latitude of return on an inverted scale. Four
different numerical experiments are performed with different spatial
interpolation schemes, integration time-steps, and cluster sizes (see
legend). The initial condition was a uniform meridional distribution
along the longitude 0° in the range of [80°S,80°N] latitude.
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with different integration step sizes and spatial interpolation
methods (inverse quadratic and cubic spline) are plotted to-
gether to demonstrate again statistical consistency. The
asymptotic distribution is obtained after 1 year of advection,
where the last latitude value at crossing 0° longitude is re-
corded. A similar focusing effect was reported in Ref. [41] by
simulating trajectories over isentropic surfaces, however they
studied tracer density distributions at fixed time differences.

V. DISCUSSION

The motion of an incompressible turbulent fluid is de-
scribed by the Navier-Stokes equation amended by the in-
compressibility condition of zero divergence. According to
Kolmogorov’s (K41) similarity theory [42], the largest spa-
tial and temporal scales are given by the energy-injection
length scales £ and eddy turnover time 7'z, while the small-
est scales are given by the Kolmogorov length 7=(v*/€)"*
and the Kolmogorov time 7=1v/ € (where v is the kinematic
viscosity, and € is the energy dissipation rate per unit mass).
The interval (7, £) is known as the inertial subrange because
viscous dissipation becomes important only at scales [ < 7.

Theoretical description of the mean square separation be-
tween two fluid elements (r()?) in the inertial subrange is
dated back to 1926, when Richardson suggested that it
should grow in time as #3 [17,43]. Obukhov specified that in
homogeneous and isotropic 3d turbulence, the pair disper-
sion should grow as (r(t)*)=get>, where g is a universal con-
stant. Batchelor refined this work [44] by considering the
role of initial separation ry=r(t=0), and concluded that the
mean square separation should grow as ¢ for times shorter

than a characteristic time scale #,=(r5/ €)',

[0 = =5 Caler*2, ©

where C,~2.13 is the scaling constant for the second-order
Eulerian velocity structure function [17], and t<<t,. In the
classical K41 theory of turbulence, 7, may be identified as
the time for which the divergence of two fluid elements is
determined by their initial relative velocity Av, in a given
eddy of size ry. At times #> 1, the growth of the pair sepa-
ration is expected to follow the Richardson-Obukhov scal-
ing, independently of r,. When the separation exceeds the
size of largest coherent structures, diffusive dispersion is ex-
pected (r(t)?)~t (Taylor regime). In statistically stationary
forced homogeneous and isotropic two-dimensional turbu-
lence, the Richardson-Obukhov 73 scaling holds, however ex-
periments exhibited various empirical exponent values be-
tween 2 and 3 [16,45].

An essential condition behind the validity of the Batchelor
scaling Eq. (6) is the lack of correlations between the initial
separation r, and the relative velocity of the pair Av, [43].
When this condition is not fulfilled, the correct scaling form
of relative pair separation is based on the vectorial difference
as

(el = ro?) = - Caterg*2. )
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FIG. 16. (Color online) (a) Mean squared relative pair separa-
tion for 96 dispersal experiments (see text) determined by the vec-
torial difference [see Eq. (7)], and binned for different initial sepa-
rations (see legend, curves from top to bottom). The dashed line
illustrate 7> scaling. (b) Fitted slopes as a function of initial separa-
tion ry by using the scalar/vectorial definition Egs. (6) and (7), see
legend. The fitted exponent values are 1.660.02 (white circles)
and 1.59+0.03 (filled squares).

Note that this Batchelor form bears important conse-
quences related to the evaluation of experimental data. (i)
When the energy dissipation rate per unit mass € is fixed, the
rate of pair separation depends on the initial value r itself.
(ii) The transition time to Richardson-Obukhov scaling
depends also on ry. This means that one cannot observe a
“clean” dynamics in a cloud of tracers with a mixture of
various initial separations. (iii) Identification of Richardson-
Obukhov £ scaling requires also a significant time scale
separation between #, and the eddy turnover time 7, [8,43].
Since the latter quantity is estimated around 3-5 days in the
troposphere (considering scales of a typical midlatitude cy-
clone) [46], and values for € are around 10> m?/s3 [47], an
initial pair separation of ry=300-500 km easily produces t,
on the order of a day.

A direct check of Batchelor hypotheses is possible only
by means of numerical simulations, because Lagrangian pair
tracking is not feasible by our experimental techniques. Here
we show representative results for the 96 dispersal simula-
tions, where the average pair separation is determined by
both scalar and vectorial definitions Egs. (6) and (7). Indi-
vidual clusters (12 locations and 8 starting time instants, as
before) are formed by 130 regularly spaced tracers over a
geographic area of 10° X 10°. The time dependence of pair
separation was determined in initial distance bins of 50 km,
where the center values are indicated in the legend of Fig.
16(a) (thus bin “75 km” denotes 50 km<ry<100 km, etc.,
except the largest value where “975 km” means rg
>950 km).

A special feature emerges at the vectorial differences in
Eq. (7) because pair dispersion proceeds over a spherical
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surface. The definition for [r(z)—r,] is unambiguous in 3D
Euclidean sense, however, pair distances must be determined
along geodesics in the atmosphere at large enough separa-
tions. To avoid computational discrepancies, we adopted the
following convention. One of the points of each pair is fa-
vored throughout the computations, and the angles are cal-
culated in the comoving Euclidean frame of reference (zonal
x and meridional y axes) with origin at this point. Vector
lengths are calculated on geodesics. This procedure is not
unique, however, we checked that the statistics conforms
with Eq. (6) where scalar separations were computed by pure
spherical geometry.

The results in Fig. 16(a) are consistent with the Batchelor
hypothesis over almost two decades of the time axis: the
mean squared separation increases with 2, and the slopes
depend on the initial value r,. We emphasize that the behav-
ior is almost the same for both the scalar and vector distances
[Egs. (6) and (7)], apart from numerical values for the slopes
shown in Fig. 16(b). Here, the empirical scaling is somewhat
surprising, because the exponent value ~5/3 is very far from
2/3 [see Egs. (6) and (7)], it cannot be a simple consequence
of numerical inaccuracies or statistical errors. We are fully
aware of the fact that large scale dispersal in the atmosphere
(and in the laboratory tank) can be different from what one
expects in 3D homogeneous and isotropic turbulence, still
the theoretical predictions concerning the time dependence
are very similar in both systems.

Let us summarize our findings in a compact form:

(i) We have shown that the zonal spread of a passive
tracer cloud grows linearly in time both in the rotating tank
experiments (Fig. 5) and in the numerical advection simula-
tions in reanalysis wind fields (Fig. 12).

(ii) The total area covered by tracers grows linearly in the
tank (Fig. 8), the behavior is similar in the numerical experi-
ments for intermediate times (Fig. 13, inset). The long-time
dynamics reflects diffusive slowdown in the atmosphere
(Fig. 13), but this regime is not accessible in the laboratory
setup.

(iii) The speed of dispersal (slope parameters and encom-
passing time) is determined by the thermal Rossby number
Eq. (4) obeying empirical scaling relations Figs. 6, 7, and 9.

(iv) Important results of the numerical advection tests are
that the mean pair separation strongly depends on the initial
value r,, and follows > growth [Fig. 16(a)], similarly to the
Batchelor hypothesis. A relevant consequence is that an ex-
tended tracer cloud exhibits always a mixed behavior, there-
fore a direct relationship between pair separation and overall
statistics cannot be easily formulated.

(v) The slopes of mean pair separation do not follow the
Batchelor scaling, the apparent exponent value is 5/3 [Fig.
16(b)]. In contrast to Egs. (6) and (7), simple dimensional
considerations suggest a combination like U~3(er,)>?, where
U has a dimension of velocity. However, the appearance of
such a factor seems to be difficult to argue for. Further work
is needed to explain these observations.

(vi) The quasigeostrophic turbulent wind field is far from
being homogeneous and isotropic, large scale (irregular) ed-
dies determine the dynamics. In addition, reanalysis fields do
not resolve structures below the grid spacing. Consequently,
the collective dynamics of an extended tracer cloud is
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spoiled by pairs of initial separation below gridsize. An ob-
vious sign of this effect is the appearance of unrealistically
long initial transients at too small cloud sizes, where the
“true” dynamics unfolds only when the mean pair separation
definitely exceeds the size of cells. This observation might
help to clarify earlier results on scaling behavior of tracers
simulated in wind fields of limited resolutions [22,41].
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