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Crossover from fingering to fracturing in deformable disordered media
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We investigate the displacement of one fluid by another in a deformable medium with pore-scale disorder.
We develop a model that captures the dynamic pressure redistribution at the invasion front and the feedback
between fluid invasion and microstructure rearrangement. Our results suggest how to collapse the transition
between invasion percolation and viscous fingering in the presence of quenched disorder. We predict the
emergence of a fracturing pattern for sufficiently deformable media, in agreement with observations of drain-
age in granular material. We identify a dimensionless number that appears to govern the crossover from

fingering to fracturing.
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The displacement of one fluid by another in disordered
media—such as porous media, etched micromodels, nano-
patterned surfaces, or biological tissues—gives rise to com-
plex invasion patterns [1]. The classical phase diagram of
fluid-fluid displacement delineates three different regimes
[2]: compact displacement, capillary fingering (CF) or inva-
sion percolation [3], and viscous fingering (VF) [4—6]. This
classification, which is based on micromodel experiments
and modified invasion percolation models, is applicable to
drainage in rigid media under negligible gravity effects.
Much attention has been devoted to the characterization of
each regime, as well as the transition among the different
regimes [7-10]. It has been shown, for instance, that pore-
scale disorder in rigid media impacts the regime transition
from invasion-percolation to VF [7,10].

Coupled fluid and granular flow also lead to a variety of
patterns, including fractures [11], viscous fingers [12], desic-
cation cracks [13], and labyrinth structures [14]. The forma-
tion of these patterns typically involves large particle rear-
rangements. Interestingly, a transition from VF to fracturing
(FR) has been observed for fluid displacement in viscoelastic
fluids and colloidal suspensions [15,16]. This crossover de-
pends on the system deformability and on the Deborah
number—a ratio of the characteristic times of a flow event
and viscoelastic relaxation [15].

The fracturing process in a disordered medium has been
studied at length [13]. Block-spring network models that
simulate fracture growth have emphasized the role of hetero-
geneity in the mechanical properties (elasticity or strength of
the springs), using either annealed disorder [17,18] or
quenched disorder [19,20]. However, the transition from
fluid instability (capillary or viscous fingering) to fracturing
remains poorly characterized at the pore scale. Recent mod-
eling results suggest that the mode of gas invasion in a po-
rous medium shifts from capillary invasion to fracture open-
ing as the grain size decreases [21], in agreement with
observations of gas bubble growth in sediments [22], and
drying in three-dimensional granular media [23].

In this paper, we investigate the crossover from fingering
to fracturing patterns in deformable disordered media by
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means of a pore-scale model of the displacement of one fluid
by another. Our pore-scale model captures the dynamics of
pressure redistribution at the invading front, allowing us to
characterize the effect of the initial disorder in hydraulic
properties on the transition from capillary to viscous finger-
ing. The model incorporates the two-way coupling between
fluid displacement and mechanical deformation, providing
the mechanisms for pore opening in response to pressure
loading (direct coupling), and alteration of the flow proper-
ties by particle rearrangements (reverse coupling). Despite its
simplicity, the model predicts the emergence of fracture
opening as a dominant feature of the invasion pattern for
sufficiently deformable systems.

We develop a two-dimensional (2D) discrete model of a
random medium. Since we are interested in elucidating the
general mechanisms of fluid invasion, rather than performing
predictions for a particular type of medium, we assume
a simple square-lattice arrangement of dented blocks
[Fig. 1(a)]. Variation in particle shapes leads to disorder in
throat apertures, which is assumed to be uncorrelated in
space. Mechanical interaction among the particles is repre-
sented through a block-and-spring model. The springs are
assumed to be prestressed under compression, with suffi-
ciently large confinement to prevent large microstructural re-
arrangements.

We construct two interacting networks, a solid network
and a fluid network, whose nodes are the solid particles and
the pore bodies, respectively. We solve for particle displace-
ments and fluid pressures at the pore bodies. The character-
istic length scale is the pore size a, which we take here as
half the distance between nodes in the lattice. We model
pore-scale disorder by assigning different initial area A and
permeability k to the throats between pore bodies. Both the
throat area and permeability scale with the square of the
throat aperture r, that is, A~r% k~r?. We characterize the
disorder in throat aperture by drawing values from a uniform
distribution, r € [1-\,1+\]r, where 7~a. The coefficient
A €(0,1) is a measure of the degree of disorder [7].

We simulate the invasion of an inviscid nonwetting fluid
into a medium initially saturated with a wetting fluid of dy-
namic viscosity w. The inviscid fluid pressure is spatially
uniform. A fluid-fluid interface will advance from one pore
to another if the capillary pressure (the difference between
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FIG. 1. (Color online) (a) Schematic of the model and simula-
tion of drainage. The solid matrix is represented by a square lattice
of dented blocks, connected mechanically by springs. The narrow
openings between particles are the pore throats, which connect the
larger openings (pore bodies). (b) An inviscid nonwetting fluid is
injected at the center of the network, displacing a viscous wetting
fluid. The pressure halo that surrounds the ramified invaded region
reflects the finite time scale required for pressure dissipation in the
defending fluid. The color scheme represents the logarithm of pres-
sure normalized by the invading fluid pressure. In all our simula-
tions, we use networks of 400X 400 pores (L=400a) and set a
=0.1 um, u=10"3 Pas, y=0.07 Nm™!, and =0.05. Here, Ca
=9X10™* and A=0.3.

nonwetting and wetting phase pressures) exceeds the capil-
lary entry pressure 2y/r, where vy is the interfacial tension
between the fluids and r is the aperture of the connecting
throat [24]. If both fluids are inviscid, pressure variations in
response to interface movement dissipate instantaneously;
then, the process is described by the classical invasion-
percolation algorithm [3] and depends exclusively on the
quenched disorder.

Consideration of fluid viscosity introduces spatial nonlo-
cality due to redistribution of the defending fluid along the
invasion front. Slow drainage in disordered media occurs in
the form of bursts, which lead to sudden changes in the de-
fending fluid pressure (“Haines jumps” [25]). When one or
more pores are drained during a burst, the interface menisci
at neighboring pores readjust, receding along throats or even
leading to a backfilling of previously drained pores [23]. The
short time scales associated with pressure buildup in the de-
fending fluid relative to that of drainage out of the system
make fluid redistribution along the front a crucial mechanism
[23,26,27]. This mechanism reduces the capillary pressure
(the local curvature decreases as the meniscus recedes) and
suppresses further invasion until the excess pressure in the
defending fluid is dissipated, thus limiting the burst size.

Incorporating meniscus readjustments in a dynamic pore-
network model [28,29] is computationally intensive. Here,
we introduce the main effect of front interface dynamics: an
effective compressibility of the system, even though the de-
fending fluid is nearly incompressible.

The effective compressibility ¢, can be obtained by the
following argument. The capillary number is a ratio of vis-
cous forces over capillary forces at the pore scale, Ca
=Apyise/ Apcap- Assuming Poiseuille flow, the viscous pres-
sure drop over a pore length is Ap,; ~ pva/k, with k~ a?
and v as the average flow velocity evaluated from the cumu-
lative values of the drained volume, time, and cross-sectional
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area along the boundaries [27]. Together with the Young-
Laplace equation, Ap.,,~ y/a, this leads to the classical
definition Ca=uuv/y. An alternative definition is the ratio of
time scales for pressure dissipation and pore filling [27],
Ca’=Atyees/ Atgy. Unlike [27], here we invoke pore-scale
quantities only. The time scale for pressure dissipation is
Atyess~a*/ D, where D=(k/p)/c, is the hydraulic diffusiv-
ity. The pore filling time scale is simply At~ a/v, leading
to Ca’=(uv/y)(c,y/a). Equating the two definitions of the
capillary number provides the effective compressibility of
slow drainage in a disordered medium:

¢ =—. (1)
Y

In our simulations, the nonwetting fluid is injected at the
center of the lattice at an approximately constant volumetric
injection rate. Since the invading fluid is inviscid, we focus
on the pressure evolution in the defending fluid. From mass
conservation at a pore body, we write the equation of pres-
sure evolution at an undrained pore, p(t+Af)=p(r)
+2,q;At/(c,V), where At is the time step, V is the pore vol-
ume, and the summation is over all neighboring pores. The
volumetric flow rate between the pore and its neighbor j is
given by Darcy’s law g;=(Ak/u)(p;—p)/€;, where {; is the
length over which the pressure drop p;—p is applied. For
flow between two undrained pores, {=2a. If pore j is
drained, the meniscus between the two pores starts advanc-
ing if p;—p>2vy/r. The consequent pressure variations in the
undrained pore are governed by the ability of the medium to
dissipate pressure through the effective compressibility. The
length over which viscous pressure drop takes place de-
creases as the meniscus advances, according to the expres-
sion €,(t+ A1) =€ (1) (q;/ A)At.

A typical invasion pattern from our model for conditions
near the transition between CF and VF is shown in Fig. 1(b).
The simulation clearly shows the presence of a pressure halo
surrounding the invaded region, as a result of the non-
negligible time required to dissipate pressure in the viscous
defending fluid.

We are interested in the effect of heterogeneity on the
flow pattern. The advancement of the interface is determined
by the competition among different pores along the front,
which depends on the distribution of throat apertures and
pore pressures. We expect the transition from capillary to
viscous fingering to occur when the characteristic macro-
scopic viscous pressure drop “perpendicular” to the interface,
dp |, exceeds the variation in capillary entry pressures along
the front, dp;. We express dp , ~Vp L, where L is the mac-
roscopic length scale, and use Darcy’s law Vp, ~puv/k to
obtain &p, ~uvL/a®>. We use a fixed value of the macro-
scopic length scale with L>a for the viscous pressure drop
in the defending phase, an assumption that is justified during
the initial stages of the invasion, but that becomes question-
able at later stages, when the invasion front approaches the
system’s boundaries and becomes fractal [30]. The maximum
capillary pressure difference along the front is dpy=y/ryn
=Y Fax ~ [N (1=\?)]y/a. Equating 8p, ~ dp;, and using
the definition of the capillary number, Ca=puv/y, we predict
a transition from VF to CF at Ca~[\/(1-\?)]a/L.
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FIG. 2. (Color online) Phase diagram of the invasion pattern as
a function of the capillary number Ca and the pore-scale disorder A,
in a rigid solid matrix. The classification is based on visual appear-
ance (see insets), as well as the mass fractal dimension Dy. Box
counting [31] provides estimates of D;~1.82 and D,;~1.64 for
capillary fingering (CF) and viscous fingering (VF), respectively,
with standard deviation O'Df=0.08 [see the Appendix]. The transi-
tion from capillary to viscous fingering (CF/VF) occurs at Ca
~[N/(1-\?)]a/L (black solid line), reflecting a balance between
viscosity and pore-scale disorder in capillary entry pressures.

We synthesize our results on a phase diagram in the Ca-\
space (Fig. 2). The invasion patterns are classified by visual
appearance, as well as by the fractal dimension D, (see the
Appendix). The value of Dy by itself is insufficient to provide
unequivocal classification due to expected fluctuations for
finite samples. The simulations confirm our predictions on
the transition from capillary to viscous fingering. For Ca/\
>a/L the effect of heterogeneity is negligible relative to that
of Laplacian-driven growth [31], allowing the most ad-
vanced fingers to continue propagating. This results in long
and thin fingers typical of VFE. For Ca/\N<<a/L, the hetero-
geneity in throat apertures dominates, leading to invasion
that propagates at alternating locations. As a result, different
parts of the front will coalesce and trap some of the defend-
ing fluid behind, creating the fat clusters with thick fingers
characteristic of CF.

The two regimes are separated by an intermediate regime
centered on the theoretical curve Ca~[\/(1=\?)]a/L. In the
limit A—1 the capillary disorder blows up. The analysis
above indeed suggests that the CF regime always dominates
in this limit (the crossover curve diverges in the Ca-\ space).
In the limit of nearly homogeneous media and high capillary
number (not shown in Fig. 2), the model’s anisotropy be-
comes dominant, and dendritic growth occurs along the lat-
tice axes, similar to the experimental results in [7]. Our
analysis suggests the existence of a crossover length scale
Ly~[N/(1-\?)]Ca™! a, at which the displacement experi-
ences a regime shift from CF (below Ly) to VF (above Ly).
A similar conclusion was drawn from the mass fractal di-
mension of the pattern in drainage experiments [10].

A compliant solid matrix can deform in drainage, which
in turn may lead to fracture opening during fluid invasion.
Here, we investigate the impact of system deformability on
the emergence of invasion patterns. Particle displacements
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FIG. 3. (Color online) Phase diagram of drainage in deformable
disordered media, showing three distinct invasion patterns: viscous
fingering (VF), capillary fingering (CF), and fracturing (FR). The
gray dashed lines denote transitions among the different regimes.
Intermediate regimes are marked by CF/VF, FR/VF, and FR/CF
The deformability of the system is characterized by the fracturing
number Ny drainage is dominated by fracturing in systems with
N¢>1. At lower N; values, a transition between CF and VF occurs
around Ca(L/a)/[N/(1-N3)]=1.

cause changes in the contraction of the springs over time,
h(t). To highlight the effect of disorder in flow properties, we
assume that the system is initially prestressed homoge-
neously, such that all springs are subject to the same com-
pression h,, corresponding to a macroscopic strain €
=hy/2a. Each particle is subject to two types of forces: pres-
sure forces and contact forces. The force exerted on a par-
ticle by the fluid occupying an adjacent pore body is oriented
at 45° and is of magnitude f,=pA,, where A, ~ a® represents
the area upon which the pressure acts. The interparticle con-
tact forces f. are updated by f.(1+Ar)=f.(t)+KAh, where K
is the spring stiffness and Ah=h(r+Ar)—h(r) is the change in
spring contraction. Particle positions are determined at the
new time step by imposing force balance at every block,
E(fp+ fc):(i which leads to a linear system of equations to
be solved for Ak of every spring. Particle displacements im-
pact fluid flow because they modify the throat apertures. We
evaluate changes in throat apertures and in interparticle
forces from the particle displacements, in analogy with cubic
packing of particles with frictionless Hertzian contacts, such
that Ar=—Ah(1-€)/[2V1+(1=¢)?], where e=h()/2a, and
the spring stiffness K=2E*VR*h, where R*=a/2 and E* is
the constrained Young modulus of the particle material [32].
We simulate material behavior that cannot sustain tension
and, therefore, a spring is removed when there is net elonga-
tion between blocks (2=0). A small cohesive force is ap-
plied as a regularization parameter. This force is orders of
magnitude smaller than the typical pressure force, and we
have confirmed that the results are insensitive to the value of
this cohesive force, as long as it is small.

Our model predicts fracturing patterns that are strikingly
similar to those observed in 2D experiments, with thin long
features which are straight over a length much larger than a
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FIG. 4. (Color online) Fractal dimension and displacement pat-
tern for rigid medium, with a value of A=0.1, showing a transition
from VF to CF as the capillary number is reduced.

pore size [11], and fractal dimension lower than in fingering,
D;~1.43 (see the Appendix). The straight segments of the
invasion pattern form as a result of localized rearrangements:
increasing throat aperture by displacing particles in a direc-
tion perpendicular to that of the finger advancement pro-
motes finger growth in that direction. This mechanism is
arrested when the front reaches a bottleneck, associated with
either initial disorder or compaction ahead of another propa-
gating fracture.

The emergence of a fracturing pattern requires sufficiently
large change in throat apertures. Particle rearrangements de-
pend on the balance between the forces applied by the fluids
and the interparticle forces holding the particles in place. We
define a dimensionless “fracturing number” N; as the ratio of
the typical pressure force increment after drainage of a pore,
Af,~ ya, and the force increment resulting from interpar-
ticle deformation, Af,~\E*a’€)”. The latter is obtained
from the condition Ak~ Ar, where the required change in
throat aperture is Ar~NF~ \a, and using the initial overlap
ho to compute the interparticle stiffness K. With that,
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FIG. 5. (Color online) Fractal dimension and displacement pat-
tern for deformable medium, with a value of Ca*= 10, showing a
transition from fracturing to fingering as the fracturing number is
reduced.
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An alternative expression for N; is obtained by substituting
the initial confining stress oy~ E*¢,* into Eq. (2).

We synthesize drainage behavior in a deformable medium
in a phase diagram with two dimensionless groups: the frac-
turing number N; and a modified capillary number
Ca(L/a)/[N/(1=\?)] (see Fig. 3). For a rigid medium (N;
< 1), the transition from capillary to viscous fingering occurs
at Ca(L/a)/[N/(1=N\?)]=1. Fracturing is evident when N;
>1. A crossover from fingering to fracturing occurs at Ny
= 1. Equation (2) implies that fractures tend to open in fine-
particle media, suggesting that below a critical particle
size—which decreases with the particle stiffness and the ex-
ternal confinement—invasion is dominated by fracturing.
This is consistent with observations of gas bubble growth in
sediments [21,22] and drying in porous media [23].
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In conclusion, this study explains the crossover among the
different fluid displacement patterns of drainage in a deform-
able medium. The invasion behavior depends on two dimen-
sionless groups. One is related to the influence of pore-scale
disorder on the balance between viscous forces and capillary
forces. The other measures the deformability of the medium
as a function of capillary effects, material properties, and
initial confinement. Despite its simplicity, our model predicts
the transition from capillary fingering to viscous fingering in
rigid media and a crossover from fingering to fracturing in
deformable media, suggesting that it captures the essential
aspects of the interplay between multiphase fluid flow and
mechanical deformation.

This work was supported by the Department of Energy
under Grant No. DE-FC26-06NT43067. This financial sup-
port is gratefully acknowledged.

APPENDIX

In this appendix we demonstrate the ability of our pore-
scale model to capture the transition among the different in-
vasion regimes—VF, CF, and FR. Our classification of the
displacement pattern is based on visual appearance, as well
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as the fractal dimension D, (using box counting [31]). Visual
appearance is an essential consideration in the classification
because the estimation of the fractal dimension from the
mass vs distance curves is subject to large fluctuations for
finite-size systems [5,33-35].

First, we illustrate the transition between VF and CF. For
a given value of the disorder parameter, A=0.1, we investi-
gate the displacement pattern for a range of capillary num-
bers. For each value of Ca, we show the displacement pattern
and the curve of mass vs distance from which the fractal
dimension is obtained (Fig. 4). It is evident that the model
predicts a transition from VF (high Ca) to CF (low Ca).
Moreover, the values of the fractal dimension are in excellent
agreement with experimentally determined values of 1.60—
1.65 for VF in a porous Hele-Shaw cell [5,34] and the well-
known value of 1.82 for invasion-percolation corresponding
to CF.

Next, we show the transition between VF and FR by
studying displacements with a similar value of the modified
capillary number, Ca*=Ca(L/a)/[N/(1-\*)]=10, and a
range of values of the key dimensionless group, the fractur-
ing number N;. The fracturing pattern is characterized by
fingers with straight segments and a lower fractal dimension
(Fig. 5).
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