
Interaction of Kelvin force and transport across a melting substrate
in a microgravity environment

Nicholas K. Burgess* and Kannan N. Premnath†

Department of Mechanical Engineering, University of Wyoming, Laramie, Wyoming 82071, USA
�Received 8 June 2010; revised manuscript received 31 August 2010; published 8 October 2010�

Gradients in magnetic field applied to electrically insulating fluids result in an effective body force—the
Kelvin force, which can potentially be used to control flow and thermal processes, particularly in microgravity
environments. We study the influence of the Kelvin force on the mass, momentum, and energy transport of
fluid arising from the melting of a semi-infinite solid substrate subjected to temperature and magnetic-field
gradients. The governing equations of the magnetothermal free convection of the melt under the boundary
layer approximation with a suitable transformation lead to a similarity solution. Closed-form analytical solu-
tions for the limiting case of smaller Prandtl numbers are presented. The nonlinear similarity equations are
solved numerically using an iterative boundary-value technique based on a finite-difference approach. Based
on the numerical results, the effect of various characteristic nondimensional parameters on the structure of the
melt boundary layer and transport rates of heat and mass across the substrate are elucidated and discussed.
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I. INTRODUCTION

When an electrically insulating fluid is subjected to non-
uniform magnetic fields, it induces the Kelvin force, a volu-
metric force, on the fluid. The magnitude and direction of
this force depend on the magnetic susceptibility of the mate-
rial, the strength of the applied magnetic field, and its gradi-
ent �1�. By using magnets of sufficient strengths, this force
can be made to align with the center of mass of the fluid in a
parallel or antiparallel manner to create artificial variable
gravity-like environments. In contrast to the Lorentz force in
magnetohydrodynamics, which arise from the interaction of
the magnetic field with the flow of an electrically conducting
fluid �2�, the Kelvin force results from the microscopic align-
ment of dipole moments due to magnetic-field gradients �1�.
As a result, the latter can have an influence on all types of
insulating fluids—both paramagnetic and diamagnetic. Spe-
cifically, regions of higher magnetic-field strength result in
an attractive Kelvin force for paramagnetic fluids, while be-
coming repulsive for diamagnetic substances �3�. One impor-
tant potential application of this force lies in the design and
control of thermal and material transport processes in such
situations where the terrestrial gravity effects are negligible,
including material processing applications in spacecraft,
where the effect of Kelvin force can become particularly
pronounced.

Beaugnon and Tournier �4�, in a seminal work, provided a
successful experimental demonstration of the levitation of
ordinary diamagnetic liquids, such as water, ethanol, and ac-
etone in the presence of an applied magnetic-field gradient,
i.e., Kelvin force. On the other hand, the same group also
investigated the combined effect of an applied thermal and
magnetic-field gradient inducing magnetothermal free con-
vection at around the same time �5�. It may be noted that one
of the earliest studies in this regard was carried out by Car-

ruthers and Wolfe �6�. They showed that the buoyancy ef-
fects induced by the Kelvin force can even exceed that of
gravitational buoyancy on convection in a rectangular cham-
ber for terrestrial conditions with appropriate magnitude of
the magnetic-field gradients. An analytical solution for fully
developed convection between parallel plates by including
the magnetic and thermal gradient effects was obtained later
�7�. In a series of articles, Huang et al. �8–10� studied con-
vective instability of a layer of paramagnetic fluid heated
from below and subjected to Kelvin force effects, which was
also extended to diamagnetic fluids �11�. It may be noted that
similar studies have been carried out for the case of artificial
ferrofluids starting from the work of Finlayson �12–14�. A
detailed theoretical analysis of the magnetothermal convec-
tion was also carried out by Bai et al. �15�. Wakayama et al.
�16� provided an effective vertical acceleration control
method that can vary continuously from normal gravity to
close to zero gravity using Kelvin forces, proving the con-
cept by means of an experimental investigation. Gray et al.
�3� studied magnetothermal plumes by means of a similarity
solution based on a boundary layer analysis. They also dem-
onstrated that Kelvin forces can be treated as a buoyancy-
type force for such problems in a similar way to gravity but
in a generalized sense with a spatially variable acceleration
term. Akamatsu et al. �17� showed that magnetothermal gra-
dients can lead to the formation of jet flow by means of a
numerical study. Experimental measurement studies of the
enhancement of natural convection in cubical enclosures by
means of Kelvin force were carried out by Bednarz et al.
�18�. Recently, Larachi and Munteanu �19� experimentally
studied the influence of gradients in magnetic fields on the
hydrodynamic properties of electrically insulating two-phase
�gas-liquid� flows.

An interesting possibility with potential applications is the
use of Kelvin force to control phase-change processes in
electrically insulating materials, such as melting or solidifi-
cation in the presence of thermal gradients by means of suit-
able magnetic field gradients. In fact, the early work by Car-
ruthers and Wolfe �6� suggests this application for crystal-
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growth control of certain diamagnetic liquids by analyzing
data based on a contemporary measurement �20�. More re-
cently, in a related context, Wakayama et al. �21� performed
visualization studies of the influence of Kelvin force on pro-
tein crystal formation. It was found that when the Kelvin
force applied to a supersaturated protein solution is effec-
tively upward �downward�, then the protein crystals were
found to be improved �deteriorated� �22�. Furthermore, Tag-
ami et al. �23� demonstrated the solidification of levitating
water droplet by means of Kelvin force using an experimen-
tal setup in a microgravity environment. Recent studies in
this direction include the work by Ramachandran and Leslie
�24�.

Phase-change problems involving melting or solidifica-
tion have numerous applications related to material process-
ing. A canonical problem in this regard is the melting of a
semi-infinite substrate—the Stefan problem �25�—is rich in
nonlinear physics representing coupled transport phenomena
with moving interfaces. In the context of electrically con-
ducting materials, the Lorentz force induced by magnetic
field has been used to control a number of materials process-
ing applications, such as crystal growth, semiconductor fab-
rication, and casting of steel �26–28�. In particular, Seeniraj
and Kannan �29� investigated the effect of the Lorentz force
on the melting transport by means of an integral analysis
approach. On the other hand, a theoretical or numerical study
of the effect of Kelvin force on the phase-change processes
in microgravity environments, where it has particular signifi-
cance with potential applications, is desired.

Thus, the focus of this work is on the theoretical and
numerical investigation of the influence of Kelvin forces on
the transport for the following configuration of a melting
substrate. We consider a semi-infinite block of insulating ma-
terial �paramagnetic or diamagnetic� subjected to thermal
and magnetic-field gradients. The presence of thermal gradi-
ents causes steady heat transfer into the solid resulting in
phase change to fluid as the latent heat of phase transforma-
tion as well as the heat capacity due to its initial subcooling
is overcome. It may be noted that in the absence of convec-
tion, heat propagation by pure conduction only causes
smoothening of temperature profile, with no regime of mov-
ing melting front of stationary profile. On the other hand,
convection in melted phase provides additional intense heat
influx to the melting front that cannot be balanced by a
purely conductive heat influx into the solid phase. This un-
balanced energy influx goes into the latent heat of melting in
such a way that any buoyant convection in liquid phase un-
avoidably leads to propagation of the melting front into the
solid phase. Such propagation can be associated with station-
ary profile solution, as considered in this work.

By assuming the Boussinesq approximation for the den-
sity as well as the magnetic susceptibility, the Kelvin force is
rewritten as a buoyancy force with a magnetic acceleration
term that drives the magnetothermal convection of the liquid
melt. The two-dimensional �2D� coupled mass, momentum,
and energy equations of the melt are simplified by means of
the standard boundary layer approximation �30�. To facilitate
the analysis, the phase boundary is immobilized by means of
a variable transformation first suggested by Landau �31� and
extended by others �32–34�. As a result, the mass and energy

transport across the phase boundary controlled by the Kelvin
force appears as a boundary condition to the boundary layer
equations for the melt. Under a suitable choice of power-law
variations for the Kelvin force, it will be shown that the
governing equations and the attendant boundary conditions
exhibit similarity, which are solved by means of a nonlinear
finite-difference technique. Here, we consider vicinity of sin-
gularities of the magnetic fields and the phrase “power law”
mentioned here and henceforth refer to the order of singular-
ity. This allows investigation of the effect of the various
characteristic parameters, including different power laws for
the Kelvin force, on the melt free convection flow and tem-
perature distribution, as well the transport rates across the
phase boundary.

The paper is organized as follows: Section II discusses the
theoretical formulation of the mass, momentum, and energy
transport of the melt with attendant phase-change boundary
conditions in the presence of the Kelvin force. It also pre-
sents the resulting simplification as a similarity solution due
to the boundary layer approximation. Section III discusses
the asymptotic solution for small Prandtl numbers based on
this similarity formulation. The numerical solution procedure
employed is presented in Sec. IV. Section V provides the
numerical results and discusses the influence of various gov-
erning parameters. Finally, summary and conclusions of this
paper are presented in Sec. VI.

II. GOVERNING EQUATIONS

A schematic of the physical configuration consisting of
the magnetothermal free convection of an electrically insu-
lating �paramagnetic or diamagnetic� liquid layer resulting
from the melting of semi-infinite solid substrate subjected to
thermal and magnetic-field gradients is illustrated in Fig. 1.
The equations governing the motion of the melt fluid are the

FIG. 1. Schematic arrangement of the physical configuration.
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steady, incompressible Navier-Stokes equations under an ex-
tended Bousinessq approximation for fluid properties given
by

� · u = 0 , �1�

��u � · u = − �p − �g + �����2u + �0
�

2
� �H2� , �2�

where the last term in Eq. �2� is the Kelvin force due to the
applied magnetic field H �1�. Here, both the properties, viz.,
the density � and the magnetic susceptibility �, are allowed
to vary only for the terms involving the gravity and Kelvin
body forces, respectively—hence the characterization as the
extended Bousinessq approximation. �0 is the permeability
of free space and � is the kinematic viscosity of the fluid.
The subscript “�” refers to the static conditions, i.e., those
that are at far distances from the substrate-liquid phase
boundary. For the 2D flow under consideration the velocity
vector is u= �u ,v�†, where “†” is the transpose. The equation
governing the temperature distribution in the melt is the con-
servation of energy for the incompressible melt flow given as

��Cp�
u · �T = k��2T , �3�

where Cp�
and k� are the specific heat at constant pressure

and thermal conductivity, respectively, of the liquid. Here, as
in �3�, the effect of magnetic terms in Eq. �3� is neglected.

For the 2D flow under consideration the following bound-
ary conditions for the fluid variables are given by

u�x,0� = 0,

u�x,�� = u� = 0,

v�x,0� = vi�x,0� ,

T�x,0� = Ti,

T�x,�� = T�, �4�

where Ti is the specified “melting” temperature and vi�x ,0�
is the normal velocity �unknown a priori� at the substrate-
melt layer interface.

The magnetic field satisfies a simplified form of Max-
well’s equations given as

� · B = 0, � � H = 0, B = �0�1 + ��H .

Thus,

� · H � 0 . �5�

This particular form implies that the magnetic field is unaf-
fected by the flow and hence we are free to specify a mag-
netic field H=H�. Further, there is no need to explicitly
solve Maxwell’s equations along with the equations of fluid
motion and energy transport.

The equation governing the melting of the solid substrate
is the steady heat conduction equation with its interface front
with the liquid moving with an as yet unknown velocity
vs�x ,0�. Note that the conservation of mass at the interface

implies �svs�x ,0�=�v�x ,0�. This expression is valid for the
reference frame fixed to the melting front, as considered in
the following. The essential physical element here is that the
heat supplied to the substrate at the interface should over-
come the latent heat of melting L and the heat capacity of the
substrate if it is at a subcooled temperature To �i.e., To	Ti�
as the front maintains a steady local melting velocity. By
means of a suitable transformation applied to this governing
equation, first suggested by Landau, the boundary can be
effectively immobilized �31–33�, and, ultimately, the influ-
ence of the physical processes in the solid appears as a
boundary condition for the liquid melt. Thus, the effective
nondimensional heat conduction for the solid substrate is
written as �29,34�

d2
s

dȳ2 − ��
Stef

Stes

v�x,0�
 f

d
s

dȳ
= 0,


s�ȳ = 0� = 1, 
s�ȳ → − �� = 0, �6�

where the various dimensionless groups are given by

ȳ =
y

l
, 
s =

Ts − To

Ti − To
, � =

T� − Ti

Ti − To
, � =

k�

ks
,

 f =
k�

��Cp�

, Stef =
Cp�

�T� − Ti�

L
, Stes =

Cps
�Ti − To�

L
.

Here, l is a characteristic length and To and T� are the tem-
peratures at far off distance from the interface in the solid
and liquid, respectively. � is the ratio of the degree of super-
heating in the liquid melt to the degree of subcooling in the
substrate, � is the ratio of thermal conductivities of the liquid
to the solid, and  f is the thermal diffusivity of the liquid;
furthermore, an important characteristic dimensionless group
for phase-change problems is the Stefan number �Ste�, which
represents the ratio of the heat capacity of a given phase to
the latent heat of phase change �melting�. Here, Stef and Stes
are the Stefan numbers for the liquid and solid phases, re-
spectively. The governing equation for the substrate can be
readily solved to yield �29�


s = exp���
Stef

Stes

vs�x,0�l
 f

ȳ� . �7�

Using this solution the condition for the rate of heat transfer
to the liquid melt can be evaluated as follows:

�k�

�T

�y
�

y=0+
= �sLvs�x,0� +�ks

�Ts

�y
�

y=0−
, �8�

in which when Eq. �7� is used for the substrate temperature
distribution yields

�kf
�T

�y
�

y=0+
= �sLvs�x,0� + cps

�svs�x,0��Ti − To� . �9�

Thus, this finally gives an effective coupled boundary condi-
tion between the normal velocity v�x ,0� and the rate of heat
transfer at the interface front for use with the liquid melt
layer transport equations.
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To proceed further, let us now evaluate the momentum
equation �Eq. �2�� of the melt at far off distances from the
interface giving

0 = − ��g − �p� + �0
��

2
� H2, �10�

which essentially is a restatement of the force balance under
static conditions. Subtracting this from the full momentum
equation �Eq. �2�� results in

��u � · u = − ��p − p�� + �� − ���g + �����2u

+
�0

2
�� − ��� � �H2� . �11�

Using the standard Boussinesq approximation for the density
by means of the temperature excess �T�−T�,

� = ���1 − ���T� − T�� �12�

gives a coupling between the momentum and energy equa-
tions of the motion of the melt. Here, �� is the coefficient of
thermal expansion ����0�.

A. Kelvin force as a buoyancy force

The Kelvin force can also be characterized as a buoyancy
force through some manipulation �3�. To cast the Kelvin
force as a buoyancy force, the susceptibility � which is, in
general, both a function of density and temperature ���T ,���
is expanded in a Taylor series as

��T,�� = �� +� ��

�T
�

�

�T − T�� +� ��

��
�

�

�� − ��� + O��T2,��2� ,

�13�

where �T=T−T� and ��=�−��. For small temperature
variations, the series is truncated to first order �dropping the
higher order terms in the above expansion�. In particular,
considering that paramagnetic substances obey Curie’s law
�i.e., �=C� /T�, while the diamagnetic fluids satisfy �=�m�,
and taking ��

�� 	�=�� /��, we can write a unified variation for
susceptibility under the above extended Bousinessq approxi-
mation �3�,

� = �� −
��

��

�����T� − T� , �14�

where ��=1−1 /��T� and ��=1 for paramagnetic and dia-
magnetic fluids, respectively. As a result, the Kelvin force, in
terms of the local temperature excess, magnetic-field gradi-
ent, and other parameters, can now be rewritten as

Fk = �0
�� − ���

2
� H2 = −

�0

2
�������T� − T� � H2.

�15�

This force, which may be characterized as a “Kelvin buoy-
ancy force” as it also leads to a coupling of momentum and
energy transport, can be conveniently presented in terms of a
generalized magnetic acceleration term as

Fk = − �����T� − T�gk, �16�

where

gk =
�0

2

��

��

�� � H2. �17�

Note that given the sign of Eq. �16�, the spatially dependent
“gravity-like” term arising due to magnetic-field gradient gk
in Eq. �17� will induce “buoyancy” fluid motion provided it
has a negative sign. Thus, Eq. �11�, using Eqs. �12�, �16�, and
�17�, can finally be written analogously to the classical free
convection with the addition of a magnetic acceleration term
gk, leading to the so-called magnetothermal momentum
equation of the melt layer as

��u � · u = − ��p − p�� − �����T� − T��g + gk� + �����2u .

�18�

The final form of the governing equations is given in Eqs.
�1�, �3�, and �18� with boundary conditions given in Eqs. �4�
and �9�, which will be used to derive boundary layer and
corresponding similarity equations. Note that the Kelvin
force is proportional to the gradient of the magnetic-field
magnitude squared.

B. Microgravity boundary layer

A microgravity environment is one in which the accelera-
tion due to gravity is considered negligible �g�0�, in which
case the Kelvin buoyancy force assumes particular signifi-
cance and can be used to appropriately control melting heat
transfer rates. Further in this analysis there will be no free
stream velocity and the free stream pressure and temperature
will be assumed constant. The standard order-of-magnitude
arguments �e.g., �3�� are used to simplify the equations gov-
erning the melt to give boundary layer equations as

�u

�x
+

�v
�y

= 0, �19�

u
�u

�x
+ v

�u

�y
= − ���T� − T�gk + ��

�2u

�y2 , �20�

u
�T

�x
+ v

�T

�y
= �

�2T

�y2 . �21�

These boundary layer equations are subjected to the bound-
ary conditions given in Eqs. �4� and �9�.

C. Similarity solution

Introducing a stream function ��� that automatically sat-
isfies the conservation of mass by requiring

u = ��
�y , v = − ��

�x ,

a similarity solution for the stream function is sought. The
similarity variables are defined by
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� =
ay

xr , � = G�x�f���, G�x� = bx�,

with additional similarity variables for the temperature and
applied Kelvin buoyancy force given by


��� =
T − Ti

T� − Ti
,

gk�x� = − Mx�, �22�

where a, b, r, �, M, and � are constants. Here, M �0 and a
negative sign is used for gk to be consistent with the require-
ment for inducing fluid motion due to buoyancy effects as
discussed in Sec. II B. Introducing these into Eqs. �20� and
�21� and using the definitions of velocities in terms of the
stream function one arrives �after lengthy simplification� at
the following equation governing the similarity variable f as

�� − r��f��2 − �f f� = − ���T� − Ti�M�
 − 1�
x�

a2b2x2��−r�−1

+
��a3b

a2b2

x�−3r

x2��−r�−1 f�. �23�

In order to obtain a similarity solution it is required that all
coefficients be independent of the x coordinate, giving the
following constraint equations −��+r�+1=0⇒r= �1−�� and
�−2��−r�+1=0⇒�= ��+3� /4, the solution of which gives
relations between r and � and the Kelvin force parameter �
as r= 1

4 �1−�� and �= 1
4 ��+3�. Substitution of these into Eq.

�23� yields

2�� + 1��f��2 − �� + 3�f f� = −
4��

a2b2 �T� − Ti�M�
 − 1�

+ 4��

a

b
f�. �24�

For further simplification, we set 4���T�−Ti�M /a2b2=1 and
4��

a
b =1, and solving gives

a = �M���T� − Ti�
4��

2 �1/4

, b = 4��a ,

thus yielding the final equation for the similarity variable f as

f� + �� + 3�f f� − 2�� + 1��f��2 − �
 − 1� = 0. �25�

Using an analogous procedure for the energy equation gives


� + Pr�� + 3�f
� = 0, �26�

where Pr is the Prandtl number given by Pr=�� /�. The
boundary conditions for the similarity equations are obtained
from Eqs. �4� and �9� as

f��0� = 0, f���� = 0, 
�0� = 0, 
��� = 1,

B
��0� + �� + 3�Prf�0� = 0, �27�

where B is referred to as the melting parameter, as it charac-
terizes the melting effects in terms of dimensionless groups
and is given by

B =
Cp�

�T� − Ti�

L + Cps
�Ti − To�

=
Stef

1 + Stes
.

The solution of Eqs. �25� and �26� together with the bound-
ary conditions in Eq. �27� gives all the information required
to compute velocity and temperature profiles as well as melt-
ing and heat transfer rates in the liquid melt layer. In particu-
lar, in this regard, the components of the velocity field can be
rewritten in terms of new dimensionless groups by defining
the local magnetic Grashoff number from parameter a as

GrM,x =
M���T� − Ti�x3

��
2 .

The similarity variables then reduce to

� = 
GrM,x

4
�1/4 y

x1−�/4 , � = 4��
GrM,x

4
�1/4

x�/4f��� .

Furthermore, defining the characteristic velocity Uo based on
the parameters a and b for the problem involving thermal
and magnetic-field gradients as

Uo = 2�M���T� − Ti��1/2x��+1�/2,

we can finally write

u

Uo
= f���� ,

v
Uo

= −
1

4

GrM,x

4
�−1/4

x−�/4��� + 3�f��� − �1 − ���f�� .

In addition, the local heat transfer coefficient may now be
written as

hx =

k
 �T

�y
�

y=0

�T� − Ti�
= k
 �


�y
�

y=0
=

k

x1−�/4
GrM,x

4
�1/4


��0� ,

which yields the local Nusselt number as

Nux =
hxx

k
= x�/4
GrM,x

4
�1/4


��0� ,

which provides a nondimensional characterization of the heat
transfer rate at the melt interface front. Based on this, we
arrive at the nondimensional local melting rate as

v�x,0�x
�

= BNux.

Finally, the power-law parameter � can be related
to the applied magnetic-field strength H�x� using the
definition of the magnetic acceleration term and
Kelvin buoyancy force as H�x�=Hox��+1�/2 for ��−1 and
H�x�=H�xmin��ln�x /xmin��1/2 for �=−1, where x�xmin�0.
Note that both Uo=Uo�x� and H�x� follow similar power-law
variations. This yields the following expressions for the pro-
portionality parameter M in the magnetic acceleration term
in terms of all known variables as
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M = −
�o����H0

2

2��

�� + 1�, � � − 1,

M = −
�o����H2�xmin�

2��

, � = − 1.

III. ASYMPTOTIC SOLUTION FOR SMALL PRANDTL
NUMBERS

We will now investigate the possibility of deriving an
asymptotic solution for the limiting case of small Prandtl
numbers �Pr�. When Pr�1, viscous effects are negligible.
Furthermore, for the purpose of an asymptotic solution, it
would suffice to use the average value of the buoyancy force
based on an assumed temperature distribution in the similar-
ity equation for the momentum �35�. Thus, considering an
approximate quadratic temperature distribution profile �35�
would provide the average temperature field as 
̄=2 /3.
Using this value, considering negligible viscous effects
�f��0�, and retaining the rest of the terms in the
similarity equation for velocity field �Eq. �25��, we get
��+3�f f�−2��+1��f��2+1 /3=0. With standard substitution
f�= p�f�, we have f�= pf�f�f�= pfp from which one finds

�� + 3�fppf − 2�� + 1�p2 + 1/3 = 0.

The latter equation yields

�f��2 = �1
2 + C exp�4

� + 1

� + 3
f�, �1 =

1
�6�� + 1�

, �28�

where C is the integration constant.
Solution to this equation can be qualitatively analyzed

with the following sketch of the phase diagram �see Fig. 2�.
It is immediately clear from this figure that solutions with

	f��0�	��1 grow exponentially, which is not admitted. Fur-
thermore, remarkably, all 	f��0�	��1 are admitted and corre-
sponding solutions tend to f�=−�1 for any initial conditions
except for f��0�=+�1. Thus, mathematically, f��0�= ��1 is
possible. However, from a physical point of view, since f�

represents the velocity component along the direction paral-
lel to the melt interface, a negative value would imply re-
verse flow. Thus, f��0�=+�1 is a physically relevant choice.
Furthermore, when Pr�1, the velocity field generally
exhibits pluglike profile and variations across the fluid
layer are generally weak �35,34�. In consequence, to a
good approximation we can set C=0 in Eq. �28� and
integrate it using the coupled interface boundary condition
B
��0�+ ��+3�Prf�0�=0 given in Eq. �27�. This yields the
asymptotic solution for the velocity field as

f��� = �1� + f�0�, f�0� = −
B
��0�

�� + 3�Pr
,

where 
��0� is as yet unknown and �1 is given in Eq. �28�. It
may be noted that using C=0 in the above is tantamount to
considering f f�=0, which has been previously employed in
determining asymptotic behavior of boundary layer equa-
tions �35�. Furthermore, notice that at Pr�1, as the order of
the equations is reduced, the boundary condition f��0�=0
�i.e., no-slip condition� is not applicable anymore as the fluid
behaves essentially as an inviscid fluid.

It follows that the expressions for the components of the
velocity field can be simplified for this case as

u�x,y�
Uo

= �1,
v�x,0�

Uo
=

B

4

GrM,x

4
�−�/4

x−�/4
��0�
Pr

.

This shows that in particular when Pr�1, the following scal-
ing hold: u��+1�−1/2 for the component parallel to the
substrate and v�x ,0� B
��0�

Pr for the melting rate at the inter-
face. That is, the melting parameter and the heat transfer
rates directly control the rate of substrate melting, while Pr
has an inverse relationship with melting rate. The solution
can be completed by substituting this similarity equation for
the velocity field into that for the original energy equation for
the melt �Eq. �26��, which upon integrating and further sim-
plification yields


��� =
erf��2��1� + f�0��� − erf��2f�0��

�1 − erf��2f�0���
, �2 =��� + 3�Pr

2�1
,

where “erf” is the standard error function. Finally, the heat
transfer rate at the melt interface can be obtained from this
equation as


��0� =
2�1�2

��

exp�− 
 �2B
��0�
�� + 3�Pr

�2�
�1 − erf�−

�2B
��0�
�� + 3�Pr

�� ,

which provides a closed-form nonlinear transcendental equa-
tion for 
��0� in terms of all the governing parameters. For
dry substrates, i.e., no melting �B=0�, the heat transfer rate
due to magnetothermal free convection at small Pr reduces to
the following simple form:


��0� =� 2�� + 3�Pr

��6�� + 1�
.

FIG. 2. Sketch of the phase diagram of the reduced similarity
equation at small Pr.
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IV. NUMERICAL SOLUTION OF SIMILARITY
EQUATIONS

The similarity transformation has resulted in two coupled
nonlinear ordinary differential equations �ODEs� �Eqs. �25�
and �26�� along with boundary conditions, one of which is
coupled �Eq. �27��. However, these ODEs represent a
boundary-value problem and not an initial value problem due
to the boundary conditions at �=�. The standard approach
to solving nonlinear ODEs is to apply one of the many ODE
integrators such as Runge-Kutta method �36,37�. These
methods work very well when a purely initial value problem
is considered; however, when a boundary value problem is
undertaken they require guess values on certain unknown
quantities such as f��0�, which are then iterated until the
boundary condition at �=� is satisfied leading to the so-
called shooting method. Rather than to adopt this approach,
we have chosen to apply what is known as an iterative
boundary-value technique, which is essentially a nonlinear
finite difference method, where the finite difference equa-
tions are solved using a pseudo-Newton method. We have
chosen this technique for the following two reasons. First,
intelligent iteration of the initial conditions in shooting meth-
ods requires the computation of sensitivity derivatives �38�
which turns what would have been 5 first-order equations
into 15 first-order equations. Second and perhaps more im-
portant, the shooting methods are not very robust methods
and often subject to numerical instability. In particular, it will
fail for guess values of the unknown initial conditions that
are only a few percent off from the true value of the un-
known initial conditions. The iterative boundary-value tech-
nique suffers from no such shortcomings as the boundary
values are specified entirely within the scheme.

Discretization and numerical solution

The coupled nonlinear ODEs given in Eqs. �25� and �26�
are discretized using standard finite difference formulas on a
nonequally spaced one-dimensional grid. In this case the grid
has a small amount of geometric stretching to cluster points
near the melting front ��=0�. The method is derived as fol-
lows: let

f� = g , �29�

which allows one to rewrite Eq. �25� in terms of g

g� + �� + 3�fg� − 2�� + 1�g2 − �
 − 1� = 0,


� + �� + 3�Prf
� = 0,

f =� gd� = �
0

�

gd� + f�0� . �30�

The domain �� �0,�� is split into JD−1 �where JD is the
number of nodes� nonoverlapping cells with the data stored
at the nodes which are denoted by the index j. The equations
are discretized using second-order accurate central difference
formulas. The central difference formulas for the first and
second derivatives are

g� = �gj+1 − gj

�� j+1
−

gj − gj−1

�� j
� 2

�� j+1 + �� j
+ O���2� ,

g� =
gj+1 − gj−1

�� j+1 + �� j
+ O���2� ,

�� j = � j − � j−1. �31�

The discretized similarity equations become

�gj+1 − gj

�� j+1
−

gj − gj−1

�� j
� 2

�� j+1 + �� j

+ �� + 3�f j
gj+1 − gj−1

�� j+1 + �� j
− 2�� + 1�gj

2 − �
 j − 1� = 0,

�
 j+1 − 
 j

�� j+1
−


 j − 
 j−1

�� j
� 2

�� j+1 + �� j

+ �� + 3�Prf j

 j+1 − 
 j−1

�� j+1 + �� j
= 0, �32�

with the coupled boundary condition given as

B
 − 
3 + 4
2 − 3
1

�3 − �2 + �2 − �1
� + �� + 3�Prf1 = 0, �33�

which uses a second-order forward difference formula. The
values of f at the grid points are computed using the trap-
ezoid rule for the integral defining f as a function of g,

�
0

�

gd� = �
i=2

j
�i − �i−1

2
�gj + gj−1� + O���2� . �34�

These equations are solved using a pseudo-Newton
method. It is not a full Newton method because the values of
f j are not linearized but are treated explicitly. This lineariza-
tion results in a block tridiagonal matrix which can be in-
verted exactly using the block variant of the Thomas algo-
rithm �39�. The system of difference equations given in Eq.
�32� can be written as

R�q� = 0,

q = �g,
�†, �35�

where R�q� is known as the discrete nonlinear residual and q
is the vector of unknowns over all the grid points j. In order
to solve this a pseudo-Newton method is used. A full Newton
scheme would be given as

� �R�qk�
�qk ��qk+1 = − R�qk� ,

qk+1 = qk + �qk+1. �36�

The pseudo-Newton scheme is given by replacing the exact
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linearization of R�q� by an approximate linearization de-
noted as �P�. The pseudo-Newton scheme is written as

�P��qk+1 = − R�qk� ,

qk+1 = qk + �qk+1. �37�

The residual at each point j is known to be a function of
quantities at only the grid point j and its nearest neighbors.

The particular choice of linearization used in this work al-
lows the linear system given by the pseudo-Newton’s
method for a point j to be written as

�Aj��q j−1 + �Dj��q j + �Cj��q j+1 = − R j�q j−1,q j
k,q j+1� ,

�38�

where the �Aj�, �Dj�, and �Dj� define 2�2 block submatri-
ces. The block submatrices are

�Aj� = �
2

��� j+1 + �� j��� j
−

�� + 3�f j

�� j+1 + �� j
0

0
2

��� j+1 + �� j��� j
−

�� + 3�Prf j

�� j+1 + �� j

� ,

�Dj� = �−
2

�� j+1 + �� j

 1

�� j+1
+

1

�� j
� − 4�� + 1�gj 1

0 −
2

�� j+1 + �� j

 1

�� j+1
+

1

�� j
� � , �39�

�Cj� = �
2

��� j+1 + �� j��� j+1
+

�� + 3�f j

�� j+1 + �� j
0

0
2

��� j+1 + �� j��� j+1
+

�� + 3�Prf j

�� j+1 + �� j

� .

At each Newton step the linear system is inverted exactly
and the updates to the state vector are computed. The process
continues until the L2 norm of the residual over the entire
mesh is reduced by 12 orders of magnitude from its initial
value.

V. RESULTS AND DISCUSSION

The similarity equations have been solved for a set of
governing parameters. All solutions were generated using a
geometrically stretched grid consisting of 501 nodes with a
stretching factor to 1.02. It was found that �max=15.0 is suf-
ficiently large for the cases considered except for small
Prandtl number cases �Pr=0.01� when �max=30.0 was used.
Three different Kelvin force power laws were considered
corresponding to �=0.0, �=1.0, and �=2.0 in the magnetic
acceleration term by maintaining Prandtl number at Pr=10
and melting parameter at B=1.0. Using these set of param-
eters, the velocity and temperature fields in the melt bound-
ary layer are obtained. Additionally, the effect of variable
Prandtl number was considered. Four different Prandtl num-
bers Pr=0.01, 0.72, 1.0, and 10.0 were considered for Kelvin
force with �=1.0 and a melting parameter of B=1.0. The
effect of melting parameter was also studied by fixing
�=1.0 and Pr=10.0 and varying B=0.01, 0.1, 1.0, and 10.0.
For these cases, the normal velocity evaluated at the melting

front is also reported. The local normal velocity at the
substrate-melt interface has been scaled by its value at x=L.
That is, the following normalization follows:

�� + 3�f�0�

v�x,0�
Uo

− v�L,0�
Uo

= �� + 3�f�0�
 x

L
�−��+3�/4

. �40�

Furthermore, the local Nusselt number is scaled by its value
evaluated at x=L, which gives the nondimensional heat
transfer rate and is reported by means of the following:

Nux

NuL
= 
��0�
 x

L
���+3�/4

. �41�

A. Effect of applied magnetic field

In order to analyze the effect of Kelvin force distributions
on the solution, power laws correspond to �=0.0, 1.0, and
2.0 for the Kelvin force with Pr=10.0 and B=1.0. It is
thought that this represents a plausible physical situation,
i.e., a liquid which is readily melted from a solid. A graphical
representation of the variation of magnetic field is given in
Fig. 3. Note that this is the magnetic-field variation and not
the magnetic acceleration or Kelvin force.
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Figures 4�a� and 4�b� show the velocity and temperature
profiles in the melt boundary layer for the above parameter
range. The scaled velocity normal to the substrate is depicted
in Fig. 5. The effect of Kelvin force variation for all quanti-
ties is made quite apparent. The highest peak for the profile
of velocity component parallel to the substrate is observed
for the case with �=0.0 for the Kelvin force while the lowest
is observed for �=2.0. Furthermore, the melt boundary layer

is also thickest for �=0.0. It is apparent that the thermal
boundary layer thickness is affected in a similar way as that
of the velocity boundary layer when � is varied. The velocity
component normal to the substrate that characterizes the
melting rate exhibits an interesting variation with changes in
magnetic-field gradients as specified by different �. In par-
ticular, substantially higher substrate normal velocities at the
melting front are observed with �=2.0 as compared to
�=1.0 and 0.0. The effect of magnetic-field gradient on the
heat transfer coefficient is shown in Fig. 6. An interesting
finding that follows by integrating these curves is that the
highest heat transfer is achieved when the power-law expo-
nent �=1.0 is considered for the Kelvin force as shown nu-
merically in Table I.

B. Effect of Prandtl number

An analogous study has been conducted for various
Prandtl numbers to assess the effect of material on the melt-
ing substrate similarity profiles and heat transfer rates by
keeping �=1.0 and B=1.0. Figures 7�a� and 7�b� show the

FIG. 3. �Color online� Graphical representation of magnetic
field for various values of the power-law exponent of the Kelvin
force ��=0.0 �red square�, �=1.0 �blue triangle�, and �=2.0 �green
circle��.

FIG. 4. �Color online� Nondimensional velocity and temperature
profiles with Pr=10.0, B=1.0, and various values of the power law
exponent of the Kelvin force ��=0.0 �red square�, �=1.0 �blue
triangle�, and �=2.0 �green circle��.

FIG. 5. �Color online� Nondimensional normal velocity at the
melting front −��+3�f�0� v�x,0�

v�x,L� �see Eq. �40�� vs axial coordinate
X=x /L with Pr=10.0, B=1.0, and various values of the exponent of
the Kelvin force ��=0.0 �red square�, �=1.0 �blue triangle�, and
�=2.0 �green circle��.

FIG. 6. �Color online� Nondimensional heat transfer coefficient
Nux /NuL vs axial coordinate x /L with Pr=10.0, B=1.0, and various
values of the exponent of the Kelvin force ��=0.0 �red square�,
�=1.0 �blue triangle�, and �=2.0 �green circle��.
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resulting similarity velocity and temperature profiles in the
melt.

As with the variation of Kelvin force, the variation of the
Prandtl number has significant effects on the velocity bound-
ary layer. In particular, when the Pr is the lowest, it exhibits
the highest peak velocity as well as wider distribution within
the boundary layer, consistent with classical results available
for free convection without Kelvin force or melting �40�.
Furthermore, as expected, the thermal boundary layer also
becomes the thickest for the lowest Pr. The most interesting
effect following as a consequence of this aspect is shown in
the normal velocity at the substrate shown in Fig. 8, with the
lowest Pr showing the highest magnitude indicating that the
substrate melts at substantially larger rates for these param-
eters.

The effect of Pr on heat transfer rate is depicted in Fig. 9.

The higher the Pr, the greater the rate is at which heat is
transferred from the fluid to the substrate needed for melting.
This follows as a direct result of the nature of the gradient in
the temperature profile in the thermal boundary layer as a
function of Pr. In particular, for higher Pr, the thermal bound-
ary layer gets thinner and has higher gradients at the melt
interface which serve to increase the heat transfer rate to the
substrate. Table II contains the values of the nondimensional
temperature gradient at the melting front and clearly illus-
trates the increase in this gradient as a function of the Prandtl
number. Thus, for this aspect, the thinning of the thermal
boundary layer has the dominant effect when the nature of
the fluid or the Pr is changed.

C. Effect of melting rate

The effect of melting parameter on the similarity profile
as well as the heat transfer rate was investigated using the
following set of values: B=0.01, 0.1, 1.0, and 10.0. Again
the Kelvin force is specified such that �=1.0 and Pr=10.0.

TABLE I. Nondimensional total heat transfer rates with various
values of the power law exponent for the Kelvin force.

� �x/L=0
x/L=1
��0�

Nux

NuL
d� x

L �

0.0 0.3729

1.0 0.4332

2.0 0.4049

FIG. 7. �Color online� Nondimensional velocity and temperature
profiles with �=1.0, B=1.0, and variable Prandtl number
�Pr=0.01 �red square�, Pr=0.72 �blue triangle�, Pr=1.0
�green circle�, and Pr=10.0 �black diamond��.

FIG. 8. �Color online� Nondimensional normal velocity at the
melting front −��+3�f�0� v�x,0�

v�x,L� �see Eq. �40�� vs axial coordinate
X=x /L with B=1.0, �=1.0, and various values of Prandtl number
�Pr=0.01 �red square�, Pr=0.72 �blue triangle�, Pr=1.0 �green
circle�, and Pr=10.0 �black diamond��.

FIG. 9. �Color online� Nondimensional heat transfer coefficient
Nux /NuL vs axial coordinate x /L with B=1.0, �=1.0, and various
values of Prandtl number �Pr=0.01 �red square�, Pr=0.72 �blue tri-
angle�, Pr=1.0 �green circle�, and Pr=10.0 �black diamond��.

NICHOLAS K. BURGESS AND KANNAN N. PREMNATH PHYSICAL REVIEW E 82, 046303 �2010�

046303-10



Figures 10�a� and 10�b� show the similarity velocity and
temperature profiles.

The figures make the effect of the melting parameter quite
apparent. The velocity parallel to the substrate has a higher
peak value for higher values of B. Increasing the melting
parameter to B=10.0 results in a very dramatic increase in
the maximum magnitude of this velocity component as well
as the boundary layer thickness. At the interface front, the
normal velocity component has the highest magnitude for the
highest melting parameter considered as depicted in Fig. 11.
This is expected as the melting parameter directly controls
the rate at which the substrate recedes. Notice that for both
the components of the velocity profiles there is a very large
difference between the results for B=1.0 and B=10.0. In
comparison, however, the melting parameter has a mild rela-

tive influence on the temperature profile. Since the interface
front temperature is fixed, this observation is reasonable.
Figure 10�b� shows that generally for higher values of B, the
boundary layer tends to thicken, which however reverts at
the highest value considered �B=10.0� due to the inherent
nonlinear effect of the melting parameter on the coupled
transport phenomena.

This nonlinear effect of B is further evident on the heat
transfer rates �see Fig. 12�. There is hardly any difference
between B=0.01 and B=0.1. However, the contrast between
B=0.1 and B=1.0 is quite staggering and even more stagger-
ing is the contrast between B=1.0 and B=10.0. The heat
transfer has actually increased �again in contrast to the trend
demonstrated by the results at lower values of B�. There is a
physical explanation for these phenomena. When the melting
rate is increased at higher values of B more material of the
substrate melts and joins the fluid, while for lower values of
the melting parameter this has the effect of decreasing heat
transfer. This is because at lower B, the thermal gradients at
the interface front on the fluid side is lower. Furthermore,
more of the heat supplied needs to overcome the greater

TABLE II. Nondimensional temperature gradient at the melting
front as a function of Prandtl number Pr.

Pr 
��0�

0.01 0.0532

0.72 0.4362

1.0 0.4889

10.0 0.8646

FIG. 10. �Color online� Nondimensional velocity and tempera-
ture profiles with �=1.0, Pr=10.0, and variable melting parameter
�B=0.01 �red square�, B=0.1 �blue triangle�, B=1.0 �green circle�,
and B=10.0 �black diamond��. Note that red squares and blue tri-
angles overlap.

FIG. 11. �Color online� Nondimensional normal velocity at the
melting front −��+3�f�0� v�x,0�

v�x,L� �see Eq. �40�� vs axial coordinate
X=x /L with �=1.0, Pr=10.0, and various values of the melting
parameter �B=0.01 �red square�, B=0.1 �blue triangle�, B=1.0
�green circle�, and B=10.0 �black diamond��.

FIG. 12. �Color online� Nondimensional heat transfer coefficient
Nux /NuL vs axial coordinate x /L with �=1.0, Pr=10.0, and various
values of the melting parameter �B=0.01 �red square�, B=0.1 �blue
triangle�, B=1.0 �green circle�, and B=10.0 �black diamond��.
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degree of subcooling present in the substrate side, i.e., higher
values of the solid phase Stefan number Stes as reflected in
the definition of B. On the other hand, for B=10.0 the sub-
strate is melting so readily that relatively very large magni-
tudes of melt flow are induced which causes the thermal
gradients at the melting front to increase and thus increase
the heat transfer.

VI. SUMMARY AND CONCLUSIONS

The magnetothermal free convection of an electrically in-
sulating fluid resulting from the melting of a semi-infinite
substrate subjected to thermal and magnetic-field gradients in
a microgravity environment is considered. To facilitate
analysis, the magnetic-field gradient characterized as the
Kelvin force is recast as a buoyancy force with an effective
spatially dependent magnetic acceleration term. Similarity
solution of the boundary layer transport equations of the melt
flow is achieved when such acceleration term is expressed as
a power law in terms of the axial coordinate parallel to the
substrate. For small Prandtl numbers, when the viscous ef-
fects can be neglected, this results in a closed-form
asymptotic solution for the velocity and thermal fields in the
melt boundary layer as well as the mass and heat transport
rate across the substrate. For numerical solution in the gen-
eral case, an iterative nonlinear boundary-value technique
based on a finite-difference formulation proved to be robust
and efficient.

The effect of different values of the power-law exponent
for the magnetic-field gradient on the structure of the melt
flow boundary layer as well as substrate heat and mass trans-
port rates is illustrated for a representative set of parameters.
Furthermore, the influence of the nature of the material
�Prandtl number� as well as the melting parameter have been
considered and analyzed with striking trends shown in each
case. Variable magnetic field is one of the most important
parameters for this problem as suitable schemes can be de-
vised to appropriately control the mass or energy transport
rates across the substrate. For example, for the set of param-
eters considered ��=0.0, 1.0, and 2.0�, the heat transfer rate
to the substrate is maximized if the Kelvin force with the
exponent �=1.0 is used. Furthermore, the melting parameter
has a profound influence on the behavior of this nonlinear
coupled transport problem. For example, if the substrate is
melted such that the value of B is relatively moderate, then
the heat transfer rate to the substrate is correspondingly rela-
tively low. On the other hand, if higher values of B is em-
ployed, then a large amount of material is melted from the
substrate that joins the fluid causing pronounced magnetic
gradient induced free convection and heat transfer rates.
While the results reported here are representative for this
problem providing basic insights, the approach reported pro-
vides a convenient theoretical and computational setting for
analysis of phase-change problems driven by thermal and
magnetic-field gradients in microgravity environments.
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