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Phase separation of binary fluids quenched by contact with cold external walls is considered. Navier-Stokes,
convection-diffusion, and energy equations are solved by lattice Boltzmann method coupled with finite-
difference schemes. At high viscosity, different morphologies are observed by varying the thermal diffusivity.
In the range of thermal diffusivities with domains growing parallel to the walls, temperature and phase
separation fronts propagate toward the inner of the system with power-law behavior. At low viscosity hydro-
dynamics favors rounded shapes, and complex patterns with different length scales appear. Off-symmetrical
systems behave similarly but with more ordered configurations.
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I. INTRODUCTION

When in a multiphase system initially in a mixed state the
temperature is decreased to values corresponding to a coex-
isting region of the phase diagram, domains of ordered
phases start to form and grow with time. The process is
called phase separation and is relevant for a large variety of
systems �1�. In most of the cases studied theoretically, the
temperature or other control parameters are assumed not de-
pending on time and space, but are instantaneously set to
their final values for coexistence. This assumption, reason-
able in many situations, typically gives rise to a self-similar
growth behavior with a characteristic domain size following
a time power law �2�. However, there are cases where the
dynamics of the control parameter needs to be considered �3�
since it can greatly affect the morphology of domains. In
binary alloys, for example, slow cooling is used to produce
optimal sequences of alternate bands of different materials
�4�. In polymeric mixtures the possibility of controlling the
demixing morphology by appropriate thermal driving has
been studied in Refs. �5,6�; modulated patterns have been
observed when a mixture is periodically brought above and
below the critical point �7�. Other worth examples of com-
plex pattern formation due to the dynamics of the control
parameters occur in crystal growth �8�, immersion-
precipitation membranes �9�, or in electrolyte diffusion in
gels �10,11�.

In this paper we study binary fluids quenched by contact
with cold walls at temperatures below the critical value. The
behavior of binary fluids in sudden quenches at homoge-
neous temperature is quite known �2,12�. For symmetric
composition, the typical interconnected pattern of spinodal
decomposition is observed. In the system considered here,
phase separation is expected to start close to the walls and
develop in the inner of the system following the temperature
evolution. The dynamics of this process and the role of the
velocity field have not been explored too much, in spite of
their relevance for many of the systems mentioned above.

Two-dimensional studies of diffusive binary systems with
cold sharp fronts propagating at constant speed have shown
the formation of structures aligned on a direction depending
on the speed �11,13–16�. These results are also supported by

theoretical analysis �15,16�. Lamellarlike structures have
been also found in numerical studies of two-dimensional off-
symmetrical binary systems with the temperature following a
fixed diffusive law �17�. In a model with the temperature
dynamically coupled to the concentration field, pointlike
cold sources have been shown to give rise to ring structures
of alternate phases �18�. On the other hand, more usual mor-
phologies have been found in cases with fixed thermal gra-
dient �19�, while complex phenomena such as sequential
phase-separation cascades have been observed when the con-
trol parameter is slowly homogeneously changed �20�. The
effects of full coupling between all thermohydrodynamic
variables have not been considered so far.

The paper is organized as follows. In the next section the
theoretical model and the numerical method are illustrated.
The dynamics of our system is described by mass, momen-
tum, and energy equations with thermodynamics based on a
free-energy functional including gradient terms. In Sec. III
the results of our simulations are shown. We will explore the
control parameter space by varying the viscosity and the
thermal diffusivity. This will allow us to analyze the differ-
ences with respect to the behavior of binary fluids in instan-
taneous quenching. The presentation will be focused on few
cases typical for each regime. A final discussion will follow
in Sec. IV.

II. MODEL

We consider a binary mixture with dynamical variables
T ,v ,n ,�, which are, respectively, the temperature, the veloc-
ity, the total density, and the order parameter field being the
concentration difference. Equilibrium properties are encoded
in the free energy

F =� ���n,�,T� +
1

2
M����2�dr , �1�

where

��n,�,T� = e − kBT�n ln�n� −
n + �

2
ln	n + �

2



−
n − �

2
ln	n − �

2

� , �2�

with e=nkBT+ ��n /4��1−�2 /n2� being the bulk internal en-
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ergy, and the term in square brackets is the mixing entropy.
The gradient term in Eq. �1� is a combination of an internal
energy gradient contribution proportional to K and of an en-
tropic term proportional to −C �21�; hence, M =K+CT. The
system has a critical transition at kBTc=� /2, and the order
parameter in the separated phases takes the values ���T�
= ��3n2�Tc /T−1�. The dynamical equations are given by
�22�

�tn = − ���nv�� , �3�

�t� = − ����v�� − 2��J�
d , �4�

�t�nv�� = − ���nv�v�� − ������ − 	��� , �5�

�tê = − ���êv�� − ���� − 	�����v� − ��J�
q , �6�

where Jd and Jq are the diffusion and heat currents; ��� is
the reversible stress tensor; 	��=
���v�+��v��+ ��
−2
 /d�����
v
 is the dissipative stress tensor with � ,
 be-
ing the bulk and shear viscosities, respectively; d is the space
dimension; and ê=e+ K

2 ����2 is the total internal energy den-
sity also including gradient contributions. We have recently
established the expressions for the pressure tensor ��� and
chemical potential � �23� following the approach of Ref.
�21�. One finds

��� = �p − M��2� − M����2/2 − T� � � · ��M/T�����

+ M������ , �7�

where p=−�+n�� /�n+��� /�� and �=�� /�� �T
−T� · ��M /T����. Finally, in order to completely set up the
dynamical system, phenomenological expressions for the
currents are needed. As usual, one takes Jd=−L11� �� /T�
+L12� �1 /T� and Jq=−L21� �� /T�+L22� �1 /T�, where L��

is the positively defined matrix of kinetic coefficients with
L11=T� and L22=T2k, with � and k being the mobility and
thermal diffusivity, respectively, assumed constant �22�.

In order to solve Eqs. �3�–�6� in d=2 we have developed
a hybrid lattice Boltzmann method �LBM� �24–27� where
LBM �28� is used to simulate the continuity and Navier-
Stokes equations �3� and �5� while finite-difference methods
are implemented to solve the convection-diffusion and the
energy equations �4� and �6�. LBM has been widely used to
study multiphase and multicomponent fluids �29� and, in par-
ticular, hydrodynamic effects in phase ordering �30�. It is
defined in terms of a set of distribution functions, f i�r , t� with
i=0,1 , . . . ,8, located in each site r at each time t of a D2Q9
�two space dimensions and nine lattice velocities� lattice
where sites are connected to first and second neighbors by
lattice velocity vectors of moduli �ei�=c �i=1, . . . ,4� and
�ei�=�2c �i=5, . . . ,8�, respectively. The zero velocity vector
e0=0 is also included. The lattice speed is c=�x /�t, where
�x and �t are the lattice and time steps, respectively. The
distribution functions evolve according to a single relaxation
time Boltzmann equation �31� supplemented by a forcing
term �32�

f i�r + ei�t,t + �t� − f i�r,t� = −
�t

�
�f i�r,t� − f i

eq�r,t��

+ �tFi�r,t� , �8�

where � is the relaxation parameter, f i
eq are the equilibrium

distribution functions, and Fi are the forcing terms to be
properly determined.

The total density and the fluid momentum are given by
the following relations:

n = �
i

f i, nv = �
i

f iei +
1

2
F�t , �9�

where F is the force density acting on the fluid. f i
eq are ex-

pressed as a standard second-order expansion in the fluid
velocity v of the Maxwell-Boltzmann distribution functions
�33�. The forcing terms Fi in Eq. �8� are expressed as a
second-order expansion in the lattice velocity vectors �34�.
The continuity and the Navier-Stokes equations �3� and �5�
can be recovered by using a Chapman-Enskog expansion
when Fi are given by

Fi = 	1 −
�t

2�

�i� ei − v

cs
2 +

ei · v

cs
4 ei� · F , �10�

with the force density F having components

F� = ���ncs
2� − �����, �11�

with cs=c /�3 being the speed of sound in the LBM, �0
=4 /9, �i=1 /9 for i=1, . . . ,4, and �i=1 /36 for i=5, . . . ,8.
We observe that in this formulation the pressure tensor is
inserted as a body force in the lattice Boltzmann equations.
From the Chapman-Enskog expansion it comes out that �
=
 with


 = ncs
2�t	 �

�t
−

1

2

 . �12�

On the other hand, a two-step finite-difference scheme is
used for Eqs. �4� and �6� �details on the implementation of
Eq. �4� in the case of an isothermal LBM can be found in
Ref. �27��. At walls, no-slip boundary conditions are adopted
for the LBM �35�, the temperature is set to fixed values Tb at
the bottom wall and Tu at the up wall, and neutral wetting for
the concentration is adopted. This latter condition corre-
sponds to impose a ·�� �walls=0 and a ·���2�� �walls=0,
where a is an inward normal unit vector to the walls. These
conditions together ensure a ·�� �walls=0, so that the concen-
tration gradient is parallel to the walls and there is no flux
across the walls. We have found this algorithm stable in a
wide range of temperatures, viscosities, and thermal diffu-
sivities. With respect to thermal LBM for nonideal fluids
�36� where lattice Boltzmann equations are used to simulate
the full set of macroscopic dynamical equations, the present
model allows us to reduce the number of lattice velocities,
thus speeding up the code and reducing the required memory
�27�.
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III. RESULTS AND DISCUSSION

In the following we will explore the parameter space
keeping fixed the values of K=0.003, C=0, kBTc=0.005, �
=0.1, and L12=L21=0. We will use lattices of size ranging
from 256�256 to 1024�1024. We have considered differ-
ent values of 
 and k. Before focusing on the cases repre-
sentative of the various regimes, we will list all the runs we
did in terms of dimensionless numbers.

Common numbers used in hydrodynamics are the Rey-
nolds and Peclet numbers Re and Pe. They are defined as
Re=vL /�, where �=
 /n is the kinematic viscosity; Pemd
=vL /D for mass diffusion, where D is the mass diffusion
coefficient; and Petd=vL /k for thermal diffusion. L and v are
typical length and velocity of the system. In phase separation
L can be identified with the average size of domains, so that
Re and Pe would depend on time �for a discussion see Ref.
�37��. It is therefore more convenient for our purposes to
introduce the Schmidt and Prandtl numbers Sc and Pr de-
fined as Sc=� /D and Pr=� /k, where D= �a�� with a
= �kBTc /n��T /Tc−1� being the coefficient of the linear term
in the chemical potential � �5,23�. Here, T can be chosen as
the value of the temperature at the walls. Table I contains a
list of the runs we did, reported in terms of Sc and Pr. It is
also useful to evaluate the Mach number Ma= �v�max /cs,
where �v�max is the maximum value of the fluid velocity dur-
ing evolution. In all our simulations Ma is always much
smaller than 0.1 �see in the following�, and the fluid results
practically incompressible, as checked, with n
1. For this
reason we do not present in the paper any result about the
time evolution of the total density n.

First, as a benchmark for our method, we consider the
relaxation of a single interface profile with k=10−2 and 

=0.167 ��=1�. This corresponds to a low-viscosity regime as
discussed in the following. We started the simulation with a
sharp concentration step with values �−�Tb� and �+�Tu� and
bulk temperature T /Tc=0.8, keeping fixed the temperatures
Tb /Tc=0.8 and Tu /Tc=0.9 at the bottom and top walls �Fig.
1�a��. The system reaches a stationary state with constant
temperature gradient and concentration profile as in Fig.
1�b�. The numerical values of concentrations in the two bulk
phases are in very good agreement with the analytical ex-
pression for ��(T�r�) corresponding to the equilibrium val-
ues of T�r� shown in the related inset. This means that the
concentration field � is in local equilibrium. The temperature
of the top wall is then set to the same value of the tempera-
ture of the bottom wall �Fig. 1�c��. Then, as it can be seen in
Fig. 1�d�, the system equilibrates at constant temperature
with the expected concentration profile. Spurious velocities
are of order 10−9, and the result is completely negligible. The
test shows that stationary states are well reproduced by our
algorithm.

A. Diffusive regime

We describe our results for phase separation. We first con-
sider a case at very high viscosity with 
=6.5 ��=20� and
symmetric composition �runs 1–8�. Here, the effects of the
velocity field are negligible. We set Tb /Tc=Tu /Tc=0.8, and
the initial bulk temperature is above Tc. As it can be seen in

Fig. 2, for thermal diffusivities k�10−1, usual isotropic
phase separation is observed. In the range k=5�10−4–5
�10−2, in spite of the neutral wetting condition on the
boundaries, domains in the bulk have interfaces preferen-
tially parallel to thermal fronts. For smaller values of k do-
mains grow perpendicularly to the walls. These results agree
with those of Refs. �13,15,16� in purely diffusive models
where the same morphological sequence was found by de-

TABLE I. The first column indexes the simulation run, the sec-
ond one is the linear size of the lattice, the third one is the Schmidt
number �Sc�, and the fourth one is the Prandtl number �Pr�. The last
column is the symbol that identifies the kind of different observed
patterns: I �isotropic morphology�, Pa �domains parallel to the
walls�, Pe �domains perpendicular to the walls�, I� �isotropic mor-
phology with two length scales�. The runs with two symbols exhibit
patterns with common features to those corresponding to each
symbol.

Run Size 103 Sc Pr Symbol

1 512 65 12 I

2a, 2b 512, 256 65 66 I

3 512 65 129 Pa

4a, 4b 512, 256 65 651 Pa

5a, 5b 512, 256 65 1299 Pa

6 256 65 6500 Pa

7 512 65 65000 Pe

8 256 65 650000 Pe

9 256 21.7 22 I

10 256 21.7 43 I, Pa

11a, 11b 512, 256 21.7 217 I, Pa

12 256 21.7 2167 Pe

13 256 21.7 21667 Pe

14 256 8.3 8 I

15 256 8.3 83 I�

16 256 8.3 833 I�, Pe

17 256 8.3 8333 Pe

18 512 1.7 3 I

19a, 19b, 19c 1024, 512, 256 1.7 17 I�

20a, 20b 512, 256 1.7 167 I�

21a, 21b 512, 128 1.7 1667 Pe
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FIG. 1. Concentration and temperature �inset� profiles for an
interface relaxation �see the text for explanation�.
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creasing the speed of cold fronts moving into a region with
the mixed phase. However, also in absence of hydrodynamic
effects, our case is different since the thermodynamics of the
mixture is fully consistently treated and temperature fronts
have no sharp imposed profile.

We will now concentrate on cases at intermediate thermal
diffusivities where domains are parallel to the walls and
propagation fronts can be traced. Concentration and tempera-
ture configurations at successive times for k=10−2 �run 4a�
are shown in Figs. 3 and 4, respectively. In this case it is
Ma
5�10−5. The temperature fronts have typical diffusive
profiles which slowly relax to the equilibrium value imposed
on the boundaries. In order to be quantitative, we defined
yT�t� as the distance from the wall where the temperature
assumes a fixed value �we chose T /Tc=0.88� and measured
this quantity in simulations with large rectangular lattices.
The solution of the diffusion equation with initial tempera-
ture T0 and fixed boundary value Tw is �T�y , t�−Tw� / �T0
−Tw�=erf�y / �2�kt��, which implies yT /�k��t. In the inset

of Fig. 5 it is shown, in simulations with different k’s, that yT
follows the standard diffusion behavior. The time behavior of
yT has been checked not depending on the specific value of
the ratio T /Tc in the range �0.8,1.0�; considering a value of T
such that T /Tc�1 allows us to track the position of the
temperature front for a longer time interval.

One can also consider the behavior of the fronts limiting
the regions with separated phases, clearly observable in the
first three snapshots in Fig. 3. Their positions can be defined
as the distance y� from the walls beyond which the condition
��
0 is verified everywhere. More precisely, we took y� as
the point beyond which �����C with C=�2�0.01; the
value of C is chosen to match the maximum value of the
fluctuations of ���� in the initial disordered state, where ���
�0.01. �In the last snapshot in Fig. 3 the two fronts propa-
gating from up and down have come close each other, and
more usual phase separation occurs in the central region of
the system.� We measured y� on rectangular lattices for dif-
ferent k’s and observed deviations from diffusive behavior
�see Fig. 5�. We found that y� grows by power law with an
exponent depending on k. Our fits give y�� t0.66 for k

FIG. 2. Typical configurations of the concentration field � for
symmetric composition at very high viscosity �
=6.5� with k
=10−1 ,10−2 ,10−5 �from left to right� at times t=12.5�105 ,37.5
�105 ,300�105, respectively, with lattice size 512�512, and
Tb /Tc=Tu /Tc=0.8.

FIG. 3. Configurations of concentration � for composition 50/50
at times t=7.5�105 ,22.5�105 ,37.5�105 ,50�105, at very high
viscosity �
=6.5� with lattice size 512�512, Tb /Tc=Tu /Tc=0.8,
and k=10−2.
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FIG. 4. Configurations of the ratio T /Tc for the same case and at
same times of Fig. 3. Coordinates on the x and y axes are in lattice
units and both of them are in the range �0,512�.
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FIG. 5. Time behavior of y� at k=10−2 �empty symbols� and
10−3 �filled symbols� at very high viscosity with lattice size 128
�2048. The straight line is a guide to the eye and has a slope of
2/3. Inset: time behavior of yT /�k at k=10−2 �empty symbols� and
10−3 �filled symbols�. The straight line has a slope of 1/2.
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=10−2 and exponents closer to 1/2 for smaller k. We analyzed
for different k’s possible variations of the typical values of
fluid velocity, but we did not find any. Therefore, the change
in the exponent of y� cannot be attributed to the velocity
field. Even if y� moves faster than yT and at long times it
results in y��yT, we checked that the relation y��yTc

is
always verified, so that phase separation always occurs for
T�Tc. Since the phase separation is induced by the tempera-
ture change, one could have expected a similar behavior for
y� and yT. The discrepancy could be related to the broad
character of the temperature fronts which spreads the phase-
separated region. We also observed that the width of lamellar
domains decreases at larger k, in agreement with Ref. �15�.

B. Hydrodynamic regime

At lower viscosities the evolution of morphology is very
different in the range with intermediate values of thermal
diffusivity. We will in particular illustrate in Fig. 6 the case
with 
=0.167 ��=1� and k=10−2 �run 19�, for which we
found Ma
5�10−4. This is the same thermal diffusivity in
Fig. 3. At this viscosity hydrodynamics is relevant. Indeed, in
instantaneous quenching at constant temperature and 

=0.167, we observed the domain growth exponent to assume
the inertial value of 2/3 �at odds with the diffusive high-
viscosity value of 1/3� �12�. The growth exponent was cal-
culated by measuring the characteristic length defined by the
inverse of the first momentum of the structure factor �38�.
The main effect due to hydrodynamics observable in Fig. 6 is
that domains do not grow aligned with temperature fronts as
it occurs for the same thermal diffusivity at high viscosity.
Circular patterns are stabilized by the flow �12�, and an ex-
ample is given in Fig. 7. A similar picture occurs for other
values of k not reported here �see Table I�. On the other hand,

the other thermal diffusivity regimes are less affected by hy-
drodynamics. When decreasing k, it is still possible to ob-
serve domains growing with interfaces normal to the walls as
in the case of high viscosity �see Fig. 8, run 21b�, while at
larger k �run 18� phase separation occurs isotropically like in
an instantaneous quenching.

The cases shown in Figs. 3 and 6 are typical of the high-
and low-viscosity regimes. At intermediate values of 
 one
can observe features common to the two above cases �see
Fig. 9 for 
=2.167; run 11a�. Concerning the behavior of
yT�t�, we could not find relevant differences by varying 

with respect to the case at high viscosity.

Another effect induced by hydrodynamics is the forma-
tion of structures in the inner part of the system at earlier
times than in the case of high viscosity �compare Figs. 3 and
6�. In the inner region we can observe the typical intercon-
nected pattern of spinodal decomposition, but with a charac-
teristic length scale different from that of domains close to
the walls. However, while the structures close to the walls
are in local equilibrium, that is, ��r�=��(T�r�), in the
middle of the system the concentration field is such that ���
��+(T�r�). A temporal regime characterized by the presence

FIG. 6. Configurations of concentration � for composition 50/50
at times t=8�105 ,11�105 ,13�105 ,15�105, low viscosity
�
=0.167�, lattice size 256�256, Tb /Tc=Tu /Tc=0.8, and k=10−2.

FIG. 7. Configuration of concentration � for the case of Fig. 6 at
time t=11�105 with superimposed velocity field.

FIG. 8. Configuration of concentration � at time t=14�105,
low viscosity �
=0.167� as in Fig. 6, lattice size 128�128,
Tb /Tc=Tu /Tc=0.8, and k=10−4.
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of domains with two scales was found in systems of different
sizes �from 256�256 to 1024�1024� and k=10−3–10−2. In
order to characterize the two scales we analyzed the behavior
of the structure factor. In Fig. 10 the spherically averaged
structure factor is shown at two consecutive times for a sys-
tem having the same parameters as in Fig. 6 and size L
=512. Two peaks are observable at each time that can be
interpreted as related to the existence of two different length
scales with one about twice longer than the other. The higher
peak at smaller wave vector corresponds to the larger do-
mains close to the walls, while the other peak is related to the
thinner domains in the inner of the system. At increasing
times, the two peaks tend to merge. Due to this morphologi-
cal evolution, in simulations at low viscosity, the position of
the phase-separation front y� could be measured only for a
short time interval, making not possible to determine the
power-law behavior.

Finally, we show results for systems with asymmetric
composition. In Fig. 11 the evolution of two systems only
differing for the value of viscosity is shown. Lamellar pat-
terns prevail at high viscosity, while circular droplets domi-
nate at low viscosity �
=0.167�. In the latter case, again, two
typical scales can be observed with thin tubes of materials

connecting larger domains. The behavior of yT is similar to
that of the symmetric case.

IV. CONCLUSIONS

We have developed a numerical method for thermal bi-
nary fluids described by continuity, Navier-Stokes,
convection-diffusion, and energy equations. We have studied
quenching by contact with external walls, and we have

FIG. 9. Configuration of concentration � at time t=21�105,
intermediate viscosity �
=2.167�, lattice size 512�512, Tb /Tc

=Tu /Tc=0.8, and k=10−2.
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FIG. 10. Spherically averaged structure factor C�k� as a function
of the wave vector modulus k for a system with the same param-
eters as those in Fig. 6 and size L=512 at times t=24�105 �empty
symbols� and t=39�105 �filled symbols�, corresponding to the re-
gime with two scales shown in Fig. 6.

FIG. 11. Configurations of concentration � for composition
55/45 at times t=4�105 ,6�105 ,11�105 ,16�105, low viscosity
�left column� and very high viscosity �right column�, lattice size
256�256, Tb /Tc=Tu /Tc=0.8, and k=10−2. Except for the compo-
sition, here the parameters are the same as those used in Figs. 3 and
6.
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shown how the pattern formation depends on thermal diffu-
sivity, viscosity, and composition of the system. The evolu-
tion is very different from that observed in instantaneous
homogeneous quenching. At high viscosity, different orien-
tations of domains are possible. In an intermediate range of
thermal diffusivities domains are parallel to the walls. The
fronts limiting the regions with separated domains move to-
ward the inner of the system with a power-law behavior not
always corresponding to that of the temperature fronts. At
low viscosity, the velocity field favors more circular patterns,
and domains are characterized by different length scales
close to the walls and in the inner of the system. Off-
symmetrical mixtures give more ordered patterns.

We conclude with two remarks on possible future direc-
tions of work. The first one concerns the Soret effect, which
corresponds to having a mass diffusion current induced by
thermal gradients. This effect can become relevant in
quenching very close to the critical point where the ratio
DT /D becomes large �5�. Here, DT is the thermal �mass�
diffusion coefficient �DT=L12 /T2 in our notation�, and D is
the mass diffusion coefficient defined at the beginning of
Sec. III. In order to have a first idea on how the Soret effect
can affect the pattern morphology, we considered a case with
DT /D=20, corresponding to the highest values for this ratio
reported in the literature �5�. This would give DT=2�10−3,

taking for D the value used in the runs of Sec. III. We run
simulations for this case. We observed, in the intermediate
range of thermal diffusivity and at high viscosity, the ten-
dency of the system to exhibit more ordered lamellar patterns
�parallel to the walls�. At higher thermal diffusivity isotropic
phase separation is found as usual, while at very low thermal
diffusivity �k=10−4�, parallel patterns are found instead of
perpendicular patterns. At low viscosity �we tested the case
corresponding to that in Fig. 6� hydrodynamics continues to
favor domains with a more circular shape. We run also simu-
lations with DT=10−4, corresponding to a ratio DT /D
1,
without finding relevant differences with respect to the case
with DT=0. We also observe that the behavior of y� could
depend on our choice for L12 and L21. A more comprehen-
sive analysis of the Soret effect will be presented elsewhere.
Finally, the morphology could be still richer in three dimen-
sions, also due to the existence of more hydrodynamic re-
gimes �2�, so that three-dimensional simulations would com-
plete the picture given so far.
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