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We study onset and control of stochastic resonance �SR� phenomenon in two driven bistable systems,
mutually coupled and subjected to independent noises, taking into account the influence of both the inertia and
the coupling. In the absence of coupling, we found two critical damping parameters: one for the onset of SR
and another for which SR is optimum. We then show that in weakly coupled systems, emergence of SR is
governed by chaos. A strong coupling between the two oscillators induces coherence in the system; however,
the systems do not synchronize no matter what the coupling is. Moreover, a specific coupling parameter is
found for which the SR of each subsystem is optimum. Finally, a scheme for controlling SR in such coupled
systems is proposed by introducing a phase difference between the two coherent driving forces.
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I. INTRODUCTION

Among a large variety of phenomena which has been at-
tracting researchers in coupled nonlinear systems over sev-
eral decades, synchronization �1�, chaos and bifurcations
structures �2�, and recently stochastic resonance �SR� are the
most prominent. SR, however, has been widely explored in
single nonlinear systems such as in bistable lasers �4,5�,
chemical reactions �3�, semiconductors devices, and mecha-
noreceptor cells in the tail of the crayfish �6�. This now well-
established effect requires three main ingredients: �i� a weak
coherent signal, �ii� a noise source, and �iii� an energetic
activation barrier. In the absence of noise, the signal should
be weak enough such that the effect of signal-induced
switching is not observed. Likewise, the noise-induced
switching should not be appreciable in the absence of the
signal. It is the interplay of both the signal and the noise that
results in a sharp enhancement of the power spectrum within
a narrow range about the forcing frequency. This observation
was explained by matching the forcing frequency with the
switch rate �Kramer’s rate� of the unperturbed system �7�. To
distinguish this from the dynamical resonance, one speaks of
SR. Due to its simplicity and robustness, SR has been imple-
mented by mother nature on almost every scale, thus en-
abling interdisciplinary interest from physicists, geologists,
engineers, biologists, and medical doctors, who nowadays
exploit it as an instrument for their specific purposes�8�.

The first experimental observation of SR was performed
while investigating the noise dependence of the spectral line
of an ac-driven Schmitt-Trigger �9�. Although SR has been
largely explored in various dynamical systems �3,8�, little
has been done for coupled stochastic systems �10–13�. The
case of coupled stochastic bistable systems taking into ac-
count its full inertial dynamics has hitherto not yet been con-
sidered. Another motivation for this study comes by several
recent observations of SR in nanomechanical silicon resona-
tors where the inertial term needs to be taken into account to
understand its dynamics fully �14–16�. One can also couple
two such systems of nanomechanical resonators �17�, which
make it relevant to study signal amplification and synchroni-
zation dynamics of SR. The inertial term adds interesting

features as the system becomes chaotic, in some parameter
regimes, whose interference with the externally injected
noise might affect its ability to detect weak signals using SR
mechanism.

In this paper, we demonstrate the constructive role of
noise assisted by a weak signal in a coupled bistable system
in which chaos plays a role. SR has been studied in such a
system �11� but essentially in the overdamped regime. Here
we revisit the same system but study its full dynamics by
focusing mainly on the weak damping regime, i.e., the re-
gime where the inertia plays a major role, thereby rendering
the system richer in that chaos is likely to show up for some
parameter values. The conditions for the onset and control of
SR in such a coupled system are explored by varying the
mutual coupling and the damping parameters.

The paper is organized as follows. Section II is devoted to
the description of the model for two coupled forced bistable
oscillators. Section III discusses our results using signal-to-
noise ratio as the indicator of SR in both systems. The onset
and control of SR in the system are studied and analyzed for
a variety of coupling and dissipation parameters. We also
compute the synchronization quantifier and explore the re-
gime of coupling and dissipation. A scheme for the control of
SR is also discussed toward the end of the paper. Finally,
Sec. IV concludes the paper.

II. MODEL SYSTEM

Our system consists of two coupled underdamped bistable
oscillators which are forced by two periodic signals and sta-
tistically independent noise sources. This system is governed
by the following dimensionless coupled stochastic differen-
tial equations:

ẍ = − �ẋ −
dV1�x�

dx
+ k�y − x� + �1�t� + F1�t� , �1�

ÿ = − �ẏ −
dV2�y�

dy
− k�y − x� + �2�t� + F2�t� , �2�

where k is the coupling strength and � is the damping
parameter. The potentials of the two subsystems
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Vi�x�=−aix
2 /2+bix

4 /4 for i=1,2 are sketched in Fig. 1�a�,
with a1=b1=1 and a2=1 , b2=1.5. This choice leads
to different activation barrier energies �V1=0.25 and
�V2=0.17. The stochastic terms �1�t� and �2�t� are zero-
mean independent Gaussian white noises defined as follows:

��i�t�� = 0, �3�

��i�t��i�t��� = 2Di��t − t�� , �4�

��i�t�� j�t��� = 0, i � j , �5�

where i , j=1,2. The parameters D1 and D2 are the intensities
of the two noises �1�t� and �2�t�, respectively. In the follow-
ing, we set the noise intensities equal: D1=D2=D. The peri-
odic driving signals are

Fi�t� = Ai cos��it + �i� , �6�

characterized by the amplitude Ai, the angular frequency �i,
and the phase �i with i=1,2. In the following, to observe SR
we set A1=A2=A and choose a subthreshold driving ampli-
tude A��V1,2. The intrawell relaxation frequencies of the
two different subsystems are identical and equal to
	r=�2a1,2 since a1=a2=1. To allow for the adiabatic driv-
ing, we set the modulation frequency smaller than the relax-
ation one, say �=	r /20. Considering the subsystem x, for
instance, with D=0 and �=0.25, vivid scenarios of no
switching with A=0.15 in Fig. 1�b� and switching with
A=0.5 in Fig. 1�c� are shown. Unlike the well-studied over-
damped bistable oscillator, the characteristic intrawell relax-

ation oscillations are clearly visible whenever the system
switches from one state to the other�18–20�.

III. RESULTS AND DISCUSSIONS

A. Stochastic resonance for uncoupled systems

Let us first consider that both subsystems are independent
�k=0�, driven by different noises and identical driving
forces. In order to study SR, we consider a subthreshold
signal amplitude A0=0.15 that does not allow switching in
the absence of noise. Note also that in the absence of the
driving and for the overdamped regime, the stochastic
switching time scale which is characterized by Kramer’s
rates, 
K1,2

�exp�−�V1,2 /D�, is too long due to low noise
amplitude, i.e., the noise alone cannot induce synchronized
switching. The time scale of switching being 1 /
K1,2

, the
time series for D� �0,0.5� �not shown� does not exhibit any
switching. When both the noise and the driving force are
applied, the signal-to-noise ratio �SNR� is indeed a good can-
didate commonly used for evaluating the constructive role of
noise �3�.

Figure 2�a� shows SNRx,y in the weak damping regime
�dashed black and red/gray� �=0.05 and in the strong one
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FIG. 1. �Color online� �a� Potentials V1�x� �solid� and V2�y�
�dashed�, with �V1=0.25 and �V2=0.17, respectively. �b�
Prototypical scenarios of no switching, A0=0.15, and �c� switching,
A0=0.50, of y for k=0.0, D=0.0, �=0.25.
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FIG. 2. �Color online� �a� SNRx,y of x and y for k=0.0 and
A0=0.15. For a weak damping �=0.05, SNRx �dashed red/gray� and
SNRy �dashed black�, while for a strong damping �=0.75, SNRx

�solid red/gray� and SNRy �solid black� �b� SNRx as a function of D
for various values of � from 0.05 to 0.8. Onset of SR happens at
�thr=0.08 and it is optimized for �opt=0.5. �c� The Lyapunov ex-
ponent of x as a function of � for uncoupled system k=0, D=0, and
A0=0.15. Note the positive Lyapunov exponents for small �.
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�=0.75 �solid black and red/gray� as a function of noise
intensity. In each panel, the signal amplitude is A0=0.15. It
turns out that the cooperative effect of noise and driving
force does not show up for a weaker dissipation regime
where chaos is present. Exploring the SNR as a function of �
in Fig. 2�b�, which depicts SNRx for various values of �, two
critical values have been revealed, namely, �thr for which SR
appears and �opt for which SR is optimum. Here we found
�res=0.08 and �opt=0.5. Finally, the Lyapunov exponent, a
good indicator of chaos in dynamical systems, has been plot-
ted in the absence of noise as a function of � in Fig. 2�d�.
This clearly confirms that chaos is present in the weak damp-
ing regime and may prohibit the occurrence of SR. A similar
conclusion was drawn in Ref. �21� but in a noisy under-
damped double-well potential.

B. Stochastic resonance and synchronization
for coupled systems

1. Stochastic resonance

SR is essentially based on the exploration of the power
spectra of subsystems x̄�	� and ȳ�	� computed using the
time series of the coupled systems. Because of the coupling,
another quantity of interest is the coherence function defined
as 
2= �Sxy�	�� / �Sxx�	�Syy�	��, where Sxy�	� is the cross
spectrum of processes x�t�, y�t� and Sxx�	�, Syy�	� are the
power spectra of x�t�, y�t�, respectively. This quantity
reaches unity in case both processes become coherent. Fig-
ures 3�a�–3�d� show SNR of the two subsystem for weak
damping regime ��=0.05� and strong damping regime
��=0.75� as a function of noise intensity for four different
values of coupling parameters k. Other parameters are kept
same as in Fig. 2�a�. It turns out that for weak couplings
�Figs. 3�a� and 3�b�� both systems are quasi-independent. Re-
markably, as k increases, SNR of both subsystems becomes
identical �Figs. 3�c� and 3�d��. The coupling does not affect

the onset of disappearance of SR in the system, unlike the
dependence of SR seen on the damping parameter. Similarly
the coherence 
2 �not shown� exhibits the same trend.

To shed more light into the understanding of the above
result, we found it worthwhile to switch off completely the
noise �D=0� and analyze the influence of the coupling on
chaos that predominantly exists in the system. In this frame-
work, we have computed the Lyapunov exponent as a func-
tion of the coupling strength k for both weaker and stronger
regimes of the damping. A prototypical example is plotted in
Fig. 4 which clearly demonstrates that chaos is persistent in
the system in the weaker damping regime �=0.05, irrespec-
tive of the coupling k �see Fig. 4�a��. The Lyapunov is indeed
positive for any k. Besides and as one can expect the
Lyapunov exponent of the stronger damping regime
�=0.75 remains negative no matter what the coupling k
�see Fig. 4�b��. It thus turns out that, in our bistable oscilla-
tors, one cannot make use of the coupling to induce the tran-
sition from chaotic to deterministic dynamics.

Having established that resonances exclusively occur in
the stronger damping regime as demonstrated in Fig. 3, we
then wish to see how the coupling influences this resonance
phenomenon at the SNR level. For the same noise level, we
have recorded for a given damping parameter �=0.75 the
maximum of SNR for both x and y. The resulting plot,
shown in Fig. 5, clearly demonstrates that the maxima of
SNR are optimum at moderate values of the coupling
k=kopt, where kopt	0.25 and kopt	0.3 for SNRx and SNRy,
respectively. Note that one should not confuse these optima
with the one obtained with the noise. This plot shows that for
a given system there exists an optimum coupling between the
two systems that would maximize the SNR for both the sub-
systems.
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FIG. 3. �Color online� SNRx,y of x and y for A0=0.15 and for
different values of the coupling k as indicated on panels. In each
panel, plots are for a weak damping �=0.05, SNRx �dashed red/
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SNRx �solid red/gray� and SNRy �solid black�.
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FIG. 4. The role of coupling parameter k on chaos in the ab-
sence of the noise �D=0�. The Lyapunov exponents as a function of
k for �a� a weak damping �=0.05 and for �b� a strong damping
�=0.75. It turns out that the coupling does not influence at all the
chaos’s background of the system.
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2. Synchronization

Since we have seen that for strongly damped and for
strongly coupled subsystems the SNRx and SNRy
become identical, we would now like to see if this
also implies that the two systems are perfectly synchronized
in this regime. To proceed we define the quantity
L2�t�= �x�t�−y�t��2+ �ẋ�t�− ẏ�t��2 which is a good measure of
the synchronization �1�. A perfectly synchronization for the
two subsystems would be achieved when L�t�=0 for all
times. The inset in Fig. 5 shows an example of the time
series of L�t� for A0=0.15, �=0.75, and k=1.0. No synchro-
nization state has been achieved even at the very strong limit
that shows strong coherence. Similar outputs are found for
any other value of k, demonstrating that synchronization is
not reached as L�t� does not vanish. What makes this difficult
to achieve is presumably because the two subsystems are not
only topologically not identical but also nondeterministic.
The opposite happens in deterministic coupled systems in
which a strong coupling enforces the synchronization �22�.

C. Phase control of stochastic resonance

1. Case of identical driving frequencies

Due to the coupling between the subsystems x and y, we
have a possibility to control the onset of stochastic resonance
in the total system dynamics by introducing a phase differ-
ence between the two periodic driving F1�t� and F2�t�. The
relative phase ��=�1−�2 between two oscillators is an im-
portant control parameter for coupled systems which could
also arise, in certain situations, due to the time delay between
the two signals. To study the effect of the relative phase ��
on the SR, we first optimize the stochastic resonance curves
due to individual driving signals. Note that in the absence of
noise, simultaneous applications of both signals cannot in-
duce any periodic switching. Now, by keeping the noise level
at its optimum point, in Fig. 6�a�, SNRx is plotted as a func-
tion of ��. As one can see, the optimal SNR starts immedi-
ately to decrease as �� increases and reaches its minimum at

��
�. Further increasing �� leads to a restoration of the
optimal SNR at ��
2�. Remarkably, this collapse of the
optimal SNR is more pronounced when the two driving
forces are in antiphase ��
�. It is thus the antagonist ef-
fects of these driving forces on corresponding oscillators
which destroy the cooperative effects and are responsible of
the collapse of the optimal SNR. This collapse is maximum
for the stronger coupling between the two oscillators, sug-
gesting that such a control scenario is the most efficient for
strongly coupled systems. Here, one experiences a significant
gap of about 8 dB as the coupling strength goes from its
smallest value k=0.01 to the largest one k=1. The simple
control scheme can further be extended by applying the con-
trol signal to the barrier height modulation, analogous to the
control scheme of SR in the overdamped regime �23�.

2. Case of different driving frequencies

To explore the sensitivity of the SR control to different
driving frequencies, we consider a scenario when one of the
system is driven by the F1�t�=A cos��t+�1� and the other
one by its second harmonic F2�t�=A cos�2�t+�2�. By vary-
ing the relative phase �� and keeping the noise fixed at its
optimum, the SNRx is shown in Fig. 6�b�. Again for very
weak coupling almost no control is obtained but as the cou-
pling increases, one can see that the SNR at the fundamental
frequency � drops by more than 2 dB. In this case, whenever
the two driving signals lead to opposing contribution, a drop
in SNR is still observed. However, these opposing contribu-
tions do not lead to a good cancellation in the case of differ-
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FIG. 6. �Color online� The control of optimum SNR using a
phase difference between two driving signals. �a� SNRx versus the
relative phase ��=�1−�2 between the two driving signals of iden-
tical frequencies �1=�2 and A1=A2=0.15, �b� SNRx versus
��=�1−�2 between two driving signals of different frequencies
�1=�2 /2 and A1=A2=0.15. The noise level for these results is
kept fixed at its optimum value around Dopt=0.15.
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ent frequencies which leads to a less noticeable control when
compared to the case of identical driving frequencies.

IV. SUMMARY AND CONCLUSION

We have investigated the stochastic resonance dynamics
of two coupled bistable systems which can have arbitrary
damping and coupling. The SR which is central has been
already considered in a similar system but in the overdamped
regime �11� in which chaos is inhibited. Dealing first with the
uncoupled system, we found two critical damping param-
eters: one indicating the threshold for the appearance of SR
and another for its optimum. We show that the weak damp-
ing regime prohibits onset of SR and that the nonmanifesta-
tion of SR is due to the presence of chaos in the system.
Then when the coupling is turned on, SR is in general not
affected; however, the strong coupling regime induces SNR
of subsystems to match, thereby showing a very high coher-
ence. We also found, for each subsystem, a specific coupling
parameter for which the SR is optimum. Exploring the sys-
tems along the same lines, the synchronization has not been
reached for any value of the coupling.

Furthermore, the influence of the relative phase �� �or
time delay� of the coherent signals is exploited to control the
optimal SR effect. When the two subsystems are driven out
of phase, the coupling cancels out the noise-induced oscilla-
tions, leading to a collapse of SR. Clearly, such a control is
the most effective when the systems are in antiphase, driven
by identical driving frequencies and are strongly coupled.
Indeed, the mutual suppression of SNR by dephasing can
serve as an indicator of their coupling constant. The results
presented here are of generic importance to other coupled
systems such as the coupled bistable lasers, the electronic
circuits, and the nanomechanical systems where both the
coupling and dissipation play an important role in the system
dynamics �15,24�. The emergence and optimization of sto-
chastic resonance for a network of a large number of coupled
nonlinear subsystems, such as nanomechanical resonators
�17�, remains a problem of further research and importance.
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