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Classical sum rules arise in a wide variety of physical contexts. Asymptotic expressions have been derived
for many of these sum rules in the limit of long orbital period �or large action�. Although sum-rule convergence
may well be exponentially rapid for chaotic systems in a global phase-space sense with time, individual
contributions to the sums may fluctuate with a width which diverges in time. Our interest is in the global
convergence of sum rules as well as their local fluctuations. It turns out that a simple version of a lazy baker
map gives an ideal system in which classical sum rules, their corrections, and their fluctuations can be worked
out analytically. This is worked out in detail for the Hannay-Ozorio sum rule. In this particular case the rate of
convergence of the sum rule is found to be governed by the Pollicott-Ruelle resonances, and both local and
global boundaries for which the sum rule may converge are given. In addition, the width of the fluctuations is
considered and worked out analytically, and it is shown to have an interesting dependence on the location of
the region over which the sum rule is applied. It is also found that as the region of application is decreased in
size the fluctuations grow. This suggests a way of controlling the length scale of the fluctuations by considering
a time dependent phase-space volume, which for the lazy baker map decreases exponentially rapidly with time.

DOI: 10.1103/PhysRevE.82.046223 PACS number�s�: 05.45.Ac, 45.05.�x, 03.65.Sq

I. INTRODUCTION

Classical sum rules play an important role in a number of
physical contexts. It is interesting to have a case of a non-
uniformly spreading chaotic system where their limits, fluc-
tuations, and convergences can be studied analytically, which
is given in this paper. We focus on the sum rule of Hannay
and Ozorio de Almeida, who were motivated by a desire to
understand the two-point quantum density-of-states cor-
relator �1�. Their derivation relied on the principle of unifor-
mity, which states that the periodic orbits, weighted natu-
rally, are uniformly dense in-phase space. It leads to a
smooth behavior of the sum, whose corrections one antici-
pates to decrease with increasing time. The fluctuations and
corrections then are linked to long-range fluctuation behavior
of quantum density of states. There are many sum rules; see,
for example, the sum rules in Refs. �2–4�, which involve
return probability, the connection of two points in coordinate
space, and fixed orientations of initial and final velocities,
respectively. They arise in mesoscopic conductance, diffrac-
tion contributions to spectral fluctuations, and chaotic quan-
tum transport, respectively.

In one possible form of the Hannay-Ozorio sum rule �5�
for chaotic systems, it is the inverses of the stability matrix
determinants for the periodic orbits of period �, �Det�M�

−1��−1, which are summed. For completely chaotic systems

the finite-time stability exponents, which roughly determine
the value of each determinant, converge as �→� to a single
set. Nevertheless, the determinant’s fluctuations from one pe-
riodic orbit to the next grow without bound in the same limit.
This feature is made even more curious by the expectation
that the Hannay-Ozorio sum rule converges exponentially
rapidly. See a preprint by Pollicott �6� for a theorem regard-
ing the sum rule’s convergence.

It is known that smooth classical functions have exponen-
tial decays in fully chaotic systems toward their ergodic av-
erages, which are governed by the Pollicott-Ruelle �PR�
resonances �7–10� associated with the Perron-Frobenius op-
erator. It is natural to ask whether the kinds of classical sum
rules encountered always converge to their limiting values
with corrections that decay exponentially according to the
leading PR resonances. The work of Andreev et al. �11�
would suggest that as long as there is a gap in the spectra of
the Perron-Frobenius operators, there is no other possibility.

A first step is taken here in approaching this general line
of questioning by considering a form of the Hannay-Ozorio
sum rule for fixed period in maps. Its convergence rate and
local fluctuations are considered in detail in a simple version
of a lazy baker map introduced by Balazs and one of us
�A.L.� �12,13�. Although the usual baker map is especially
simple, it is also nongeneric in that its lacks the essential
fluctuations of interest, whereas the lazy baker map pos-
sesses fluctuations and still turns out to be analytically trac-
table. The fluctuations of the inverse determinant were stud-
ied briefly in Ref. �14�, where they were demonstrated, not
surprisingly, to be extremely sensitive to even tiny islands of
stability. In the form of the lazy baker map studied here, all
orbits, with one exception of a marginal orbit of period two,
are unstable, and there is no ambiguity concerning whether
the system is completely chaotic.
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The organization of this paper is as follows. In Sec. II
notations are specified and definitions of various quantities
of interest are given. Section III introduces a simple version
of a lazy baker map �named the stretch-rotate �SR� map�,
which is studied in detail, and gives basic counting results
for fixed points and a method of subdividing the phase space
into local regions. This is followed in Sec. IV by a derivation
of the main results for the local fluctuation and convergence
properties of the Hannay-Ozorio sum rule.

II. MEASUREMENTS OF CHAOTIC SYSTEMS

Dynamical system theory has generated a number of ways
to specify the complexity of a chaotic mapping. Three of the
more familiar concepts to physicists are the topological en-
tropy, hT, the metric or Kolmogorov-Sinai �KS� entropy, and
the Lyapunov exponent, �L �15,16�. The topological entropy
is designed to measure the information content of the optimal
partition of the dynamics. It turns out for that a class of
systems known as Axiom A that the limiting value of the
exponential rate of increase in the number of fixed points
with iteration number gives this entropy. The KS entropy can
be thought of in a similar way, except that it is weighted.
Finally, the Lyapunov exponent measures the exponential
separation of neighboring initial conditions.

For the purpose of studying the fluctuations of classical
sum rules, the main quantities of interest tend to be the num-
ber of fixed points, their finite-time stability exponents, and
their probability densities and moments, all of which can be
considered in both a global and a local phase-space context.
We do not worry as to what exact relations exist between
each of these measures for a given system, but they are
closely related where they do not have an identical counter-
part and it is useful to relate our results to some of these
quantities when they are known.

A. Basic quantities

The notation N� denotes the number of fixed points at
integer time � taken over the full phase space. This is distin-
guished from a local count of fixed points by writing N��s ,k�
where the parameters s and k conveniently specify the loca-
tion and size, respectively, of the local phase-space volume
in question for the SR map. Additionally, of great importance
in this work are the sums over fixed points appearing in one
form of the Hannay-Ozorio sum rule, which are given in
these notations,

F� = �
f .p.

1

�Det�M� − 1��
�global� ,

F��s,k� = �
f .p.��s,k�

1

�Det�M� − 1��
�local� , �1�

where “f.p.” denotes fixed points in the specified region of
phase space and

M��q0,p0� = �
i=0

�−1

M�qi,pi� �2�

is the Jacobian stability matrix along the trajectory fixed by
the set of iterates �qi , pi	 of the initial conditions �q0 , p0�; the
notation for initial conditions is mostly left suppressed. A
related quantity which is sometimes of interest is the finite-
time stability exponent, given here for a map with single
position and single momentum coordinates,

��q0,p0;�� =
1

�
ln
 �tr�M��� + �tr�M��2 − 4

2
�



1

�
ln�tr�M���



1

�
ln�Det�M� − 1�� , �3�

where tr�¯ � denotes the trace operation. For long times, the
approximate relations for � tend exponentially quickly to the
first relation.

B. Convergence and measuring sum-rule fluctuations

The Hannay-Ozorio sum rule in this context and notation
�also referred to as the uniformity principle� reads
F��s ,k�→Vk, where Vk is the phase-space volume over
which the fixed points are summed. The absence of an s
dependence is the absence of a dependence on the location
in-phase space. This result, which holds in both the local and
global cases, emerges in the limit of long times. The simplest
determination of its convergence amounts to calculating the
leading corrections to the sum as a function of �� ,s ,k	. The
expectation is that it should decrease exponentially with � if
�s ,k	 are held fixed, although it is not obvious to us, a priori,
at precisely which rate and with what length oscillations. For
the specific SR map introduced in Sec. III, it turns out to be
governed by the leading Pollicott-Ruelle resonance, which,
interestingly enough, has a real part equal to the Lyapunov
exponent.

1. Local convergence boundary

It is also possible to consider the convergence with in-
creasingly smaller local regions in the phase space. By con-
trolling the size of a region, the number of terms contributing
to the local sum can be tuned for a given �. Given that the
individual stability determinants fluctuate with ever increas-
ing width as � increases, the question becomes “at which
time on average do the corrections become smaller than the
sum-rule expectation, i.e., the local phase-space volume?” As
the regions shrink in size this time extends later, thus making
it possible to find a shrinking volume as a function of � that
offsets the exponentially decaying corrections. One can think
of this V��� as the boundary for the local application of the
sum rule to be converged. Both the global and the local
boundary of convergence are given ahead.

2. Moments

For the subregions of phase space, subtracting the local

volume from the sum itself, call it F̃��s ,k�, gives the leading
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corrections and fluctuating components of the sum rule. A
probability density for the values it takes on at fixed time
over all regions can be defined, PF̃�

�x�, which carries all
information about convergence, local or global, and fluctua-
tions. In particular, our focus in this paper is on central mo-
ments of the density. A very important case is the mean
square deviation

�2�F̃�,k� = �F̃��s,k�2�s =� dxx̂2PF̃�
�x� , �4�

where x̂=x− x̄ and for which an asymptotic expression is
derived in the case of the SR map. More generally, the nth
central moment is

Mn�F̃�,k� = �F̃��s,k�n�s =� dxx̂nPF̃�
�x� . �5�

The moments

Mn�e��,k� = �en��s,k;����s =� dxxnPexp�����x� , �6�

which by Eq. �3� is associated with the probability density of
the finite-time stability determinants, are distinctly different
from the moments of the sum-rule fluctuations. Both cases
are treated in this paper. However, as also shown, the prob-
ability density PF̃�

�x� asymptotically tends to a Gaussian
density and only the first two moments �cumulants� are con-
sidered in detail.

III. LAZY BAKER SR MAP

The Hannay-Ozorio sum-rule fluctuations may be worked
out exactly for the case of a simple dynamical system which
is a modification of the usual baker’s map. Lazy baker maps
have previously been introduced �12� as a class of two-
dimensional area-preserving maps. We study here a particu-
lar case called the SR map �stretch-rotate� which is chaotic
over the whole measure and is defined on the unit square in
the usual position, momentum coordinates, as follows:

�q� = 2q

p� = p/2� if 0 � q � 1/2,

�q� = 1 − p

p� = q
� if 1/2 � q � 1. �7�

The action of the map can be pictured most easily by split-
ting the unit square into four equal subsquares, R1–R4, as
shown in Fig. 1. Region R4 is rotated uniquely into R3 on
the next iteration and region R3 is rotated into R2. On the
left half of the square, points in R2 and R1 are compressed
by a factor 2 along the p axis and stretched by the same
factor along the q axis.

The combination of rotation and stretching in the same
dynamical system gives rise to the possibility of nonuniform
hyperbolic motion or even nonhyperbolic motion. For the SR
map defined as above with the vertical cut in the middle of
the square at q=0.5, the motion is of the former kind. As the

cut is moved to the right it ceases to be completely hyper-
bolic at the golden mean. In this paper we will only study the
case when there are equal regions stretching and rotating,
which is arguably the simplest “exactly solvable” model of
nonuniform hyperbolicity in an area-preserving map. It ad-
mits a Markov partition of phase space and the dynamics is
one of the subshifts of finite type on three symbols as shown
in �13�. The atoms of the partition are A=R1�R2, B=R3,
and C=R4.

The transition matrix is

T0 = �1 0 1

1 0 0

0 1 0
� �8�

whose ij element, tij, is 1 if there is a transition from i to j
and 0 otherwise. Here, i , j� �A ,B ,C	. This has only
topological information. Let pij be the fraction of atom i in
atom j on one evolution of the map. This gives the transition
probabilities for the three-state Markov chain that the SR
map is equivalent to. The transition probabilities are
pAA=1 /2, pAC=1 /2, pBA=1, and pCB=1, the rest being zero.
The Markov matrix is then T1 whose matrix elements are
tijpij, while for fluctuations to be studied below the matrix T2
whose elements are tijpij

2 is also useful. These matrices can
be used to study the uniformity principle at the global as well
as the local scales as is shown below. To study what happens
on restriction to smaller areas whose size can be controlled,
as well as to find the actual locations of the orbits, it is useful
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FIG. 1. Partition of the unit square into four subregions, R1–R4

�upper panel� and where each subregion maps after one iteration
�lower panel�. As shown, R1 and R2 are squeezed and stretched
whereas R3 and R4 are rotated.
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to use a binary representation given ahead. This is not a
symbolic dynamics in the sense that the dynamics is no more
a left shift. However, the dynamics is an eventual left shift
even in the binary representation and is used extensively
below.

Any point in-phase space can be represented as a bi-
infinite binary string p .q representing its position q and mo-
mentum p. The binary string representing the first m bits of
the position coordinate is labeled �m. The quantity m also
corresponds to the number of times an orbit visits the stretch-
ing region �left half� of the square after some number of
iterations. The rules for the mapping equations on the binary
string are given in �12� and summarized here: if the most
significant bit of position is 0, the dynamics is that of a left
shift. If the most significant bit is 1, position and momentum
coordinates are interchanged and in the new momentum co-
ordinate all 0’s and 1’s are switched. For example, consider
the period 3 orbit starting at �q0 , p0�= �2 /3,1 /3�,

�2/3,1/3� → �2/3,2/3� → �1/3,2/3� → �2/3,1/3� .

The binary representations for the starting coordinates are
q=0.10 and p=0.01, where the underline indicates infinite
repetition, and under the dynamics this point maps as

01 . 10 → 01 . 01 → 10 . 10 → 01 . 10, �9�

while under the symbolic dynamics this orbit is
CBA→BAC→ACB.

Making use of the symbolic dynamics, it is possible to
prove that the map contains a dense set of periodic orbits and
is hence an ergodic transformation. It is also a straightfor-
ward argument to see that the positive Lyapunov exponent �L
for the SR map is

�L = 1
2 ln 2. �10�

This may be seen as follows: the unique smooth invariant
density is uniform on the phase space. Therefore, ergodicity
implies that at a large number of iterations a typical orbit
spends equal amounts of time on the left and right halves of
the unit square. Since points along an orbit which are on the
left half are stretched by a factor of 2 and points on the right
half are not stretched at all, the Lyapunov exponent will be
the average of ln 2 and 0. The known symbolic dynamics or
binary representation also allows the enumeration of all pe-
riodic orbits of any period as seen in Sec. III B.

A. Periodic orbits and stability

To begin the discussion of the periodic orbits, first note
that there exist two exceptional periodic orbits on the bound-
ary of the square: a period 1 fixed point at the origin and a
period 2 orbit between the points �1,1/2� and �1/2,1�. All
other orbits must pass through the interior of the rotating
region R4 and it is thus sufficient to count orbits originating
in R4. The orbits come in two types depending on the pa-
rameter henceforth called j, which is the number of changes
from 0 to 1 or 1 to 0 in the binary string �m representing the
first m bits of the position coordinate. If j is odd, the orbit
may be represented as p .q=�m .�m. If j is even the orbit may
be written as p .q=�m�̄m .�m�̄m, where �̄m denotes the

complement of �m. From the rules given for the symbolic
dynamics one finds the period � of an orbit in terms of its �m
string to be

� = 2j + m + 2, �11�

where j may take any integer value from 0 to m−1. Refer-
ence �12� may be consulted for more details.

It is also useful to realize that it is possible to translate
from the binary to the symbolic dynamics and vice versa.
Sticking to orbits originating from R4 these are of the form
¯0.1x2x3¯. This translates by replacing every transition
�which is a 0–1 or 1–0 “bond” in the binary representation�
including the initial 0.1 by CBA and every other type �i.e.,
0–0 and 1–1 bonds� by AA. Thus, for example, the orbit with
the binary representation ¯0.101 00¯ translates to
¯CBACBACBACBAAA¯.

The Jacobian stability matrix for a single time step is
dependent on whether the point in question is in the left or
right half of the unit square. Denoting ML as the stability
matrix for points in the left half and MR as the stability
matrix for points in the right half we have, following from
the definition of the map,

ML = 
2 0

0 1/2 �, MR = 
0 − 1

1 0
� . �12�

The stability matrix along a trajectory �Eq. �2�� may then be
calculated explicitly as a product of the matrices �Eq. �12��.
Since points in R4 always map to R3 on the next time step,
the product MRMR will always come in pairs in the full
product for M�. Because this product MRMR produces a di-
agonal matrix, −I, the full product �Eq. �2�� contains only
diagonal matrices, so it is commutative. This implies that up
to a minus sign M� is determined by the number of times an
orbit visits the left half of the unit square, and the parity is
determined by whether j is even or odd. Putting all of this
together gives the period � Jacobian stability matrix of a
particular periodic orbit as

M� = 
2m�− 1� j+1 0

0 2−m�− 1� j+1 � , �13�

with eigenvalues

�	c� = 2−m, contracting,

�	e� = 2m, expanding. �14�

The explicit form of the inverse determinant that arises in
semiclassical calculations is

1

�Det�M� − 1��
= ��2m + 2−m − 2�−1, j odd

�2m + 2−m + 2�−1, j even,
� �15�

which may be written with a 
 for notational convenience,
knowing that the sign in front of the two is determined by the
parity of j. Since the main interest is in asymptotic calcula-
tions �large �� it is sufficient to keep the first two terms in the
binomial expansion
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�2m + 2−m 
 2�−1 
 2−m − �− 1� j2−2m+1 + ¯ . �16�

It is shown in Sec. IV A that actually only the first term in
the expansion is necessary to investigate certain asymptotic
fluctuation properties, leaving the approximation

1

�Det�M� − 1��
� 2−m. �17�

Thus, for large period, to leading order �Det�M�−1��−1 coin-
cides with the contracting stability eigenvalue �	c� of the
stability matrix. A final note, although the determinant is the
quantity which arises in semiclassical theory, some of the
classical dynamical system literature defines the uniformity
principle with respect to the inverse of the stretching expo-
nential �16�, in which case the correction term of Eq. �16� is
not relevant.

B. Enumerating the periodic points

It is quite valuable to be able to count the periodic points
of fixed period in a given subregion of the unit square. To do
so, we proceed as follows: divide the unit square into a grid
of boxes of area 2−k�2−k, whose lower left corners are
specified by q= ¯x1x2¯xk and p= ¯y1y2¯yk. This is a
binary expansion, so each xi and yi is either 0 or 1. This is a
total of 4k boxes. Membership of an orbit in a box with a
specified lower left corner is simply that the orbit has the
same first k bits for p and q in its binary representation as the
lower left corner, and arbitrary bits beyond the kth. To start,
consider boxes in the lower right subsquare R4. The same
counting results will hold for regions R3 and R2 since these
are merely rotations of R4. The slightly more detailed count-
ing arguments for region R1 can be found in Appendix A.

As in Sec. III A the periodic points are written either in
the form �m .�m or �m�̄m .�m�̄m, the former if j, the number
of 0–1 or 1–0 transitions in �m, is odd and the latter if j is
even. The requirement on the string �m for a point to be in
R4 is that the first bit is 1. If the last bit is 0, then the first
form represents a point in R4, and if the last bit is 1, then it
is the second form that is a point in R4. In either case, m is
related to the period � in Eq. �11�. Note that j�m−1, so
j��−2j−3 and 3j��−3, so that j is at most ��� /3��−1,
where �¯ � denotes the floor function. The first step is to
count how many �-periodic points with a fixed value of j
there are in the box whose corner is specified by
q=0.1x2 . . .xk and p=0.0y2 . . .yk �note the 1 and the 0 are
forced because the point must lie in R4�. This point is also
represented by combining the binary expansions into one
expression ykyk−1 . . .y20.1x2 . . .xk and similarly for other
points.

For a �-periodic point of the first form, �m must look like
1x2 . . .xkw1 . . .wiyk . . .y20 for some i ,k with the restriction
i=�−2j−2k−2 and the total number of transitions in this
string is j. If the periodic point is of the second form, then
�m=1x2 . . .xkw1 . . .wiȳk . . . ȳ21.

Let s equal the number of 0–1 or 1–0 transitions in
1x2 . . .xk plus the number of 0–1 or 1–0 transitions in
0y2 . . .yk. That is, s is the total number of changes for the
lower left corner point of the box. If s and j are both odd, a

periodic point would be of the first form, and
�m=1x2 . . .xkw1 . . .wiyk . . .y20. There are s transitions from 1
to xk and from yk to 0 combined, so there must be j−s tran-
sitions in the i+1 possible places in xkw1 . . .wiyk. So there are
� i+1

j−s �= � �−2j−2k−1
j−s � ways to do this. In the other cases in which

j and s may be either even or odd, the same result holds and
thus we have that for each possible value of j, the number of
�-periodic points in a 2−k�2−k box in R4 with corner value
specified by s is � �−2j−2k−1

j−s �. The smallest possible value of j
is s, which occurs when all the w’s are the same as xk, and
the maximum attainable value of j is ���−2k+s−1� /3�. In
addition, for a given value of s, there are � 2k−2

s � possible
2−k�2−k boxes with s as the number of transitions in the first
k p bits plus transitions in the first k q bits of the corner
point.

To summarize, the counting just given is for �-periodic
points in a binary grid of boxes within R4, R3, and R2,
where k is the number of bits specifying a box side and s is
the number of transitions in the k bits of the q coordinate of
the corner of the box plus the number of transitions in the k
bits of the p coordinate of the corner point. The index j
ranges from s to ���−2k+s−1� /3� and for a given j the num-
ber of periodic points with that value of j is given by
� �−2j−2k−1

j−s �, so the total number of period-� points in this box
is

N��s,k� = �
j=s

���−2k+s−1�/3� 
� − 2j − 2k − 1

j − s
� . �18�

Note that for fixed period and box size, the statistics of the
periodic points within a box are determined entirely by the
value s of its corner point. Any two boxes with the same
value of s will have exactly the same distribution, and for
each s there are � 2k−2

s � such boxes. Thus, the Hannay-Ozorio
sum �Eq. �1�� over all periodic points within a binary box in
R4, R3, or R2 is

F��s,k� = �
j=s

���−2k+s−1�/3� 
� − 2j − 2k − 1

j − s
� 1

�Det�M� − 1��

�19�

and the global form of Eq. �1� �excluding R1� by summing
over all boxes in R4, R3, and R2 gives

F� = 3 �
s=0

2k−2 
2k − 2

s
�F��s,k� . �20�

The relation of the inverse determinant to the period and the
symbolic representation of an orbit is, from Eqs. �17� and
�11�, given by

1

�Det�M� − 1��
� 2−�+2j+2, �21�

which provides an explicit summable expression for looking
at fluctuations in the uniformity principle.

The counting arguments for the subsquare R1 are slightly
different but similar in character to those presented here and
the details are given in Appendix A. In fact, the resulting
equations are quite close to the ones given in this section.
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Figure 2 shows a plot of all periodic points in the unit
square at �=24 and 28. This visualization of the structure of
the periodic points is interesting in its own right as the points
appear to have a fractal-like structure to them. In fact, the
checkered pattern created mimics the stable and unstable
manifolds of the map.

The symbolic dynamics and the Markov matrices can also
be used to find the number of periodic orbits as well as to
study the uniformity principle. Since the SR map is simple
enough to permit both a combinatorial approach as well as a
symbolic dynamics one, it is useful to present both. Given a
periodic point of the first type in R4 whose �m string

has a binary representation 1x2x3¯w1w2¯wiyk¯y20,
this translates into an orbit which is a repetition of
symbol strings of length �=2j+2k+ i+2. Of these
3�s+1�+ �2�k−1�−s�=2s+2k+1 are utilized to specify the
fixed corner point. Thus, there are n=�− �2s+2k+1� number
of possible “free” symbols, say S1 , . . . ,Sn. A little thought
shows that the free symbol string has to end with A, that is,
Sn=A, and has to be prefixed by an A. Thus, it can be either
of the form CBA . . .A or A . . .A. In both these cases the num-
ber of periodic points is then given by

N��s,k� = �
Si

�T0�AS1
�T0�S1S2

¯ �T0�Sn−1A �22�

or

N��s,k� = �T0
�−2k−2s−1�AA. �23�

Recall that T0 is the transition matrix in Eq. �8�. Thus, the
combinatorial problem can be reduced to that of finding
powers of a matrix. From this point the mathematical com-
plexity is comparable as both lead to the analysis of cubic
equations �see Appendix B for the combinatorial case�.

The uniformity principle sum for the local area can also
be written compactly in terms of a matrix power, this time
the Markov matrix T1. A similar reasoning as above leads to

F��s,k� =
1

22k−1 �T1
�−2k−2s−1�AA. �24�

Here, however, the approximation in Eq. �21� has already
been used, as otherwise such a compact formula is not pos-
sible. Note that with this approximation the global �over the
whole phase space� uniformity principle sum is simply the
trace of the power of the Markov matrix. That is,

F� = Tr�T1
�� . �25�

This follows from the fact that the entries in the stochastic
matrix T1 are precisely the multipliers which are either 1/2 or
1. The stochastic matrix has necessarily an eigenvalue 1, and
therefore F�→1 as �→� is an alternative formulation of the
uniformity principle. The other eigenvalues of T1 whose ei-
genvalues are less than 1 in modulus determine both the rate
of decay of correlations as well as approach to uniformity of
the periodic orbits. We will expand on this below shortly.
Almost all of the analysis below follows the consequences of
the binary representation and the combinatorial approach as
detailed statistics is more transparently done this way.

IV. STATISTICAL RESULTS

The results in Sec. III B and Appendix B can be used to
evaluate sum-rule fluctuations. Consider the local density of
the inverse determinant �Det�M�−1��−1, which occurs as the
natural weighting for periodic orbits in many semiclassical
expressions. The first goal is to derive an asymptotic formula
for its variance. This analysis leads naturally to discussing
the density and convergence of the remaining component

F̃��s ,k� of the Hannay-Ozorio sum rule introduced in Sec. II.

We give an analytic expression for F̃��s ,k� and compute its

1.0

0.0
1.00.0

p

q
0.5

0.0
0.50.0

p

q
FIG. 2. Fixed points of the time � iterated map. The upper

square is the plot for �=24 and the lower square is the R1 region for
�=28. The density of fixed points at �=28 is roughly 4.6 times that
of �=24. Below, expanding R1 renders the lower plot’s fixed-point
density similar to the upper plot. The similarity of the expanded R1
fixed point’s structure to the full phase space at an earlier time
illustrates the fractal-like structure mentioned in the text.
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variance, as well as local and global boundaries of conver-
gence for the sum rule.

A. Local distribution of the inverse determinant

Consider the regions R4, R3, and R2 �see Fig. 1� of the
unit square whose density of periodic orbits is described in
Sec. III B. As before, the �similar� discussion for the region
R1 is left to Appendix A. There is a range of values taken by
�Det�M�−1��−1 within a local patch of phase space, as de-
scribed in Sec. III B. It was shown that the number of period
� fixed points with a fixed value of the determinant specified
by j in a box with parameters s and k is given by � �−2j−2k−1

j−s �,
where j�s. For large period the combinatorial as a function
of allowed values of j �which can be thought of as a prob-
ability density for various stability determinant values of
fixed points in the box� is approximately normally distrib-
uted �see Appendix B� with an exact mean given in Eq.
�B10� but written approximately here as


 �
� − 2s − 2k − 1

5.148
+ s − 0.162. �26�

Recall from Eq. �21� that at period � the inverse determinant
may take on the values 2−�+2j+2 as j ranges from s to
���−2k+s−1� /3�. So, in fact, for the discussion of
�Det�M�−1��−1, the sum rule F��s ,k� is over terms of the
form � �−2j−2k−1

j−s �4 j. It turns out that the density for these terms
is also normal when considered as a function of j as just
noted for the case without the factor 4 j �with a different
mean and variance though�; note, oddly enough, that it does
not imply that the density for finding a particular value
of the inverse determinant �consider as a function of
�Det�M�−1��−1
2−�+2j+2� is lognormal as the convergence
with �−2j−2k−1→� to normal is too slow.

Consider the density g�i , t�= � n−2i
i �eti as a function of i for

a given t, where as in Appendix B, et=�; use of the notation
et �or �� supplies a general form for the mathematical
evaluation of quantities that repeatedly arise in evaluating
sum rules or treating orbit stabilities as probability densities
or calculating moment generating functions. Using Stirling’s
formula to approximate g�i , t� and calculus, one finds that the
maximum value of g�i , t� occurs at the value i0 of i given by

i0 
 n
�1�t� − 1

3�1�t� − 2
, �27�

where �1�t� is the real root of the cubic equation
�3−�2−et=0. Interestingly this same cubic equation arises
here for a different problem from the one considered in Ap-
pendix B. This method does not give the exact transient
terms as the recurrence method of Appendix B does, but the
same structure exists and near the maximum at i0, g�i , t� is
approximated continuously as a Gaussian with width on the
order of �n and so the values of i which contribute to the
sum are sharply peaked around the maximum. Specifically,

g�i,t� = 
n − 2i

i
�eti �

�1
n+1

3�1 − 2

1

�2��i
2
e−�i − i0�2/�2�i

2�,

�28�

where �i
2=n��1��1−1� / �3�1−2�3�.

For the quantity �Det�M�−1��−1, for which et=4, �1=2
and so the mean of g�i , t� occurs at i0=n /4, even though the
mean 
�n� �for the unweighted combinatorial, i.e., t=0� oc-
curs at about n /5.148. As n→�, the two densities tend to-
ward a vanishing overlap since the difference in the means
grows faster than the widths. In considering values taken by
the inverse determinant, only those periodic points with tran-
sition number j which occur near

j0 =
� − 2s − 2k − 1

4
+ s �29�

contribute to the sum F��s ,k�, in spite of the fact that there is
a vanishing relative fraction of fixed points associated with
this value of j, as most points have a value of j near
��−2s−2k−1� /5.148+s−0.162.

B. Important moments

We give here explicit expressions for some of the quanti-
ties of interest related to the inverse determinant and the SR
map using the results from the methods of Appendix B. First
consider the number of period � fixed points within a binary
box specified by s and k. The number N��s ,k� is given in Eq.
�18�, which is a special case of the sum formula S�n ,�� from
Appendix B with �=1 and n=�−2k−2s−1. The form of the
solution is therefore specified in Eq. �B7�, with appropriate
values for the constants. The topological entropy is given by
hT=ln �1�0�, and thus

N��s,k� = c1ehTn + 2e−hTn/2�a cos�n�� − b sin�n��� . �30�

This equation contains the finite-time correction terms to the
count of fixed points of a binary box, which cannot be given
by specifying the entropy alone. If � is large, the leading
term c1ehTn dominates and may be used for asymptotic cal-
culations.

The moments for the inverse determinant �which are dif-
ferent from the moments involved in the sum-rule fluctua-
tions ahead� may be computed by averaging over powers of
�Det�M�−1��−1. The most important case is the mean, which
corresponds to F��s ,k� and gives an explicit finite-time cor-
rection term to the �infinite time� prediction of the uniformity
principle. It is also an ingredient of other sum-rule moments.

From Eqs. �19� and �21�, the local form of the sum of the
inverse determinant over all fixed points within a box reads

F��s,k� = �
j=s

���−2k+s−1�/3� 
� − 2j − 2k − 1

j − s
�2−�+2j+2, �31�

which is predicted by the Hannay-Ozorio sum rule to asymp-
totically approach the area of the box, 4−k. A slight change of
variables puts the sum in the generic form �Eq. �B1��, with
�=4 and n=�−2k−2s−1. The solution is thus again of the
form of Eq. �B7�, where the real root �1 of the cubic is
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exactly 2. After some algebraic manipulation, it is seen that
F��s ,k� may be written in a form which displays both its
exponential dependence on the period as well as its relation
to the phase-space area as

F��s,k� = 4−k + e−�L�2s−k+5/2�a cos�n�� − b sin�n��� ,

�32�

where �L is the real part of the leading Pollicot-Ruelle reso-
nance �here also equal to the positive Lyapunov exponent�
whose value is given in Eq. �10�. The numerical values of the
constants a, b, and � may be calculated using the formulas of
AppendixB. Subtracting the Hannay-Ozorio term leaves the
oscillating part with time of the sum rule as

F̃��s,k� = e−�L�2s−k+5/2�a cos�n�� − b sin�n��� . �33�

By factoring out the time dependence, it turns out that the
rate of convergence toward uniformity with increasing pe-
riod is exponential, as expected. It is clear from the discus-
sion based on symbolic dynamics and Eq. �24� that the rate is
governed by the eigenvalues of a Markov matrix if it exists
or generally by the Pollicott-Ruelle resonances. In the case
of the SR map, the moduli of the eigenvalues of the Markov
matrix, which are the resonances, have modulus equal to
1 /�2, which is e−�L. It is well known that the Pollicott-Ruelle
resonances are generically not related to the Lyapunov expo-
nents and therefore the equality for the SR map must be
considered a coincidence. The close connections between
mixing and uniformity principle makes the emergence of the
Pollicott-Ruelle resonances as governing the rate of conver-
gence to uniformity much more natural.

It is also interesting to consider the convergence boundary
as mentioned in Sec. II B 1. This amounts to determining the
box size �phase-space volume� for a given period and loca-
tion in-phase space at which the size of the correction term

F̃��s ,k� is just the same order of magnitude as the local area
itself. In particular, from Eq. �33�, if 2−�/2+s−k+5/2=4−k then
k=� /2−s−5 /2 and the volume at the convergence boundary
is

V�s;�� = 2−�+2s+5. �34�

In this way, the local sum-rule fluctuations are equally as
important as the mean and hence to any results which invoke
a sum rule on that local scale at that time. Given that s varies
in the domain 0�s�2k−2 or in terms of �, 0�3s�2�−7,
the convergence boundary varies greatly from one location to
another in the phase space, i.e., 2−��V�s ;���2−�/3. Al-
though the local convergence boundary vanishes everywhere
as �→�, its relative variation tends to infinity. The relatively
larger boundaries are precisely linked to locally greater in-
verse determinant variation just ahead.

In Eq. �16�, the leading correction term to the inverse
determinant was given, but up to this point not included in
the calculations. It is important to know if this error is sub-
dominant relative to the fluctuating component just calcu-
lated. If the second expansion term is kept, this leads to a

sum denoted B̃��s ,k� of the form

B̃��s,k� = �
j=s

���−2k+s−1�/3� 
� − 2j − 2k − 1

j − s
� � 2−2�+5�− 16� j ,

�35�

which once again is in the form of the sum discussed in
Appendix B with �=−16 and n=�−2s−2k−1.

In fact, more properly, the two most dominant corrections
to the local sum rule are

F��s,k� = 4−k + F̃��s,k� − B̃��s,k� . �36�

We know that the first correction term is governed by the
Pollicott-Ruelle resonances, but the second term is
something else. A priori, it is not obvious which of
these two correction terms dominates for large period.
Extracting only the exponential dependence on � gives

F̃��s ,k��e−�L�
�0.71��. For B̃��s ,k�, because ��0, the
dominant fluctuation term comes from the oscillatory

�� /��n/2, which is approximately B̃��s ,k�
�0.67��. In this
case, the first correction term eventually dominates over the
second, and using the approximation of Eq. �21� is justified.
Had the situation turned out the opposite way, then the cor-
rection term would not have been a Pollicott-Ruelle reso-
nance; we are not aware of an argument suggesting that this
could not have happened and thus both sources of correc-
tions must be considered in other cases.

Before continuing with the spatial fluctuations in the sum
rule itself, consider the variation of the individual inverse
determinants contributing to each sum. They vary wildly
from one fixed point to the next and there is greater variation
in some regions as opposed to others. This gives an s depen-
dence to their variation within any single box. This can be
seen by computing the variance. The sum of squares of the
inverse determinant, Q��s ,k�, is given by

Q��s,k� = �
f .p.

1

�Det�M� − 1��2

= �
j=s

���−2k+s−1�/3� 
� − 2j − 2k − 1

j − s
�2−2�+4j+4. �37�

This is a sum of the form of Eq. �B1� with �=16 and
n=�−2k−2s−1. Keeping only the leading term in Eq. �B7�,
the solution is

Q��s,k� = 4−�+2s+2c1Q�1Q
�−2k−2s−1, �38�

where �1Q, the real root of the cubic polynomial for �=16, is
approximately 2.901 and c1Q
0.433. The subscripts on the
numerical constant c and � are used here to make it clear that
these refer to the case Q, for which �=16. The same result
can also be derived from the symbolic dynamics as

Q��s,k� =
1

42k−1 �T2
�−2k−2s−1�AA. �39�

In the notation of Eq. �6�, the variance of the
inverse determinants within a given box is �2�e���
=M−2�e�� ,s ,k�−M−1�e�� ,s ,k�2 and
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�2�e��,s,k� =
Q�

N�

− 
4−k

N�
�2



Q�N� − 2−4k

N�
2 , �40�

where the leading order of the mean is sufficient. The prod-
uct Q�N� depends on � by a factor �ehT�1Q /4��, which is
greater than unity. Thus, this term diverges as �→�. Asymp-
totically the local variance is just Q� /N� or

�2�e��,s,k� →
16c1Q

c1N

 �1Q

4ehT
��−2s
�1Q

ehT
�−2k−1

, �41�

which shows asymptotically how the variance varies with s,
a local characteristic of a particular region of phase space
�box�. Here, �1Q /ehT is about 1.98 and �1Q /4ehT is about
0.495. When the analogous details are worked out for boxes
in the region R1, the variance differs only by a constant
factor of 16��1Q /ehT�2.

Note that boxes whose lower-left corner has a small num-
ber of transitions �small s� have smaller variances, as well as
more �-periodic points, than boxes with large s. Precisely as
found for the local convergence boundaries, the variation of
s for moderately large k leads to an enormous difference in
the variations within different boxes of the same size. Al-
though, the variances vanish in the limit of �→�, the ratios
of the variances from one box to another increase indefinitely
as the box size shrinks.

C. Sum-rule fluctuations

Next the global variance of the local sum rule F��s ,k� is
considered due to spatial variation. First, we comment on the
form of the density of F��s ,k�. Recall that with the method of
subdividing the phase space into a grid of binary boxes, the
value of F��s ,k� locally within a box is specified by a param-
eter s which counts the number of 0–1 changes in the binary
representation of the lower left corner of the box �see Sec.

III B�. Thus, F̃��s ,k� depends exponentially on s �Eq. �33��.
Furthermore, the number of boxes throughout a quarter re-
gion of the unit phase-space square with a given value of s is
� 2k−2

s �, as s ranges from 0 to 2k−2. Thus, the density of the

logarithm of F̃��s ,k� follows a binomial centered at k−1. As

with the inverse determinant, the distribution of F̃��s ,k� is
described by the product of an exponential function �of s,
here� and a combinatorial coefficient that is approximately
normal. A qualitatively similar behavior to the discussion of
Sec. IV A arises in describing the density of values taken by

the sum formula F̃��s ,k�.
The variance of F̃��s ,k� is the average square deviation

from the mean summing over all boxes and dividing by their
total number, 4k. This is essentially the second moment de-
fined in Sec. II B 2,

M2�F̃�,k� =
1

4k �
s=0

2k−2 
2k − 2

s
�F̃��s,k�2. �42�

For calculational convenience, Eq. �33� is rewritten in the
form

F̃��s,k� = Ae�s + �Ae�s��, �43�

where �=ln 2−2�i and A=c22−�/2−k+3/2ei���−2k−1�. Recall that
the constants c2 and � arise from the solutions of the sum
formula in Appendix B, in this case for �=4. This result
holds for the regions R4, R3, and R2 of the unit square. For
R1, the expression used for F��s ,k� differs only by a con-
stant factor, as shown in Appendix A, and this factor is ac-
counted for below in giving the variance over the entire unit
square.

For large k, it is possible to find a simplified asymptotic
expression for the variance. Let c2= �c2�ei� and
�=���−2k−1�+� giving

�Ae�s + �Ae�s���2 = �c2�22−�−2k+3�22s+1 + 2 Re�e2i�e2�s�� .

�44�

The expression for the variance becomes

M2�F̃�,k� = 4−k�c2�22−�−2k+4� �
s=0

2k−2 
2k − 2

s
�4s

+ Re
e2i� �
s=0

2k−2 
2k − 2

s
�e2�s�� . �45�

Recalling the binomial theorem, each term above may be
summed explicitly to give

M2�F̃�,k� = �c2�22−�16−k+1�52k−2 + Re�e2i��1 + e2��2k−2�	 .

�46�

Letting 1+e2�=1+4e−i4�=�ei� where �2=17+8 cos�4��
gives

M2�F̃�,k� = �c2�22−�−4k+4�52k−2 + �2 cos�2� + 2��k − 1��	

= �c2�22−�
25

16
�k−1

��1 + 
 �2

25
�k−1

cos�2� + 2��k − 1��� . �47�

Since 4� is not a multiple of 2�, cos�4�� is less than unity
and so is �2 /25. Thus, the oscillatory terms are subdominant
as k increases. For large k or small local volume, the expres-
sion for the variance in each of regions R4, R3, and R2
becomes

M2�F̃�,k� � �3/4��c2�2e−2�L��5/4�2k−2. �48�

For the region R1 the same equation for F̃��s ,k� as Eq. �43�
applies except that the coefficient A is replaced by
A�=c22−�/2−k+1/2ei���−2k+1�. From this it follows that the con-
tribution to the variance from the region R1 is simply one
fourth the value for R4, R3, or R2. The asymptotic formula
for the variance of F� taken over the entire unit square is

M2�F̃�,k� � 13
16 �c2�2e−2�L�� 5

4�2k−2. �49�

The variance thus decreases exponentially with time, again
governed by the Pollicott-Ruelle resonance. It also increases
with the decreasing local volumes. This gives a global con-
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vergence boundary for the sum rule on which the variance
over the entire phase space remains a constant �rather than
vanishing�. From Eq. �49� this would be given approximately
by k=�L� / ln 5 /4 and

V��� = 2−� ln 2/ln 5/4 
 2−3.1�. �50�

V. CONCLUDING REMARKS

The convergences and fluctuations of classical sum rules
are interesting in a multitude of ways. Although their correc-
tions may be exponentially suppressed with increasing time,
the individual contributions can have a diverging variance
themselves. Another interesting feature of local sum rules, as
shown herein, is that certain fluctuations can be surprisingly
large as the location of phase space is varied. Correction
terms may be related to known properties of the system in
more general dynamical systems, such as the topological en-
tropy, the Pollicott-Ruelle resonances, or the Lyapunov ex-
ponent depending on the precise sum rule of interest. It
would appear that a fluctuation quantity, which depends sen-
sitively on some higher power of the stability determinant, if
such a quantity exists, may be more likely to reflect the kinds
of fluctuations that have been described here on a theoretical
basis for the SR map. The results, however, may be sugges-
tive of the type of behavior one might expect in a regime
where sum-rule fluctuations could arise. The asymptotic
form of several different fluctuation measures derived for the
Hannay-Ozorio sum, as well as their time and length scales,
came from the solution of the same simple cubic polynomial.
The origin of this lies in the symbolic dynamics which is a
subshift of finite type on three symbols and thus there is an
equivalent three-state Markov chain. It may be the case that
similar methods could be applied to other relatively simple
systems and that sum-rule corrections could also be derived
for these systems from the basis of their dynamics.

The main results for the SR map begin with the calcula-
tion of the two sources of fluctuations in the Hannay-Ozorio

sum rule. The first source denoted F̃��s ,k� �see Eq. �33�� is
governed by the dominant Pollicott-Ruelle resonances. It
arises from the nonuniformity of the locations of fixed points
and their nonuniform weighting by the leading behavior of
their inverse stability determinants �note that the inverse sta-
bility determinants, though not strictly equivalent, are inti-
mately related to finite-time Lyapunov exponents and those
are the fluctuations entering in the nonuniform weightings�.
The second source denoted B̃��s ,k� �see Eq. �35�� arises from
the effects of next-to-leading-order corrections to the inverse
stability determinants. These corrections are not governed by
the Pollicott-Ruelle resonances but are also exponentially de-
creasing in time. The dominant correction here comes from
the first source and hence the Pollicott-Ruelle resonance;
however, we do not currently know whether this must be the
case for general chaotic dynamical systems.

It is a matter of how closely the stretching multipliers
approximate the determinant in Eq. �15�, and it could be that
for some other chaotic system they are different enough to
produce corrections that dominate the one due to the reso-

nances, although these would still be present. In the specific
case of the SR map the second term in Eq. �16�, the principal
correction, is an oscillating sum because the periodic orbits
are reflecting hyperbolic if the numbers of 0−1, 1−0 bonds
are odd. This term can be written as a trace of the power of
the matrix

�1/4 0 1/4
− 1 0 0

0 1 0
� , �51�

which is different from the T2 matrix in that the element �2,1�
is −1 rather than 1. This ensures that each time the orbit gets
rotated, it acquires a negative sign. Alternately, for each CBA
part of the symbolic string a negative sign is acquired.

The leading eigenvalue of this matrix has a modulus of

0.67 which is smaller than the subleading eigenvalue,

0.707, of T1 that gives the Pollicot-Ruelle resonance. If the
orbits were all direct hyperbolic, then in the above matrix −1
will change to 1 and this will be the same as T2, whose
leading eigenvalue is 0.725 which is larger than 0.707, and
would have dominated the corrections. The fact that some of
the orbits are reflecting hyperbolic seems to have been cru-
cial to lower the contribution from corrections that come
from the fact that a det�J− I� is present instead of just the
multipliers.

However, if the sum rule is weighted by �the inverse� of
the largest eigenvalue of the stability matrix, the Pollicott-
Ruelle resonances will govern the corrections to the sum
rule, especially if there is a finite symbolic dynamics descrip-
tion of the system. The relevance of Markov and related
matrices �T0 ,T1 ,T2 , . . .� for the calculation of the fluctuations
indicate possible connections with the thermodynamic for-
malism especially as applied to finite Markov processes �17�.

A second result shows how the relative local variations of
the inverse determinants vary infinitely broadly at long times
�see the discussion toward the end of Sec. IV B�. Finally, the
relative variation of the sum rule applied locally also has an
infinite width while maintaining an exponential convergence
rate for fixed phase-space volume �see Sec. IV C�. We gave
convergence boundaries that show how small a local volume
may be considered for a given time of propagation if one
expects convergence to the asymptotic sum-rule result.
Again, the relative size of a converged local volume de-
pended on location and varied infinitely broadly while main-
taining exponential convergence with time at fixed volume

It would be extremely interesting to investigate other sum
rules, especially those that connect to quantum fluctuation
properties of eigenfunctions and transport. The various local-
izing effects giving rise to eigenfunction scarring �18�, local-
ization manifestations of time scales introduced by transport
barriers �19�, and interaction effects linked to the Friedel
oscillations �20,21� give a few interesting directions for fur-
ther studies. As mentioned earlier, the SR map is easily stud-
ied quantum mechanically and would be one possible way to
study sum rules arising from quantum fluctuation properties
involving eigenfunctions.
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APPENDIX A: REGION R1

Here, the counting arguments and several results for the
region R1 of the unit square, which has mostly been ignored
in the body of the text, are presented. The reason for leaving
this discussion here is that many of the derived results
closely resemble those for the other regions, although the
arguments are somewhat longer.

We begin with an extension of Sec. III B by counting the
number of period � points in a binary 2−k by 2−k box in the
region R1 �Fig. 1� but not on the bottom row of boxes. The
lower left corner of each box is defined by
0yk . . .y20.0x2 . . .xk0, with the condition that not all of the y’s
are zero. The upper right corner is given by
1yk . . .y20.0x2 . . .xk1. It is easy to see that after applying the
inverse transformation of the map some number of times,
each square of area 4−k, will be mapped into a rectangle in
R4 of the same area, although not square, and also that the
upper right corner of the square in R1 gets mapped into the
lower left corner of the rectangle in R4. Thus, the box in R1
with lower-left corner yk . . .10. . .0.0x2 . . .xk �where not all the
y’s are zero� has upper right corner 1yk . . .10. . .0.0x2 . . .xk1
which transforms under the inverse transformation as fol-
lows: 1yk . . .10. . .0.0x2 . . .xk1←1yk . . .1.0. . .0x2 . . .xk1
←0x̄k . . . x̄21 . . .1.1. . .yk1←0ȳk . . .0.1. . .1x̄2 . . . x̄k0, so the
lower left corner of the rectangle in R4 is
ȳk . . .0.1. . .1x̄2 . . . x̄k, with transition number one less than the
lower left corner of the box in R1.

Let s be the number of transitions of the lower left corner
of a box in R1. Then, by the same counting argument that
was used before �the fact that it is a rectangle instead of a
square does not change things�, the number of �-periodic
points in this box in R1 with a given transition number j is
� �−2j−2k−1

j−s+1 � as j ranges from s−1 to ���−2k+s−2� /3�. So this
looks just like it did for the R4 case except s is replaced by
s−1.

Now, the lower left corner of a box that we are consider-
ing in this region has, say, t transitions in the position coor-
dinate and v transitions in the momentum coordinate, where
0� t�k−1, 1�v�k−1, and s= t+v. The combinatorial ex-
pression above shows that the number of �-periodic points in
a box depends only on the total s and not how it is distributed
between t and v; however, it is necessary to consider t and v
separately because it is v that is restricted to be greater than
zero and not just the sum of t and v. We separately choose t
transitions from k−1 places for position and v transitions
from k−1 places for momentum, with v restricted to be
greater than zero. So, for example, the local form of the sum
of the inverse determinant for boxes in R1 excluding the
bottom row �denoted R1a�, analogous to expression �19�, is

F��t + v,k;R1a� = �
j=t+v−1

���−2k+t+v−2�/3� 
� − 2j − 2k − 1

j − �t + v − 1�
�

�
1

�Det�M� − 1��
, �A1�

and the sum over all boxes in R1a, analogous to expression
Eq. �20�, is

1F�a = �
v=1

k−1

�
t=0

k−1 
k − 1

v
�
k − 1

t
�F��t + v,k;R1a� . �A2�

Considering the bottom row of boxes in R1 �denoted R1b� a
similar but more tedious argument gives the number of pe-
riod � points again as � �−2j−2k−1

j−s+1 � as this time j ranges from s
to ���−2k+s−2� /3�. So the local sum of the inverse determi-
nant for boxes on the bottom row of R1 is

F��s,k;R1b� = �
j=s

���−2k+s−2�/3� 
� − 2j − 2k − 1

j − s + 1
� 1

�Det�M� − 1��

�A3�

and the sum over all boxes on the bottom row of R1 is

1F�b = �
s=0

k−1 
k − 1

s
�F��s,k;R1b� . �A4�

The more complicated sums that arise for region R1 may
be simplified for certain calculations of interest. In particular,
consider the calculation of the variance for the Hannay-
Ozorio sum in Sec. IV C. Equations �A1� and �A3�, like their
R4 counterpart Eq. �19�, are sums of the form of Eq. �B1�
from Appendix B with �=4, and they may both be expressed
as

F��s;R1� = 4−k + A�e�s + A�e�s, �A5�

where A�=c22−�/2−k+1/2ei���−2k+1� and �=ln 2−2�i.
For the sum of squared deviations over boxes in R1 the

expression to evaluate is

�2�F̃�� = 4−k�
v=1

k−1

�
t=0

k−1 
k − 1

v
�
k − 1

t
�F̃��t + v�2

+ 4−k�
s=0

k−1 
k − 1

s
�F̃��s�2, �A6�

where F̃��s�=F��s�−4−k.
There is an identity due to Vandermonde �22� which sim-

plifies the double sum above and gives a result that is almost
exactly like the sum for region R4. Denoting the double sum
by W gives
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W = �
v=1

k−1

�
t=0

k−1 
k − 1

v
�
k − 1

t
�F̃��t + v�2

= �
v=1

k−1

�
s=v

v+k−1 
k − 1

v
�
k − 1

s − v
�F̃��s�2, �A7�

where s= t+v. Interchanging the order of summation and
breaking this into two sums generates

W = �
s=1

k−1

F̃��s�2�
v=1

s 
k − 1

v
�
k − 1

s − v
�

+ �
s=k

2k−2

F̃��s�2 �
v=s−k+1

k−1 
k − 1

v
�
k − 1

s − v
� .

Vandermonde’s convolution identity is

�
b

a

b
�
 c

d − b
� = 
a + c

d
� , �A8�

where the sum is over all values of b for which the summand
is not zero. This gives

�
v=1

s 
k − 1

v
�
k − 1

s − v
� = 
2k − 2

s
� − 
k − 1

s
�

when 1�s�k−1, where the subtracted term corresponds to
v=0. Also note that

�
v=s−k+1

k−1 
k − 1

v
�
k − 1

s − v
� = 
2k − 2

s
�

when k�s�2k−2. Combining the two gives

W = �
s=1

2k−2 
2k − 2

s
�F̃��s�2 − �

s=1

k−1 
k − 1

s
�F̃��s�2,

and therefore,

�2�F̃�� = 4−k� �
s=1

2k−2 
2k − 2

s
�F̃��s�2 − �

s=1

k−1 
k − 1

s
�F̃��s�2

+ �
s=0

k−1 
k − 1

s
�F̃��s�2� �A9�

or

�2�F̃�� = 4−k� �
s=1

2k−2 
2k − 2

s
�F̃��s�2 + F̃��0�2�

= 4−k �
s=0

2k−2 
2k − 2

s
�F̃��s�2, �A10�

which is simply

�2�F̃�� = 4−k �
s=0

2k−2 
2k − 2

s
��A�e�s + A��s�2. �A11�

This sum is of exactly the same form as Eq. �42� for com-
puting the variance for the other regions of the unit square.

APPENDIX B: A SUM FORMULA FOR THE SR MAP

Upon examination of the form of Eq. �19� and given the
result of Eq. �21�, it happens that in order to arrive at closed-
form expressions for fluctuations in the Hannay-Ozorio sum
�Eq. �1��, it turns out that several sums of the form

S�n,�� = �
i=0

�n/3� 
n − 2i

i
��i �B1�

are needed for various real values of �, with n as a positive
integer. This section gives a general discussion of such sums
and presents a method of finding closed-form expressions for
them before moving on to the main results of interest. In the
analysis of the SR map, the cases �=1, 4, 16, and −16 show
up naturally when considering the lower order moments of
Sec. II B 2.

Obtaining a closed form for the sum may begin by finding
a recursion formula for it and then using a standard tech-
nique for solving such recursions. Recall the recursion for
building Pascal’s triangle: � k

i �= � k−1
i−1 �+ � k−1

i �, where k and i
are greater than 1. Applying this gives

S�n,�� = �
i=0

�n/3� 
n − 2i

i
��i

= �
i=1

�n/3� 
n − 2i − 1

i − 1
��i + �

i=0

��n−1�/3� 
n − 2i − 1

i
��i

= � �
j=0

��n−3�/3� 
n − 3 − 2j

j
�� j + �

i=0

��n−1�/3� 
n − 1 − 2i

i
��i,

�B2�

where j= i−1 in the first summation. This produces the re-
cursion relation

S�n,�� = S�n − 1,�� + �S�n − 3,�� �B3�

for n�3 with initial conditions S�0,��=S�1,��=S�2,��=1.
Of historical note, the 14th century Indian mathematician
Narayana studied a problem of the proliferation of cows
�each offspring gives birth after its third year� that leads to
this very same recursion relation with �=1 �23�. A standard
technique for solving such recurrence relations is to look for
solutions of the form S�n ,��=�n, and thus S�n−1,��
=�−1�n ,S�n−3,��=�−3�n. Plugging these expressions into
Eq. �B3� the factor �n cancels and leaves the cubic equation

�3 − �2 − � = 0. �B4�

The three roots of this cubic �1, �2, and �3 give three solu-
tions of the recurrence �1

n, �2
n, and �3

n. The difference equa-
tion �Eq. �B3�� is third order, linear, and homogeneous, and
the standard theory of such difference equations �analogous
to that for differential equations� says that if there are three
linearly independent solutions, then the general solution may
be formed as a linear combination of these independent so-
lutions. Naturally this cubic equation also appears when us-
ing the matrices from symbolic dynamics. Indeed the char-
acteristic equations for T0, T1, and T2 are, up to a scaling, the
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same as the cubic equations with �=1, 4, and 16, respec-
tively.

The cubic polynomial f���=�3−�2−� has a local maxi-
mum of −� when �=0 and a local minimum at �=2 /3. It
has one real root, say �1, when ��0 and also when
��−4 /27, which covers all of the cases of interest. The
other two roots are complex conjugates, �2=rei�=�+ i� and
�3=re−i�=�− i�. Since �1

2��1−1�=�, it implies that �1�1
when ��0 and �1�−1 /3 when ��−4 /27, so that �1 has
the same sign as �.

Because the three roots are distinct, the three solutions are
independent and the general solution to Eq. �B3� may be
written as

S�n,�� = c1�1
n + c2�rei��n + c3�re−i��n, �B5�

where the coefficients c1, c2, and c3 may be found from the
initial conditions on the recurrence �in all cases here the ini-
tial conditions on S�n ,�� are real�.

It is possible to express the two complex roots, as well as
the coefficients, in terms of the real root �1 and in terms of
�. The constant c1 is real and c3 is the conjugate of c2, which
can be denoted as c2=a+ ib, c3=a− ib where a and b are
real. The polynomial of Eq. �B4� may be factored as
��−�1���−�− i����−�+ i��.

Comparing the constant terms of the polynomial written
both ways gives �1��2+�2�=�. Thus, the magnitude of the
complex roots is r= ��2+�2�1/2= �� /�1�1/2. Because
�1

2−�1=� /�1, it is also true that r��1 when ��0, but
r��1 when ��−4 /27. The significance is that for large n
the oscillatory terms in Eq. �B5� are dominated by the first
term when ��0, but the oscillatory terms are dominant
when ��−4 /27. This observation is used ahead in deriving
several asymptotic results.

Comparing the coefficients of the square terms gives
�= �1−�1� /2, which is a negative number when ��0 and a
positive number when ��−4 /27. The two complex roots are
in the second and third quadrants when ��0 and in the first
and fourth quadrants in the other case. For ��0, we can take
�=�+arcsin��1−�1� /2r� which lies in the second quadrant
and for ��−4 /27 we can take �=arcsin��1−�1� /2r� which
is in the first quadrant.

With the complex roots in terms of the one real root, it
suffices to find the real root, which can be expressed straight-
forwardly for the regime of interest, i.e., either ��0 or
��−4 /27. In that case, with x=1+27� /2,

�1 = 1
3 �1 + �x + �x2 − 1�1/3 + �x − �x2 − 1�1/3� . �B6�

Rewriting Eq. �B5� in terms of the real constants c1, a, b
gives

S�n,�� = c1�1
n + 2
 �

�1
�n/2

�a cos�n�� − b sin�n��� .

�B7�

Putting in the initial conditions gives three real equations for
the coefficients which may be solved in terms of � and �1.
Skipping the algebraic steps, one finds

c1 =
� + �1

2

3� + �1
2 , a =

�

3� + �1
2 ,

b = −
�1

�3� + �1
2�

 �

3�1 + 1
�1/2

, �B8�

which gives a complete and explicit solution to Eq. �B1�.
The counting results for periodic points in Appendix A

impose this question: “What is the asymptotic density of the
combinatorial expression � n−2i

i � as a function of i?” It turns
out that it is possible to find the asymptotic mean, variance,
and density of i �as n approaches infinity� by essentially the
same algebraic methods used in the recurrence relation. Us-
ing the moment-generating function or by using Stirling’s
approximation �essentially a saddle-point expression�, it can
be shown that the density of � n−2i

i �, when properly normal-
ized, converges to a normal density. The moment-generating
function technique also gives simple formulas for the
asymptotic mean and variance. More specifically,

S�n,et� = �
i=0

�n/3� 
n − 2i

i
�eti, �B9�

where one substitutes �=et and the moment-generating func-
tion for this density is ��n , t�=S�n ,et� /S�n ,0�. Large n gives
S�n ,et�→c�t��1�t�n and ��n , t�=c�t��1�t�n�c�0��1�0�n�−1,
where �1�t� is the real root of ��t�3−��t�2−et=0. The details
are omitted, but by differentiating the cubic equation all of
the derivatives of ��n , t� can be found, which can be used to
find the moments of the density. When �=et=1 the real root
of Eq. �B4� is �1�0�=1.465 571 23. . ., which in Sec. IV B is
noted to have the special significance in this map of being
the topological entropy. The asymptotic mean �i� of this den-
sity can be shown to be


�n� =
1

3 + �1
2�0��n − 2 +

6

3 + �1
2�0�� �B10�

and the variance

�2�n� =
�1

5�0�
�3 + �1

2�0��3�n − 2 +
12

3 + �1
2�0�� . �B11�

The scaling of the mean is n and the width is n1/2. All the
higher reduced cumulants �rescaled by the appropriate power
of the width� vanish in the limit of n→�.
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