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Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corresponding local
Lyapunov exponents has become available. Here we study the properties of these still unfamiliar quantities for
a simple model representing a harmonic oscillator coupled to a thermal gradient with a two-stage thermostat,
which leaves the system ergodic and fully time reversible. We explicitly demonstrate how time-reversal in-
variance affects the perturbation vectors in tangent space and the associated local Lyapunov exponents. We also
find that the local covariant exponents vary discontinuously along directions transverse to the phase flow.
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I. INTRODUCTION

Recently, many concepts and methods of dynamical sys-
tems theory have turned out to be very useful for the char-
acterization and understanding of physical systems in and
out of thermodynamic equilibrium. For example, for a class
of stationary nonequilibrium systems, the spectrum of
Lyapunov exponents is a convenient tool for studying the
collapse of the phase-space probability distribution onto frac-
tal measures with an information dimension smaller than the
dimension of phase space. In this case, stationarity is
achieved with time-reversible thermostats �1,2�. Stationary
nonequilibrium systems with stochastic thermostats may be
formulated along similar lines �3�.

The aim of this paper is to apply the hitherto rather unfa-
miliar concept of covariant Lyapunov vectors and their asso-
ciated local Lyapunov exponents to a simple and pedagogical
system in equilibrium and in nonequilibrium stationary states
to sharpen the intuition for more demanding applications.
The system studied is a harmonic oscillator subjected to a
two-stage chain of Nosé-Hoover-type thermostats with a
temperature which varies with the position of the particle.

The paper is organized as follows: in the next section we
provide the basic theoretical concepts and definitions re-
quired for our numerical work. In particular, the covariant
vectors and their classical counterparts, the Gram-Schmidt
vectors, are introduced, and their dynamical evolution is dis-
cussed. Section III is devoted to an alternative differential-
equation based method for the evolution of orthonormal per-
turbation vectors, which may be interpreted as continuous
reorthonormalization. In Sec. IV, we specify the protocol for
our numerical work, both forward and backward in time. Our
main example, a doubly-thermostated oscillator in a space-
dependent thermal field, is treated in various subsections of

Sec. V. We conclude in Sec. VI with some remarks, which
also concern the stationary fluctuation theorem for thermo-
stated systems.

II. COVARIANT LYAPUNOV VECTORS AND LOCAL
LYAPUNOV EXPONENTS

If ��t� denotes the state of a dynamical system of dimen-
sion D, its evolution equations are given by

�̇ = F��� , �1�

where F is a �generally nonlinear� vector-valued function of
dimension D. An arbitrary perturbation vector ���t� in tan-
gent space evolves according to the linearized equations

��̇ = J����� , �2�

where the dynamical �Jacobian� matrix J is given by

J��� =
�F

��
.

The stability of a trajectory in a D-dimensional phase space
is determined by a set of D �global� Lyapunov exponents,
which are the time-averaged logarithmic rates of the growth
or decay of the norm of some perturbation vectors, which
must be oriented ‘properly’ in tangent space at the initial
time. Formally, let ��0� denote the state of the system at time
0, the state at time t is given by ��t�=�t���0��, where the
map �t :�→� defines the flow in the phase space �. Simi-
larly, if ���0� is a vector in the tangent space at the phase
point ��0�, at time t it becomes ���t�=D�t ���0����0�, where
D�t defines the tangent flow. It is represented by a real but
generally nonsymmetric D�D matrix. The multiplicative er-
godic theorem of Oseledec �4–6� asserts that there exist
‘properly oriented’ and normalized vectors v����0�� in tan-
gent space at t=0, which evolve according to

D�t���0�v����0�� = v����t�� , �3�

and which generate the Lyapunov exponents on the way,
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��� = lim
t→��

1

�t�
ln�D�t���0�v����0��� �4�

for all �� �1, . . . ,D�, both forward and backward in time �for
time-reversible systems�. �Strictly speaking, this formulation
is only correct for nondegenerate exponents ��. If two such
exponents become identical, the respective vectors must be
replaced by a covariant subspace spanned by the vectors.
Since in our applications below, there is no danger of misin-
terpretation, we avoid the additional notational complexity.
The case of degenerate exponents is treated in detail in Ref.
�7��. Because of the property described by Eq. �3�, the vec-
tors v� are called covariant. Loosely speaking, covariant vec-
tors are comoving �corotating in particular� with the tangent
flow. As will be shown below, this property of co-rotation is
responsible for the fact that the evolution of their length in
the forward and backward directions of time �for time-
reversible systems� is intimately connected, a symmetry not
enjoyed by other perturbation vectors. For numerical rea-
sons, it is still necessary to normalize the vectors periodically
at times tn	n�, such that Eq. �4� becomes

�� = lim
N→�

1

N�


n=1

N

ln�D����n−1
v���n−1�� , �5�

where we use the abbreviated notation ��tn�	�n. �v���n��
=1 at the beginning of each interval of length �. Generally its
norm differs from unity at the end of the interval.

Up to very recently, no practical algorithm for the com-
putation of the covariant vectors was available. The classical
algorithm for the computation of Lyapunov exponents �8,9�
is based on the fact that almost all volume elements of di-
mension d	D in tangent space �with the exception of ele-
ments of measure zero� asymptotically evolve with an expo-
nential rate, which is equal to the sum of the first d Lyapunov
exponents. Such a d-dimensional subspace may be spanned
by d orthonormal vectors, which are constructed by the
Gram-Schmidt reorthonormalization procedure and, there-
fore, are referred to as Gram-Schmidt �GS� vectors g����t��.
The evolution during the time interval �= tn− tn−1,

D����n−1
g��
n−1� 	 ḡ���n� , �6�

generates a set of nonorthonormal vectors, �ḡ���n� , �
=1, ¯ ,D�, which after Gram-Schmidt reorthonormalization
�10,11�,

g1��n� =
ḡ1��n�

�ḡ1��n��
,

g���n� =

ḡ���n� − 

k=1

�−1

�ḡ���n� · gk��n��gk��n�

�ḡ���n� − 

k=1

�−1

�ḡ���n� · gk��n��gk��n�� ,

�where � consecutively assumes the values 1 , . . . ,D� become
the orthonormal starting vectors for the next interval. The
vectors g� are not covariant, which means that, in general,
the vectors are not mapped by the linearized dynamics into

the GS vectors at the forward images of the initial phase-
space point �12�. As a consequence, they are also not invari-
ant with respect to the time-reversed dynamics. The
Lyapunov exponents are computed from the normalization
factors,

�1 = lim
N→�

1

N�


n=1

N

ln�ḡ1��n�� ,

�� = lim
N→�

1

N�


n=1

N

ln�ḡ���n� − 

k=1

�−1

�ḡ���n� · gk��n��gk��n��
�7�

for �=2, . . . ,D.
Recently, a reasonably fast algorithm for the computation

of covariant Lyapunov vectors was presented by Ginelli et
al. �12�, which first requires the construction of the Gram-
Schmidt vectors by a forward integration in time. In a second
step, this stored information is used to obtain the covariant
vectors by a backward iteration in time. For details of this
algorithm we refer to their paper �12� and to our previous
work �7�. Here we make use of this algorithm. An alternative
method based on forward and backward singular vectors has
been proposed by Wolfe et al. �13�, and was subsequently
applied by Romero et al. to Hamiltonian systems with many
degrees of freedom �14�.

A local Lyapunov exponent characterizes the expansion,
or shrinkage, of a particular tangent vector during a �short�
time interval �. From Eqs. �5� and �7� local exponents for the
covariant and Gram-Schmidt vectors are obtained for a time
tn	n� at the phase point �n,

��
cov�tn� =

1

�
ln�D����n−1

v���n−1�� , �8�

for �=1, . . . ,D, and

�1
GS�tn� =

1

�
ln�ḡ1��n�� ,

��
GS�tn� =

1

�
ln�ḡ���n� − 


k=1

�−1

�ḡ���n� · gk��n��gk��n�� , �9�

for �=2, . . . ,D.
Since the spaces

v1
� ¯ � v� = g1

� ¯ � g� �10�

are covariant subspaces of the tangent space for all �, we
have v��t��g1�t� � ¯ � g��t�. If ����t� denotes the angle be-
tween the respective covariant and Gram-Schmidt vectors
v��t� and g��t� at the specified time, the component of the
normalized vector v��tn−1� in the direction of g��tn−1� is
given by cos ����tn−1�. During �, this vector component
grows by a factor exp���

GS��, whereas the norm of the vector
itself grows by exp���

cov��. At the end of the interval, equat-
ing the vector components of v��tn� in the new direction of
the re-orthonormalized vector g��tn�, one obtains
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��
GS�tn� = ��

cov�tn� +
1

�
ln

cos ����tn�
cos ����tn−1�

, �11�

�=1, ¯ ,D. This relates the local exponents for the GS and
covariant vectors.

If we consider the limit �→0 implying continuous reor-
thonormalization of the g� and normalization of the v�, Eq.
�11� becomes

��
GS�t� = ��

cov�t� − tan ����t�
d���

dt
.

This is most easily achieved with a matrix of Lagrange mul-
tipliers constraining the vectors to unit length and enforcing
orthogonality of the g� �15–17�. We shall return to this point
in the following section.

For time-continuous systems, these relations are general
and are not restricted to any particular model.

The global exponents are the time averages of the local
exponents over a long trajectory tracing out the whole er-
godic phase-space component, and are the same for the co-
variant and Gram-Schmidt cases,

�� = lim
N→�

1

N

n=1

N

��
cov�tn� = lim

N→�

1

N

n=1

N

��
GS�tn� .

Whereas the global Lyapunov exponents do not depend on
the particular metric and the choice of the coordinate system,
the local exponents do. For particular applications of the lo-
cal exponents this must be kept in mind.

The system we consider here are invariant with respect to
time reversal. This property leaves the equations of motion in
phase and tangent space unchanged if the signs of all mo-
mentumlike variables and of time are reversed, but leaving
all position variables unchanged. This implies that there ex-
ists a smooth isometry I of phase space, such that I�t=�−tI.
In practice, an integration of the equations of motion back-
ward in time is carried out with reversed momentumlike
variables and a positive time step. After reaching the end
point, the signs of all momentumlike variables need to be
reversed again and the time variable properly adjusted. Al-
ternatively, and even more easily, the integration of the mo-
tion equations may proceed without changing the sign of the
momentumlike variables but with a negative time step. There
is also no sign change after reaching the end point in this
case. A comparison of both methods yields identical results.
Where necessary, we indicate the forward and backward di-
rections of time by upper indexes �+� and �−�, respectively. If
this index is omitted, the forward direction is implied.

We have mentioned already that the classical algorithm
invoking Gram-Schmidt reorthonormalization carefully
keeps track of the time evolution of d-dimensional volume
elements, �Vd, for any d	D, which proceeds according to
�2,18�

d ln �Vd�t�
dt

= 

�=1

d

��
GS�t� .

If the total phase volume is conserved as for symplectic sys-
tems, the following sum rule for the Gram-Schmidt local
exponents holds at all times:



�=1

D

��
GS�t� = 0. �12�

In this symplectic case we can even say more. For each
positive local GS exponent there is a local negative GS ex-
ponent such that their pair sum vanishes �19�,

�+���
GS�t� = − �+��D+1−�

GS �t� , �13�

�−���
GS�t� = − �−��D+1−�

GS �t� . �14�

As indicated, such a symplectic local pairing symmetry ex-
ists both forward and backward in time. But, generally, the
GS local exponents do not show the symmetry with respect
to time-reversal invariance. Thus,

�−���
GS�t� � − �+��D+1−�

GS �t� . �15�

No such symmetries exist for nonsymplectic systems.
Examples are provided below.

The situation is very different for the covariant local
Lyapunov exponents. In their case, the vectors are still renor-
malized, but the angles between them remain unchanged,
which effectively destroys all information concerning the
d-dimensional volume elements. Thus, no symmetries analo-
gous to Eqs. �13� and �14� exist. Instead, the renormalized
covariant vectors faithfully preserve the time-reversal sym-
metry of the equations of motion, which is reflected by

�−���
cov�t� = − �+��D+1−�

cov �t� for � = 1, . . . ,D , �16�

regardless, whether the system is symplectic or not. This
means that an expanding comoving direction is converted
into a collapsing comoving direction by an application of the
time-reversal operation. Of course, the forward and back-
ward local exponents in Eq. �16� refer to the same phase-
space point ��t�.

These symmetry properties may be considered the main
conceptual differences between the Gram-Schmidt and cova-
riant viewpoints. Before leaving this section, a short remark
concerning the commonly used term “time-dependent expo-
nent” seems in order. Primarily, this quantity is a function of
the phase point and should only be called a “local” exponent.
Its value may be different whether the phase point is reached
from the past, forward in time �+�, or from the future,
backward in time �−�.

III. DIFFERENTIAL APPROACH TO LOCAL
LYAPUNOV EXPONENTS

Equation �9� precisely reflects the numerical procedure
for the computation of local GS exponents for finite time
intervals �. But it is also possible to obtain a differential
version for �→0. Goldhirsch et al. �15� and Posch et al. �16�
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independently derived a full set of differential equations for
the Gram-Schmidt vectors g�,

ġ1 = Jg1 − R11g
1, �17�

ġ� = Jg� − R��g� − 

m=1

�−1

�R�m + Rm��gm, �18�

where in the last equation �=2, ¯ ,D. We have demon-
strated �16,17� that the matrix elements

R�m���t�� = �g��TJgm �19�

may be understood as Lagrange multipliers enforcing the
orthonormalization constraints g� ·gm=��m �equal to unity for
�=m, and zero otherwise�. Here T means transposition. Most
importantly, the diagonal elements are the local Gram-
Schmidt exponents,

��
GS���t�� 	 R�����t�� = �g��TJg�. �20�

This expression nicely underlines the local nature of the ex-
ponents.

We have verified for the doubly-thermostated heat con-
duction model discussed in Sec. V below that the direct in-
tegration of the Eqs. �17� and �18� provide local GS expo-
nents according to Eq. �20�, which agree extremely well with
the results obtained from a direct application of the GS al-
gorithm, Eq. �9�, for a reasonably small time interval �. This
agreement also persists for the time-reversed dynamics.

IV. NUMERICAL CONSIDERATIONS

In this section we remark on a few aspects of our imple-
mentation of the algorithm for the computation of the cova-
riant Lyapunov vectors, which we apply in the following
sections. Reduced units are used for the various models
treated below. For convenience, we specify already here the
adopted values �in reduced units� for some time parameters:
t
=6�104, t�=5�104, and t0=100. Their meaning is ex-
plained below. For the integration of the equations of motion,
a fourth-order Runge-Kutta algorithm with a time step dt
=0.001 is used. This time step is chosen such that the trajec-
tory is correct to double-precision accuracy. For the interval
between successive Gram-Schmidt reorthonormalization
steps—respective covariant vector normalizations—we
choose �=10dt=0.01. This number is a �very conservative�
compromise between the achieved reduction in storage re-
quirements as outlined below, and the precision of integra-
tion forward and backward over the same interval. The time
t0 is chosen such that in the interval −t0	 t	 t0 accurate
Gram-Schmidt and covariant Lyapunov vectors are available.

The simulations are carried out with the following proto-
col:

Phase 1 �forward integration from −t
 to +t
�: starting
with arbitrary initial conditions at a time −t
 and using a
positive integration time step dt�0, the evolution of the ref-
erence trajectory ��t� and of the full set of Gram-Schmidt
vectors is computed in the forward direction of time up to a
time +t
. The reference trajectory and the Gram-Schmidt

vectors are stored for every 10 time steps, 10dt=�, along the
way. The Gram-Schmidt vectors are used in phase 2 for the
construction of the covariant vectors, and the reference tra-
jectory is required in phase 3 for the computation of the
time-reversed Gram-Schmidt vectors. The Lyapunov spec-
trum ��+��GS� is accumulated for times −t�	 t	 t
, for which
the orientations of the Gram-Schmidt vectors are fully
relaxed.

Phase 2 �backward iteration from t
 to −t0�: starting at t
,
the covariant vectors are computed by iterating back to a
time −t0. The details of this algorithm are given in Ref. �7�.
Since the forward GS-vectors, stored during phase 1, are
now used in reversed order, the consecutive order of the
covariant vectors . . . ,v��tn� ,v��tn−1� , . . . has to be reversed
for the computation of the corresponding local exponent,

�+���
cov�tn� =

1

�
ln

�v��tn��
�v��tn−1��

,

or, alternatively, the sign of the local exponents must be re-
versed. The time averaging for the global Lyapunov spec-
trum ��+���

cov� is carried out for times t�� t�−t0.
The following two phases are only required for the com-

putation of the local time-reversed Gram-Schmidt and cova-
riant exponents.

Phase 3 �backward integration from t
 to −t
�: with arbi-
trary initial conditions at time t
, the Gram-Schmidt tangent
space dynamics is followed backward in time up to −t
. To
counteract the Lyapunov instability, it is essential for this
computation to use the same reference trajectory stored in
phase 1, where the sign of the momentumlike variables �p, z,
and x for the doubly-thermostated oscillator� is left un-
changed, but with the time step reversed to −0.001. For an
accurate computation of the backward GS vectors, the refer-
ence trajectory at every integration step is required. Since in
phase 1 this information was stored for only every 10th step
�to save computer storage�, the forward reference trajectory
is piecewise recomputed with stored phase-space points as
initial conditions. The backward Gram-Schmidt vectors are
again stored for every tenth time step replacing the forward
vectors of phase 1. If time is reversed, the stable directions
become unstable and vice versa. The Lyapunov spectrum
��−���

GS� is accumulated in the interval t�� t�−t
.
Phase 4 �forward iteration from −t
 to +t0�: analogous to

phase 2, in this final stage the covariant Lyapunov vectors for
the reversed time direction are computed with the help of the
time-reversed Gram-Schmidt vectors from phase 3. The re-
spective Lyapunov spectrum ��−���

cov� is accumulated for
times −t�	 t	 t0.

It may be noticed that in the interval −t0	 t	+t0 all local
properties are available with the Gram-Schmidt and covari-
ant vectors fully relaxed both forward and backward in time.
Therefore, the detailed analysis of local �time-dependent�
Lyapunov exponents in the following sections is carried out
in this regime.

V. DOUBLY-THERMOSTATED OSCILLATOR

A. Description of the model

Here we consider a simple model which already has many
ingredients in common with much more involved physical
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systems. It exhibits chaotic equilibrium and stationary non-
equilibrium states and collapses onto a limit cycle for very
strong driving. It consists of a one-dimensional harmonic
oscillator, which is coupled to two consecutive stages of
Nosé-Hoover thermostats with a space-dependent tempera-
ture T�q�. The equilibrium version of this model was first
considered by Martyna, Klein and Tuckerman �20�. Its non-
equilibrium properties were consecutively studied by us in
some detail �21,22�, but without considering covariant vec-
tors. This paper is also intended to augment this work corre-
spondingly.

The equations of motion, expanded with two thermostat
variables z and x, are �21,22�

q̇ = p ,

ṗ = − q − zp ,

ż = p2 − T�q� − zx ,

ẋ = z2 − T�q� ,

where the position dependent temperature is given by

T�q� = 1 + � tanh�q� .

The control parameter � coincides with the temperature gra-
dient at q=0. These equations are written in the most simple
reduced form with all arbitrary parameters of the model set
equal to unity. The system is not symplectic. On average, the
oscillator picks up energy from the thermostat whenever it is
in a region of high temperature �q�0�, and releases it again
in low-temperature regions �q�0�.

B. Global properties

For a typical nonequilibrium state, ��=0.25�, the global
Lyapunov spectrum was computed by four independent
methods, applying the protocol outlined in Sec. IV,

Phase 1: GS exponents in forward direction of time,
��+���

GS�= �0.0531 ,0.00001 ,−0.0344 ,−0.0867�.
Phase 2: covariant exponents in forward direction of time

��+���
cov�= �0.0536 ,0.00001 ,−0.0351 ,−0.0862�.

Phase 3: GS exponents in backward direction of time
��−���

GS�= �0.0867 ,0.0344 ,0.00003 ,−0.0531�.
Phase 4: covariant exponents in backward direction of

time
��−���

cov�= �0.0871 ,0.0337 ,0.000001 ,−0.0525�.
The last digit of each number is rounded accordingly.

Considering the smallness of the exponents and the rather
involved numerical procedures, the agreement between the
independently-determined global spectra is very satisfactory.
A comparison of the forward and backward dynamics reveals
the theoretically expected symmetry for the global Lyapunov
exponents �5,23�,

�−��� = − �+��D+1−� for � = 1, . . . ,D . �21�

If the temperature gradient � is varied over a wide range,
significant changes of the spectrum become evident. This is
shown in the top panel of Fig. 1.

There exist a number of distinct regimes with different
qualitative behavior.

For ��0.18, the spectrum changes but little with �, and
the Kaplan-Yorke dimension is only weakly reduced with
respect to the full phase-space dimension, as is shown in the
bottom panel of Fig. 1. The dissipation due to the weak heat
current influences the appearance of the chaotic phase-space
trajectory very little. An example of a projection of such a
trajectory onto the qpz-subspace is provided in the left panel
of Fig. 3.

For 0.18���0.26, the trajectory is more and more at-
tracted to a weakly unstable periodic orbit �see the right
panel of Fig. 3�, which for �c�0.26312 turns into a stable
limit cycle as shown in the left panel of Fig. 4. The nature of
this transition may be established by considering the Floquet
multipliers ��, �=1, ¯ ,4 for the fixed points of the
Poincaré map, defined by q=0, for ���c�0.26312.
Whereas �1=1 and �4�0, a single multiplier �2 crosses the
unit circle on the real axis at the point A corresponding to �c
in Fig. 2. Such a behavior is characteristic of a period dou-
bling bifurcation �24�, where, possibly, the chaotic attractor
disappears in a boundary crisis bifurcation. This point will be
studied separately �25�. Increasing � further, the Floquet
multipliers �2,3 vary as indicated by the arrows and become
complex conjugate to each other for ��0.26319 �point B in
Fig. 2�.

For ��0.417, there is another transition changing the
two-loop limit cycle into a single-loop orbit. This is illus-
trated in the right panel of Fig. 4 and will be studied sepa-
rately �25�.

C. Local Lyapunov exponents

In Fig. 5 we apply Eq. �11� to the doubly-thermostated
oscillator in a stationary chaotic state, �=0.25. For �=1 the
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FIG. 1. �Color online� Temperature-gradient dependence of all
four Lyapunov exponents �top panel� and of the Kaplan-Yorke di-
mension �bottom panel� for the doubly-thermostated oscillator. For
���c=0.26 312, the trajectory collapses onto a limit cycle.
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GS and covariant local exponents are identical and are not
shown. The case �=2 is treated in the figure. The dashed
green line denotes the covariant local exponent, the smooth
red line is for the local GS exponents, which is directly ob-
tained from the simulation invoking Gram-Schmidt reor-
thonormalization. The time interval � is 0.01. The blue points
for ��

GS�t� are computed with Eq. �11�, where the covariant
exponent ��

cov�t� and the angle ����t� are taken from the
simulation. The agreement is convincing. Similar results are
also obtained for �=3 and 4 �not shown�.

In the bottom panel of Fig. 6 we demonstrate, for �=2,
the general time-reversal symmetry for the local �time depen-
dent� covariant exponents �see Eq. �16�� which also gives
rise to the symmetry of the global �time-averaged� exponents
already encountered in Eq. �21�. For �=1 the symmetry is
also fully obeyed but not shown.

As emphasized already in Eq. �15�, the local Gram-
Schmidt exponents generally do not have this symmetry.
This is explicitly shown in the top panel of Fig. 6. See also
Ref. �22�, where the same observation was made. Only the
subspaces in Eq. �10� spanned by consecutive Gram-Schmidt
vectors have a simple dynamical interpretation, but not the
GS-vectors themselves. The orthonormal GS-vectors are ori-
ented such that for the tangent space, tangent to the phase
flow at the phase point ��t�, the subspaces �−�g1�t� � ¯

� �−�g�, with �� �1, . . . ,D�, are the most unstable subspaces
of dimension � going from time t to −� �i.e., the most stable
subspaces of dimension � in the future�. Although time re-
versal converts a most stable subspace of dimension � into
the most unstable subspace with the same dimension, and
vice versa, there is no obvious correlation of the instanta-

neous Lyapunov exponents �−���
GS�t� and �+��D+1−�

GS �t� for �
=1, . . . ,D.

It is interesting to follow the time dependence of the co-
variant local exponents, or more correctly expressed, their
variation for consecutive state points along the phase-space
trajectory �see Fig. 7�. One observes that the order of the
exponents fluctuates and may even be totally reversed with
�1

cov�t� being most negative and �4
cov�t� most positive. Also

the number of stable and unstable directions changes along
the trajectory. This indicates that the system is far from being
hyperbolic. We address this point more closely in the follow-
ing subsection.

D. Hyperbolicity

We infer from Eq. �11� that the difference between the
local covariant and Gram-Schmidt exponents stems from the
fact that the angle between the respective vectors deviates
significantly from zero and varies with time. But also the
angles between covariant vectors, �ij�t�
	arccos��vi ·v j� / �vi��v j�� significantly change with time. This
is demonstrated in the bottom panel of Fig. 8 for the same
nonequilibrium state ��=0.25� of the doubly-thermostated
oscillator discussed previously. There is an intermittent ten-
dency of any two pairs of vectors to get parallel or antipar-
allel to each other. Using an explicit expression for the angle
� between the unstable manifold span�v1� and the stable
manifold span�v3 ,v4� �26�, the probability distribution of �
is shown in the top panel of Fig. 8. Since this probability is
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finite for arbitrarily small �, the doubly-thermostated oscil-
lator is not hyperbolic.

As was mentioned before, the associated local covariant
exponents are out of order for most of the time as in Fig. 7.
If Pi denotes the probability for �i

cov to be out of order with
respect to any of the other exponents, one finds for the
doubly-thermostated oscillator ��=0.25� �P1 , ¯ , P4�
= �0.650,0.813,0.840,0.645�. This clearly demonstrates the
strong entanglement between the covariant vectors. If the
local exponents are time averaged along the trajectory for

time intervals �, the analogous probabilities P̄i
� for the time-

averaged exponents scale according to P̄i
���−�i with �i�0

for large-enough �. This shows that the domination of the
Oseledec splitting is violated for finite times.

Such a behavior is in contrast to the covariant dynamics
of hard-disk systems, for which the covariant vectors tend to
avoid becoming parallel or antiparallel �7�. Thus, whereas
the hard-disk system is hyperbolic, the doubly-thermostated
oscillator is not.

E. Singularities of the local Lyapunov exponents

In the direction of the flow, the local Lyapunov exponents
clearly are smooth functions of the time and, hence, of the
phase-space position along the trajectory, see Fig. 5. But
transverse to the flow this need not be the case. Indeed, for
the periodic Lorentz gas it was noted by Gaspard �27,28� that
the local stretching factors are discontinuous transverse to
the flow. Since this model involves hard elastic collisions of
point particles with space-fixed scatterers, the observed dis-
continuity might still be thought to be a consequence of the
discontinuous nature of the flow. However, Dellago and
Hoover showed �29� that this is not the case. They found a
discontinuous local exponent �1

GS along a path transverse to
the flow even for a time-continuous Hamiltonian system, a
chaotic pendulum on a spring. Of course, their result also
applies to �1

cov for that model. Here we provide evidence for
the doubly-thermostated oscillator in equilibrium ��=0� that
all local covariant exponents are discontinuous along direc-
tions transverse to the flow.

For this simulation we slightly modify the protocol of
Sec. IV.

FIG. 6. �Color online� Doubly-thermostated oscillator for �
=0.25. Top panel: The Gram-Schmidt local Lyapunov exponents do
not display time-reversal symmetry. Bottom panel: Display of time-
reversal symmetry by the covariant local exponents, �+���

cov=
−�−��D+1−�

cov for �=2, Analogous curves are obtained for the other �,
but are not shown.

FIG. 7. �Color online� Doubly-thermostated oscillator with �
=0.25: Time dependence of all four local covariant Lyapunov
exponents.
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Phase 0: starting at a phase point �s at time zero, the
reference trajectory is followed backward in time to −t
=
−60 000 and is periodically stored for intervals � along the
way.

Phase 1: the next phase is identical to phase 1 of Sec. IV
with one essential difference: For −t
	 t	0, the previously
stored reference trajectory is now used in the forward direc-
tion of time for the computation of the Gram-Schmidt vec-
tors, which assures that the trajectory precisely arrives at �s
at time zero in spite of the inherent Lyapunov instability. For
0	 t	 t
 the simulation proceeds as in phase 1 of Sec. IV.

Phase 2: this is identical to phase 2 of Sec. IV and pro-
vides us with the covariant vectors and the respective local
exponents in the interval −t0� t� t0 and at the time t=0 in
particular, when the state coincides with the selected phase
point �s.

The whole procedure is repeated for starting points �s
	�0+s� �0,0 ,1 ,0� on a straight line parallel to the z-axis,
which is parametrized by s. This line is transversal to the
flow, as may be inferred from Fig. 3.

As an example, we plot in the top panel of Fig. 9 the local
covariant exponent �4

cov�t� as a function of time for 26 initial
points �s separated by �s=2�10−3. It should be noted that
the scale on the t axis, converted into distances along the
trajectory, is about 200 times coarser than that on the s axis.
The ragged �red� line for t=0, which connects the local ex-
ponents for the selected initial states �s, is shown with much

higher resolutions �s=1�10−4. This curve for �4
cov�t� is also

reproduced in the bottom panel of Fig. 9 together with an
analogous result for �1

cov�t�. Both curves exhibit singularities
on many scales showing singular fractal character. There are
no obvious correlations between the two curves. The singu-
larities are due to bifurcations in the past history of the tra-
jectory. In view of Fig. 3, such a bifurcation may be visual-
ized, for example, by a transition of the trajectory from the
neighborhood of an unstable periodic orbit to the neighbor-
hood of another with a different number of loops.

One may raise the question �as has been done by one of
the referees�, how reliable the curves in Fig. 9 are in view of
the chaotic nature of the flow and problems of shadowing
due to the finite computational accuracy. An increase of the
Runge-Kutta integration time step dt by a factor of four has
no noticeable effect �less than 0.1%� in Fig. 9, which also
proved completely insensitive to a reduction of the relaxation
time t
 of the algorithm by a factor of two and of an increase
of the time � between successive reorthonormalization steps
by the same factor. This robustness, however, does not apply
to the local exponents �2

cov and �3
cov �not shown�, which

belong to the two-dimensional central manifold for this equi-
librium system. The respective covariant vectors span this
subspace, but their precise orientations and their local expo-
nents are affected by details of the algorithm and do not have
direct physical significance.

For nonequilibrium stationary states the singular character
of the local exponents in transverse directions is expected to
be even more pronounced, since even the phase-space prob-
ability density becomes a multifractal object �1,16�. For the
covariant exponent this cannot be shown with the present
algorithm. The reason is that during the time-reversed simu-
lation in phase 0, the phase volumes collapse yielding nega-
tive Lyapunov exponent sums. Since in phase 1 this trajec-
tory is followed in the opposite direction, the respective
phase volumes expand providing a positive sum of Lyapunov
exponents, but only up to time zero. For positive times the
reference trajectory is calculated anew from the motion equa-
tions, again yielding contracting phase volumes. Thus, the
character of the flow changes at t=0 and the Gram-Schmidt
vectors at first are nonrelaxed and point into wrong direc-
tions for positive times. Since these vectors are required for
the computation of covariant vectors at and near zero time,
the algorithm cannot be used to obtain the covariant vectors
and respective local exponents at a predetermined point �s in
phase space. For equilibrium states this restriction does not
apply and the local exponents may be computed for pre-
specified phase-space points.

VI. CONCLUDING REMARKS

For the doubly-thermostated oscillator in a nonequilib-
rium stationary state, there is a single vanishing global expo-
nent, �2, due to the time-translation invariance of the equa-
tions of motion. The corresponding covariant vector, v2�t�,
needs to be parallel �or antiparallel� to the phase-space ve-

locity �̇�t�	�q̇�t� , ṗ�t� , ż�t� , ẋ�t��. We have verified in our
simulation that this is indeed the case. The remaining vectors
v1, v3, and v4 are oriented with angles fluctuating between 0
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and � with respect to �̇�t�. The Gram-Schmidt vectors be-
have very differently. Whereas the vector g1 is identical to
v1, the vector g2 is not parallel to �̇�t�. Instead, the vectors g3

and g4 are perpendicular to �̇�t� as expected in view of the
covariant subspaces of Eq. �10�. These observations serve as
convenient consistency checks for the numerical procedure.

One of the remarkable features of the covariant local
Lyapunov exponents �cov���t�� is their singular behavior
transverse to the phase flow, whereas they are absolutely
continuous in the direction of the flow. Figure 9 provides an
illuminating example. The singularities are consequences of
bifurcations in the past history. For time-reversible systems,
this statement also applies to bifurcations in the future. Still,
the local exponents are point functions in the phase space in
the sense that one always gets the same value at the state
point in question, as long as the trajectory has been followed
from far enough in the past �future� and has experienced the
same history. Due to the uniqueness of the solutions of dif-
ferential equations there is only this path to the state point in
question. The global exponents, however, are time averages
of the local exponents along an �ergodic� trajectory.

We also applied the foregoing treatment to a number of
simple Hamiltonian systems, including the nonchaotic scaled
harmonic oscillator �30,31� �for which the local GS and co-
variant exponents may be computed analytically �25�� and
the Hénon-Heiles system �32–34�. In all cases the expected
symmetry properties of the local covariant exponents were
recovered.

A final remark concerns the doubly-thermostated driven
oscillator again. In a driven system �in our case a single

particle in a nonhomogeneous thermal field� heat and, hence,
entropy is generated, which needs to be compensated by a
negative entropy production in the thermostat to achieve a
stationary state. The excess heat is transferred from the sys-
tem to the thermostat �by the positive friction zp�0�, where
it disappears. It follows from the thermostated motion equa-
tions in Sec. V A that the external entropy production �of the
reservoir� is given by

Ṡ/k 	
�

��
· �̇ = z + x ,

where k is the Boltzmann constant. In the nonequilibrium
situation, a full time average 
z+x� is necessarily positive.
However, we have verified by simulation that finite time av-
erages of this quantity numerically obey the steady-state
fluctuation theorem originally discovered by Evans, Cohen
and Morriss �35�. This theorem was given a firm theoretical
basis by Gallavotti and Cohen �36,37�, by invoking the so-
called “chaotic hypothesis” for Anosov-like systems. Al-
though our system is not Anosov-like, it still obeys the
theorem.
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