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Current reversal is an intriguing phenomenon that has been central to recent experimental and theoretical
investigations of transport based on ratchet mechanism. By considering a system of two interacting ratchets, we
demonstrate how the coupling can be used to control the reversals. In particular, we find that current reversal
that exists in a single driven ratchet system can ultimately be eliminated with the presence of a second ratchet.
For specific coupling strengths a current-reversal free regime has been detected. Furthermore, in the fully
synchronized state characterized by the coupling threshold kth, a specific driving amplitude aopt is found for
which the transport is optimum.
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Transport phenomena and, particularly, directed transport
occur in many situations ranging from physical systems to
chemical and biological systems. Some recent research inter-
est in transport problems is related to ratchet physics where
unbiased noise-induced transport occurs away from thermal
equilibrium as a result of the action of the Brownian motors
�1–3�. The Brownian motors, especially “ratchet” models,
have been widely investigated partly due to the challenge to
describe and control mechanisms of fundamental biological
processes at both the cell level �e.g., transport in ion chan-
nels� and body level �muscle operations� �4�. Another moti-
vation is derived from recent advances in technology
wherein devices for guiding tiny particles on nanoscales or
microscales are sought; these include particle separation
techniques, smoothing of atomic surfaces during electromi-
gration, and control of the motion of vortices in supercon-
ductors �2,5�. Remarkably, experimental realizations of some
of these practical systems have been reported �6–8�.

In this framework, two basic types of ratchet models have
commonly been employed, namely, �i� the rocking ratchet, in
which the particle is subject to an unbiased external force
with or without additive noise, and �ii� the flashing ratchet, in
which the particle is periodically kicked. The vast majority
of these models are overdamped where the noise plays a vital
role in the transport process. However, recent studies have
shown that the role of noise can be replaced by deterministic
chaos induced by the inertial term �9�. In such inertial ratch-
ets, the issue of current reversal has been carefully investi-
gated �10–14�. Moreover, Hamiltonian ratchets have recently
seen a breakthrough in the ratchet community �15�. Here, the
noise and particularly the dissipation are absent, thereby al-
lowing these systems to preserve their full coherence. Hamil-
tonian ratchets owe their merit to the first experimental real-
ization of the quantum ratchet potential �16,17� which has
been a very good motivation for more theoretical as well as

experimental works. In this context, higher order quantum
resonances �a regime of very fast and directed transport�
have been found with atoms �18�, and directed transport of
atoms has quite recently been experimentally achieved �19�.

In the description of the model transport in general, atten-
tion has mostly been paid to single-particle ratchets. How-
ever, many such systems coexist in numbers and do work in
cooperation. For instance, molecular motors do not operate
as a single particle but in groups—the most prominent ex-
ample being the actin-myosin system in muscles �20�. For
this reason, the relevance of many interacting particles and
possible effects of collective behavior, e.g., transport en-
hancement, current inversion, clustering, synchronization,
and spontaneous current among others, have mostly been
considered in the overdamped case ��21� and references
therein�. Besides, very little has been done on coupled un-
derdamped ratchets �22–24� which is here the model of in-
terest. This is due to the additional complexity induced by
inertial terms and also to the presence of the dissipation. In a
very recent paper on this issue of coupled ratchets, it has
been shown that coupling may alter significantly the inten-
sity and direction of the net rectified motion �25�.

Thus, in this paper, we study dynamics of two coupled
driven underdamped ratchets and show how the coupling can
be used to control current reversals. The full synchronized
state observed and characterized by the coupling threshold
kth is preceded by several sudden changes in the current and
particularly current reversals. It is precisely in that state that
we found a specific value of the driving amplitude aopt for
which the transport is optimum. Furthermore, we report that
by tuning the coupling parameter, a regime of current rever-
sal free can be obtained. We note in passing that when the
interaction between the coupled superconducting Josephson
devices is sufficiently strong to induce synchrony, the result-
ing synchronized dynamics could give rise to large power
output �26–28�.

The model we are interested in is made of two rocking
ratchets �10�, symmetrically perturbed by means of an elastic*Corresponding author; u.vincent@tu-clausthal.de
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coupling. Its dynamics �in dimensionless form� can be de-
scribed by

ẍi + bẋi +
dV�x1,x2�

dxi
= a cos��t� �i = 1,2� , �1�

where the normalized time t is taken in units of the small
resonant frequency �0

−1 of the system; a and � represent the
amplitude and the frequency of the driving, respectively; and
b is the damping parameter. Here, V�x1 ,x2� is the perturbed
two-dimensional �2D� ratchet potential given as

V�x1,x2� = 2C −
1

4�2�
���x1� + ��x2�� +

k

2
�x1 − x2�2, �2�

where ��x1,2�=sin 2��x1,2−x0�+0.25 sin 4��x1,2−x0� and
k is the coupling strength which determines the
dynamics and hence the transport properties of Eq. �1�. The
constant C is merely introduced for a reference frame
purposes. To enforce this potential to take zero at the origin,
that is, V�0,0�=0, this constant must be given by
2C=−�sin 2�x0+0.25 sin 4�x0� /4�2�. In this case for
x0=0.82 and �=1.614 324, C�0.0173. Also, b=0.1 and
�=0.67 are kept constant throughout. System �1� models to
some extent the well-known Frenkel-Kontorova system �29�,
with only two elastically coupled particles, which has re-
cently been extensively used to study directed transport
�21�a�,30–33�. Along these lines experiments have been suc-
cessfully carried out with a circuit of parallel Josephson
junctions array �34�.

2D ratchet potential �2� is shown in Fig. 1 for four differ-
ent values of the coupling strengths. The minima and
maxima of the potential are marked with dark-blue and white
colors, respectively. It is to be noted that as k is increased,
the heights of the potential V�x1 ,x2� move outward, opening
up a valley along the diagonal, in which the two interacting
ratchets may most likely share.

Figure 2 displays the behavior of a single trajectory analy-
sis. Here, on-off intermittency �35� can clearly be observed
by the error state �x�t�=x2�t�−x1�t� sketched in Fig. 2�a�.
Figure 2�b� shows typical trajectories of the system along
which asynchronous motions erratically alternate with quasi-
periodic ones. This scenario is illustrated in the enlargement
portion of Fig. 2�b�, say Fig. 2�c�. To confirm and quantita-
tively characterize the intermittency, we have plotted in Fig.
3, for k=0.065, the probability distribution of the laminar
phases ��t� of �x�t� and the average laminar lengths �l� of
the two trajectories x1�t� and x2�t� as a function of �=a−ac.
Here, ac=0.080 947 4 is a critical driven amplitude at which
each subsystem x1 or x2 for k=0 undergoes a bifurcation
from chaotic to periodic regimes, which is associated to cur-
rent reversal �12�. In Fig. 3�a�, the collective dynamics for
the coupled ratchets shows a −3 /2 power-law scaling, typical
of on-off intermittency, while each subsystem dynamics, x1
or x2, exhibits type-I intermittency similar to the single
ratchet dynamics �36� with a −1 /2 power-law scaling as
shown in Fig. 3�b�. At this level, the observed intermittency
is a clear indication of the complexity of the dynamics and
suggests accounting for statistical calculations for any ob-
servable of the system. The above picture based on a single
trajectory analysis is exact for single attractor systems and
may turn out to be misleading for irregular ones, where pe-
riodic and chaotic attractors could coexist.

Next, we explore the dynamics of the coupled ratchets
�Eq. �1�� as k is varied and considering that single trajectory
dynamics will not suffice for a highly chaotic system; all
observables have to be averaged out over a large number of
trajectories generated from the entire space �−1,1�	 �−1,1�

FIG. 1. �Color online� Equipotential contours plot of V�x1 ,x2�
with colors growing from dark-blue �minima� through yellow/gray
�intermediate� to white �maxima�: �a� no interaction, k=0, �b� weak
coupling, k=0.05, �c� moderate coupling, k=0.15, and �d� strong
coupling, k=1.0.

FIG. 2. �Color online� Typical on-off intermittency for
a=0.080 947 2 �a� of the error state �x�t�=x1�t�−x2�t� for
k=0.065, �b� of trajectories x1�t� �black� and x2�t� �red/gray� for
k=0.065 and k=0.45 as indicated with dashed arrows, and �c� of the
enlarged portion of �b� for k=0.065.
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which is the unit cell of the resulting periodic structure.
Here, we make use of two important indicators, namely, the
error state 
 as a good measure of the synchronization and
the current J as the transport quantifier. For a long-time dy-
namics T, the error state for a given trajectory is given by


 j =
1

T
�

0

T

��x2
�j� − x1

�j��2 + �ẋ2
�j� − ẋ1

�j��2�1/2dt , �3�

with the full error 
=N−1	 j=1
N 
 j evaluated over the total

number N of trajectories. On the other hand, the current in a
subsystem �i=1,2� is defined as follows:

Ji =
1

M − nc

1

N 	
l=nc

M

	
j=1

N

ẋi
�j��tl� �i = 1,2� . �4�

where N is the total number of trajectories, tl is a given
observation time, and M is the total number of observations.
This gives the average velocity, which is then further time
averaged over the number of observations M −nc. Here, nc is
an empirically obtained cutoff accounting for the transient
effect, such that a converged current is obtained �14�.

With the driving amplitude a=0.080 947 2�ac, each in-
dependent system �k=0� exhibits chaotic dynamics �10�. Fig-
ure 4�a� displays 
 as a function of k. Above the threshold
k�kth�0.576, 
 approaches zero, indicating a fully syn-
chronized state. In Figs. 4�b� and 4�c� we observe the global
dependence of the currents J−=J1−J2 and J1, respectively, on
the degree of synchronization. Prior to the synchronized
state, J− fluctuates around zero and when a full synchrony is
achieved, J− is identically zero. Notice that the nonzero J−
occurs at weaker coupling k
kth. In this case, the two par-
ticles interact less and may predominantly evolve in the same
direction with slightly different velocities. However in the
narrow band 0.259�k�0.295, J− is identically zero; this
zero current is not associated with full synchrony but rather
to no directed transport by the individual systems �see Fig.

4�c��. Such a situation, already reported in a single ratchet
system �12�, occurs when the average velocity of the particle
is zero. This implies that in this case, in the present system,
each particle does not necessarily reside completely in a qua-
siperiodic state but may experience chaotic bursts for which
the average velocity is typically zero.

The spikes in J1 with or without current reversals reveal
some sudden changes in the corresponding bifurcation dia-
grams. In Fig. 5 we show two bifurcation diagrams, as a
function of k, corresponding to the velocities �a� v1�t� and �b�
v2�t�−v1�t� in the same coupling range as in Fig. 4, where
vi�t�= ẋi�t�, i=1,2. The transition to full synchrony described
in Fig. 4 is clearly reflected in the underlying dynamical
behavior. First, a sudden change occurs at k�0.04 during
which a bifurcation from chaotic state to a period two �P2�
window is detected. This bifurcation corresponds to the cur-
rent reversal �see Fig. 4�c��. Notice that the P2 orbit remains
stable in some range of the coupling strength, namely,
0.04�k�0.13; then, it undergoes a Hopf bifurcation when
the strength of the interaction further increases; and a chaotic
regime again shows up for a wide range of k. Next, a sudden
bifurcation takes place at a critical value kth at which the
dynamics of the two ratchets become locked in complete
synchronization as shown in Fig. 5�b� and current reversal
takes place �see Fig. 4�c��. During this transition to the full
synchrony �k�kth�, a period 4 orbit is born �Fig. 5�a��. Note
that the dynamics of a single ratchet �k=0� at stronger driv-
ing amplitudes a is also very complex as can be seen from
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FIG. 3. �Color online� �a� Distribution of laminar phases ��t� of
�x�t� �black circles�, satisfying a −3 /2 power-law scaling typical of
on-off intermittency and �b� average laminar lengths with varying
parameter a satisfying the scaling law �l���−0.5 with �=a−ac and
ac=0.080 947 4 �x1 �black circles� and x2 �green/gray squares��
showing type-I intermittency. Here, k=0.065 and the lines �red/
gray� are corresponding fits.

FIG. 4. Transition to full synchronization as a function of the
coupling strength k and for a=0.080 947 2�ac, indicated by �a� the
average error dynamics 
 and �b� the current J−=J1−J2. In the
same coupling range, �c� the current J1 is plotted showing regions
of zero current and of current reversals. Here, kth is the coupling
threshold for full synchronization.
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Fig. 6, with several windows of chaos separated with quasi-
periodic ones. One may thus anticipate that the physics at
weaker or stronger driving forces is qualitatively similar.

The above observations allows us to pay special attention
to controlling current reversals as these may happen to be
undesirable as far as transport is concerned. The case k=0
corresponds to no interactions for which current reversals
have been observed in a single ratchet model �10,14�. The
strong-coupling regime, where full synchronization is
reached, corresponds identically to the current reversal ob-
served in one single ratchet model �see Fig. 7�a��. However
as k takes on smaller values, dramatic changes occur on cur-
rent leading to the rectification of the particles motions—for
instance, current reversal observed in a large window of
a� �0.0808,0.0823�, shown in Fig. 7�a�, for strong couplings
k� �0.4,1� is completely eliminated in Fig. 7�b� for weaker
couplings k� �0,0.07�. Likewise current reversals found for
smaller values of k are destroyed as k increases �see Fig.
4�c��. The system becomes totally reversal free, for example,
at k=0.015 and k=0.05 �see Fig. 7�b��. This result clearly
demonstrates the importance of the coupling strength over
the full control of transport.

At this point the question that may naturally arise is
whether or not there are parameters for which the transport
can be enhanced. For the entire driving amplitude range
a� �0,1�, we have systematically computed the current J1
for the entire coupling strength range k� �0,1�. The recorded
optimal current J1 opt, absolute value of J1, is achieved coin-
cidentally as the synchronization regime is reached, k�kth,
and remains constant throughout. We plot in Fig. 8 for
k� �0,1� the quantity J1 opt as a function of the driving am-
plitude a. Here, we clearly identify regimes of transport en-
hancement and suppression triggered by synchronization. In
the weak forcing regime, typically a�0.1, and also for
a� �0.5,0.6�, the current is suppressed, while the remaining
forcing regime exhibits optimum transport at a=aopt�0.3.
This picture, which is likely a good guide of the efficient
transport, may be very interesting for experimental purposes.

To sum up, we have clearly shown that the dynamics of a
single-particle ratchet can be significantly modified when
coupled elastically to a second one. We have thus made use

FIG. 5. The bifurcation diagrams for a=0.080 947 2 as a func-
tion of the coupling strength k. The transition from the intermittent
chaotic regime to a period 4 orbit �a� v1�t�= ẋ1�t� happens at the
synchronization threshold k�kth�0.576 �b� v2�t�−v1�t�.

FIG. 6. Bifurcation diagram for large amplitudes of the driving
force a for k=0, showing several windows of chaos as well as
quasiperiodic ones.
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of the coupling strength to systematically rectify the particle
motion. In particular, current reversals observed in a single
ratchet can completely be annealed by appropriately choos-
ing the coupling strength. A regime of current-reversal free
has thus been detected for specific lower coupling strengths.
Then, we found a coupling threshold kth for which the sys-
tem is fully synchronized. Exploring parameter space, in this
synchronized state, we demonstrated that the transport can
either be enhanced or suppressed, depending on the driving
amplitude a. In doing so, we were able to find a specific

driving amplitude aopt for which the optimum transport is
achieved. These results clearly demonstrate the importance
of the coupling strength and that of the driver over the full
control of nonequilibrium transports.

U.E.V. and D.V.S. are supported by the Alexander von
Humboldt Foundation, Germany. J.K. acknowledges the sup-
port from EU under Project No. 240763 PHOCUS �Grant
No. FP7-ICT-2009-C�. Comments and suggestions by the re-
viewers are immensely acknowledged.

�1� P. Reimann, Phys. Rep. 361, 57 �2002�.
�2� P. Hänggi et al., Ann. Phys. 14, 51 �2005�.
�3� R. D. Astumian and I. Derényi, Eur. Biophys. J. 27, 474

�1998�; D. A. Doyle et al., Science 280, 69 �1998�.
�4� P. Hänggi and R. Bartussek, in Nonlinear Physics of Complex

Systems, Lecture Notes in Physics, edited by J. Parisi, S. C.
Muller, and W. Zimmermann �Springer, Berlin, 1996�, Vol.
476, pp. 294–308.

�5� P. Reimann and P. Hänggi, Appl. Phys. A: Mater. Sci. Process.
75, 169 �2002�.

�6� J. E. Villegas et al., Science 302, 1188 �2003�.
�7� S. Matthias and F. Muller, Nature �London� 424, 53 �2003�.
�8� Z. Siwy and A. Fuliński, Phys. Rev. Lett. 89, 198103 �2002�.
�9� P. Jung, J. G. Kissner, and P. Hänggi, Phys. Rev. Lett. 76,

3436 �1996�.
�10� J. L. Mateos, Phys. Rev. Lett. 84, 258 �2000�.
�11� M. Barbi and M. Salerno, Phys. Rev. E 62, 1988 �2000�.
�12� J. L. Mateos, Physica D 168-169, 205 �2002�.
�13� J. L. Mateos, Physica A 325, 92 �2003�.
�14� A. Kenfack, S. M. Sweetnam, and A. K. Pattanayak, Phys.

Rev. E 75, 056215 �2007�.
�15� H. Schanz, M.-F. Otto, R. Ketzmerick, and T. Dittrich, Phys.

Rev. Lett. 87, 070601 �2001�; H. Schanz, T. Dittrich, and R.
Ketzmerick, Phys. Rev. E 71, 026228 �2005�; I. Goychuk and
P. Hänggi, J. Phys. Chem. B 105, 6642 �2001�; S. Flach, O.
Yevtushenko, and Y. Zolotaryuk, Phys. Rev. Lett. 84, 2358
�2000�; E. Lundh and M. Wallin, ibid. 94, 110603 �2005�; D.
Poletti, G. G. Carlo, and B. Li, Phys. Rev. E 75, 011102
�2007�.

�16� G. Ritt, C. Geckeler, T. Salger, G. Cennini, and M. Weitz,
Phys. Rev. A 74, 063622 �2006�.

�17� T. Salger, C. Geckeler, S. Kling, and M. Weitz, Phys. Rev.
Lett. 99, 190405 �2007�.

�18� A. Kenfack, J. Gong, and A. K. Pattanayak, Phys. Rev. Lett.
100, 044104 �2008�.

�19� T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-
Molina, and M. Weitz, Nature �London� 326, 1241 �2009�.

�20� B. Alberts et al., The Molecular Biology of Cell �Garland, New
York, 2002�.

�21� �a� S. Cilla, F. Falo, and L. M. Floría, Phys. Rev. E 63, 031110
�2001�; �b� A. J. Fendrik, L. Romanelli, and R. P. I. Perazzo,
Physica A 368, 7 �2006�; �c� H. Goko and A. Igarashi, Phys.
Rev. E 71, 061108 �2005�; �d� H.-Y. Wang and J.-D. Bao,
Physica A 374, 33 �2007�.

�22� M. Kostur, P. Hänggi, P. Talkner, and J. L. Mateos, Phys. Rev.
E 72, 036210 �2005�; U. E. Vincent, A. Kenfack, A. N. Njah,
and O. Akinlade, ibid. 72, 056213 �2005�; P. Lu, Y. Yang, and
L. Huang, Phys. Lett. A 372, 3978 �2008�; S. Xu, Y. Yang, and
L. Song, ibid. 373, 2226 �2009�.

�23� H. Chen, Q. Wang, and Z. Zheng, Phys. Rev. E 71, 031102
�2005�.

�24� U. E. Vincent and J. A. Laoye, Phys. Lett. A 363, 91 �2007�;
Physica A 384, 230 �2007�.

�25� S. Savel’ev, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 91,
010601 �2003�; 92, 160602 �2004�.

�26� A. Blais, A. Maassen van den Brink, and A. M. Zagoskin,
Phys. Rev. Lett. 90, 127901 �2003�.

�27� J.-H. Li, Phys. Rev. E 74, 011114 �2006�.
�28� A. O. Nishanen et al., Science 316, 723 �2007�.
�29� O. M. Braun and Y. S. Kivshar, Adv. Phys. 45, 505 �1996�.
�30� Z. Csahok, F. Family, and T. Vicsek, Phys. Rev. E 55, 5179

�1997�; S. Klumpp, A. Mielke, and C. Wald, ibid. 63, 031914
�2001�; A. Igarashi, S. Tsukamoto, and H. Goko, ibid. 64,
051908 �2001�.

�31� M. Porto, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 84, 6058
�2000�; Phys. Rev. E 65, 011108 �2001�.

�32� Z. Zheng, G. Hu, and B. Hu, Phys. Rev. Lett. 86, 2273 �2001�.
�33� S. Flach, Y. Zolotaryuk, A. E. Miroshnichenko, and M. V.

Fistul, Phys. Rev. Lett. 88, 184101 �2002�; Z. Zheng, M. C.
Cross, and G. Hu, ibid. 89, 154102 �2002�.

�34� E. Trias, J. J. Mazo, F. Falo, and T. P. Orlando, Phys. Rev. E
61, 2257 �2000�.

�35� H. Fujisaka and T. Yamada, Prog. Theor. Phys. 74, 918 �1985�;
75, 1087 �1986�; T. Yamada and H. Fujisaka, ibid. 76, 582
�1986�; N. Platt, S. M. Hammel, and J. F. Heagy, Phys. Rev.
Lett. 72, 3498 �1994�.

�36� W.-S. Son, I. Kim, Y. J. Park, and C. M. Kim, Phys. Rev. E 68,
067201 �2003�.

CURRENT REVERSALS AND SYNCHRONIZATION IN… PHYSICAL REVIEW E 82, 046208 �2010�

046208-5

http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1002/andp.200410121
http://dx.doi.org/10.1007/s002490050158
http://dx.doi.org/10.1007/s002490050158
http://dx.doi.org/10.1126/science.280.5360.69
http://dx.doi.org/10.1007/s003390201331
http://dx.doi.org/10.1007/s003390201331
http://dx.doi.org/10.1126/science.1090390
http://dx.doi.org/10.1038/nature01736
http://dx.doi.org/10.1103/PhysRevLett.89.198103
http://dx.doi.org/10.1103/PhysRevLett.76.3436
http://dx.doi.org/10.1103/PhysRevLett.76.3436
http://dx.doi.org/10.1103/PhysRevLett.84.258
http://dx.doi.org/10.1103/PhysRevE.62.1988
http://dx.doi.org/10.1016/S0167-2789(02)00510-9
http://dx.doi.org/10.1016/S0378-4371(03)00187-0
http://dx.doi.org/10.1103/PhysRevE.75.056215
http://dx.doi.org/10.1103/PhysRevE.75.056215
http://dx.doi.org/10.1103/PhysRevLett.87.070601
http://dx.doi.org/10.1103/PhysRevLett.87.070601
http://dx.doi.org/10.1103/PhysRevE.71.026228
http://dx.doi.org/10.1021/jp010102r
http://dx.doi.org/10.1103/PhysRevLett.84.2358
http://dx.doi.org/10.1103/PhysRevLett.84.2358
http://dx.doi.org/10.1103/PhysRevLett.94.110603
http://dx.doi.org/10.1103/PhysRevE.75.011102
http://dx.doi.org/10.1103/PhysRevE.75.011102
http://dx.doi.org/10.1103/PhysRevA.74.063622
http://dx.doi.org/10.1103/PhysRevLett.99.190405
http://dx.doi.org/10.1103/PhysRevLett.99.190405
http://dx.doi.org/10.1103/PhysRevLett.100.044104
http://dx.doi.org/10.1103/PhysRevLett.100.044104
http://dx.doi.org/10.1103/PhysRevE.63.031110
http://dx.doi.org/10.1103/PhysRevE.63.031110
http://dx.doi.org/10.1016/j.physa.2005.11.056
http://dx.doi.org/10.1103/PhysRevE.71.061108
http://dx.doi.org/10.1103/PhysRevE.71.061108
http://dx.doi.org/10.1016/j.physa.2006.07.005
http://dx.doi.org/10.1103/PhysRevE.72.036210
http://dx.doi.org/10.1103/PhysRevE.72.036210
http://dx.doi.org/10.1103/PhysRevE.72.056213
http://dx.doi.org/10.1016/j.physleta.2008.03.008
http://dx.doi.org/10.1016/j.physleta.2009.03.028
http://dx.doi.org/10.1103/PhysRevE.71.031102
http://dx.doi.org/10.1103/PhysRevE.71.031102
http://dx.doi.org/10.1016/j.physleta.2006.10.086
http://dx.doi.org/10.1016/j.physa.2007.05.044
http://dx.doi.org/10.1103/PhysRevLett.91.010601
http://dx.doi.org/10.1103/PhysRevLett.91.010601
http://dx.doi.org/10.1103/PhysRevLett.90.127901
http://dx.doi.org/10.1103/PhysRevE.74.011114
http://dx.doi.org/10.1126/science.1141324
http://dx.doi.org/10.1080/00018739600101557
http://dx.doi.org/10.1103/PhysRevE.55.5179
http://dx.doi.org/10.1103/PhysRevE.55.5179
http://dx.doi.org/10.1103/PhysRevE.63.031914
http://dx.doi.org/10.1103/PhysRevE.63.031914
http://dx.doi.org/10.1103/PhysRevE.64.051908
http://dx.doi.org/10.1103/PhysRevE.64.051908
http://dx.doi.org/10.1103/PhysRevLett.84.6058
http://dx.doi.org/10.1103/PhysRevLett.84.6058
http://dx.doi.org/10.1103/PhysRevE.65.011108
http://dx.doi.org/10.1103/PhysRevLett.86.2273
http://dx.doi.org/10.1103/PhysRevLett.88.184101
http://dx.doi.org/10.1103/PhysRevLett.89.154102
http://dx.doi.org/10.1103/PhysRevE.61.2257
http://dx.doi.org/10.1103/PhysRevE.61.2257
http://dx.doi.org/10.1143/PTP.74.918
http://dx.doi.org/10.1143/PTP.76.582
http://dx.doi.org/10.1143/PTP.76.582
http://dx.doi.org/10.1103/PhysRevLett.72.3498
http://dx.doi.org/10.1103/PhysRevLett.72.3498
http://dx.doi.org/10.1103/PhysRevE.68.067201
http://dx.doi.org/10.1103/PhysRevE.68.067201

