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Branching pattern formation that reflects the history of signal propagation
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In living organisms, branching structures are often observed in open systems. During the process of structure
formation/deformation, signal propagation can be observed. Branching paths often deform depending on the
history of signal propagation. To gain a better understanding of the process of pattern formation that results in
characteristic geometrical paths, we adopt a system in which the dynamics of path formation are correlated
with signal propagation. This model involves both branch-generation dynamics and signal-propagation dynam-
ics, and we introduced positive feedback between these two dynamic processes. We studied the geometrical
properties of path deformation and the pattern of signal propagation using a discretized reaction-diffusion
model. The proposed model can qualitatively reproduce different branching patterns and means of signal
propagation. One remarkable result is that the mutual interaction of these two dynamic processes leads to
autonomous wave generation, similar to a pacemaker or the generation of spiral waves. Because the autono-
mous wave generation in the signal is spontaneous, the shapes of the branching paths become distorted. We
discuss the correlation between path deformation and signal propagation as a first step in understanding signal

processing for such complex deformable paths.
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I. INTRODUCTION

There are many ordered complex patterns in nature, and
such patterns can be observed in various fields of investiga-
tion. Living organisms form their own organs and even their
entire bodies via autonomous formation processes with
cross-talk between these organisms and external/internal sig-
nals. In the generation of these patterns, the formation of
branching structures in open systems is often observed. For
example, branching patterns can be observed with neurons,
blood vessels, lungs, leaf veins, trees, bacterial colonies, pro-
toplasmic streaming tubes of slime molds, ant trails, and so
on. These branching structures have interesting features as
effective transportation/propagation systems [1].

In general, the transport of materials or the propagation of
signals is observed in these branching structures, and the
branching structure itself can intrinsically affect transporta-
tion or propagation. A notable property of the transport of a
substance is mass diffusion or flow (movement) conservation
at a branch point. Branching tube morphology obeys this
physical constraint [2-4]. When we consider the propagation
of signals, it is important to realize that rather than materials,
a “physical state” is moving. Thus, this movement can be
faster and more robust than the flow or diffusion of material.
For example, propagation of an action potential in the ner-
vous system is a form of signal propagation. In this study, we
focus on the interactions between branch formation and sig-
nal propagation.

To obtain a better understanding of the general features
and functional aspects of branching pattern formation, it is
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important to determine how signal propagation or substance
transport affects branching deformation. With regard to the
effect of substance transport on path formation, Nakagaki et
al. recently reported a path-finding problem for a true slime
mold that exhibited protoplasmic streaming tubes [5]. They
proposed a simple algorithm for path formation between a
sink and a single or multiple attractive sources [4]. The pat-
tern of blood flow in the developing heart also plays a sig-
nificant role in cardiac morphogenesis [6]. In contrast, typi-
cal patterns seen with nerve cells often depend on signal
propagation [7,8].

Regarding the neuron structure, recent technical advances
have enabled the visualization and genetic manipulation of
individual dendritic trees. These studies have led to the iden-
tification and characterization of molecules that are impor-
tant for different aspects of dendrite development. Although
much remains to be learned, the existing knowledge has al-
lowed us to take initial steps toward obtaining a comprehen-
sive understanding of how complex dendritic trees are built.
If we focus on the functional aspects of signal processing
within a branching structure, it would be useful to study the
dynamics of branching pattern formation that reflect the his-
tory of signal propagation.

Several models that do not consider signal-processing dy-
namics have been proposed to describe complex branched
dendritic pattern formation [2,3,9-13]. Bacterial colonies
also exhibit typical diffusion-limited aggregation (DLA) pat-
terns, and several models have been proposed to describe
such pattern formation using reaction-diffusion systems
[10-12,14—16]. We previously reported a simplified model
for the formation of a branching pattern based on discrete
reaction-diffusion dynamics [17].

In this study, we focused on the mutual interactions be-
tween branching pattern formation and signal propagation at
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the branches in a simplified model, and examined the spa-
tiotemporal patterns that appeared.

II. METHODOLOGY

We propose a conceptual framework that includes a com-
bination of dynamic processes with two different types of
time constants. These dynamic processes, branching path for-
mation and signal propagation, can be essentially described
using a reaction-diffusion model. In general, a reaction-
diffusion model can be described by a system of partial dif-
ferential equations (PDEs). However, an enormous computa-
tional cost is required to solve these PDEs, especially if they
include different time constants. To avoid this problem and
clarify the interrelationships, we adopt coupled discrete dy-
namics, called cellular automata (CA). This includes a sim-
plified branch formation model based on the author’s previ-
ously proposed model [17] and wave-propagation dynamics
with an excitable condition based on a model proposed by
Gerhardt et al. [18,19].

There are no models for the formation of various branch-
ing patterns based on discrete RD systems, except for the
author’s proposed model; thus, in this paper, we adopt the
author’s model [17] to essentially describe branching pattern
formation. This model is a simple three-variable CA system,
which is a modification of an activator-depleted substrate
system based on the RD concept for bacterial colony pattern
formation [11]. This model can represent various branching
patterns.

With regard to signaling wave-propagation dynamics, to
represent the dynamics of wave propagation, generation, and
annihilation, excitation pulse dynamics are adopted using a
reaction-diffusion system comprising two variables. To sim-
plify the description, the modified cellular automaton model
of excitable media proposed by Gerhardt et al. is used
[18,19]. This model represents the propagation dynamics of a
real excitation wave well using a simple algorithm (e.g., cur-
vature of wave and speed).

How these dynamic processes are coupled is outlined in
the following. Signaling waves are allowed to exist only in
the branching path. This effect is one manner of dynamic
coupling. We add a positive feedback effect from wave
propagation to branching pattern formation. We set that
waves’ propagation has the effect of propagating path elon-
gation. Thus, increased wave propagation results in increased
branching pattern growth. We describe each model compo-
nent and its manner of coupling in detail in the next section.

In CA models, the target space is divided into discrete
areas called cells. The evolution of the state of each cell with
time is determined by simple intra- and intercell rules. A
dynamic pattern or an entire structure can be generated from
these local interaction rules. The spatial array of these cells is
defined as a square, and the state of each cell within the array
is updated in discrete time steps according to the present
state of the cell and its neighbors. The inner state of each cell
is described by a set of five variables: three for slow
branching-path formation, “path maker” (a), “growth factor”
(f), and “path trail” (w), and two for fast wave propagation,
“activator” (1) and “inhibitor” (v).
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CA models have generally been anisotropic (primarily
square or hexagonal), which has led to the problem that the
anisotropy tends to be propagated into the resulting patterns.
Here, we used Markus’ method that involves a semirandom
grid to prevent anisotropy of the diffusion effect [20]. A
plane is divided into square cells and one point is placed
randomly within each cell as the “cell center.” We describe

the center position of the iy—jy, cell by (f ,J); for example,

i=i<(i+1), where i and ; are real numbers and i and j are
integers. The random center positions of the cells are gener-
ated only once at the beginning of the simulation. A neighbor
set of a cell (i,j), N;;, is defined as all of the cells for which
each cell center is within a circle of radius R centered on the
given cell (i,)).

NS ={(k DN (=i + (- )> =R}, (1)

where x corresponds to each variable. The circle radius cor-
responds to the diffusion coefficient, such that R, and R,
correspond to D, and Dy, respectively. Hence, in the case
where a variable assumes a binary value (0 or 1), the number
of cells for which the relevant variable is positive in the
neighboring cell (i,)) is

Efj= #{(k7l)|(k5l) € ij and Xl = 1} (2)

A. Branching-path formation

The branching-path formation model adopted in this study
is the author’s previously proposed model, which was a re-
duced model based on a model of a bacterial colony forma-
tion proposed by Mimura et al. [11]: MSM model. The re-
sulting patterns, particularly for the cases of most branching
modes with the MSM model or with the author’s previous
model, are reminiscent of clusters arising from two-
dimensional DLA; these can be generated by a simple par-
ticle model for randomly branching patterns that grow via
diffusion-limited processes [9]. However, the MSM model
has a wider variety of patterns (i.e., it can represent not only
DLA-like patterns, but also more dense patterns, disk-like
patterns, and concentric ring patterns).

In the original MSM bacterial model, the states of the
bacteria can be separated into two types. One type is active
bacteria that move, grow, and undergo cell division, while
another type is inactive bacteria that do nothing at all. An
active bacterium exists at the edge of a colony and acts as a
frontier for colony growth with the consumption of a nutri-
ent. After nutrient consumption, if the nutrient becomes in-
sufficient, an active bacterium converts to an inactive state.
The nutrient diffuses throughout the medium.

In the MSM model, for which the system is described by
PDE:s, for the condition that the given amount of nutrient is
small and the mobility of active bacteria is low (solid me-
dium), nutrient diffusion dominates the pattern formation.
Thus, it might be said that the field can be described as a
Laplace field for the nutrient, and the pattern is regarded as
DLA-like. In the parameter region, tip splitting and screen-
ing effects are observed. Because of the reduction of dynam-
ics and discretization of the system, the field cannot be con-
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sidered to be Laplacian, although the author’s previous
model suggests it to be Laplacian [17].

In this study, the state of each cell can also be described
by the three variables of “path maker” (a), “growth factor”
(f), and “path trail” (w). In the context of bacteria, these
correspond to active bacteria, nutrient, and inactive bacteria,
respectively. a and w assume binary values {0, 1}, while f is
an integer {0,1, ..., .- The path variables are only per-
mitted to assume on three cases: a=1, w=0 (path front in the
cell), a=0, w=1 (path trail in the cell), and a=0, w=0 (no
path in the cell).

When there are both a sufficient number of path makers in
its neighborhood and sufficient growth factor in the cell
(f=f.), the state of the path maker becomes 1 (a—1). A
“sufficient number” of path makers in the neighborhood is
taken to be a,. After (a— 1), when the number of path mak-
ers in the neighborhood is not larger than a.(E“=<a,) or the
growth factor in the cell itself is insufficient (f<f,), the state
of the path maker becomes 0 (¢—0), and simultaneously,
the state of the path trail becomes 1 (w—1).

When a path maker exists in the cell (a=1), it consumes
the growth factor such that the growth-factor variable de-
creases f.ons 1N time steps, where f.,,, 1S a positive integer.
The growth factor continuously diffuses, and this is repre-
sented by averaging the growth factor in the neighborhood.

Therefore, the model for branching-path formation obeys
the following rules, where distance between cell (i,j) and

cell (k,1) is r(kl—ij)=\(k—i)2+(-))2
(al) if fi;(1) = f, and El”j(t) >a,

else if a;(1)=1

=a(t+1)=0, wyt+1)=1

(a2) fit+ D =max| —— 2 ful®) = Feonstij(,0 |

#NF rkiij)=R,

Figure 1 shows a morphological map with the above
rules. The pattern changed from a DLA-like pattern to a
disk-like pattern, depending on the initial growth factor and
the mobility of the path maker [17].

B. Wave propagation

In general, propagation of an excitation pulse with a
reaction—diffusion system can be described with a pair of
variables, “activator” (1) and “inhibitor” (v). An excitation
pulse is generated when the input or stimulus exceeds the
threshold. Initially, the activator increases autonomously, and
the activator activates the inhibitor. Then, the inhibitor in-
creases and inhibits the activator. Finally, the cell state re-
turns to the resting state.

In Gerhardt’s algorithm, the above dynamics are reduced
to discrete rules. The excitation variable is permitted to
have one of only two values, u=0 (unexcited) or u=1 (ex-
cited), whereas the recovery variable assumes integer values
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FIG. 1. Morphological map of the patterns observed for the
algorithm without interactions. Black cells correspond to w=1 [17].

(0,1,...,V,.). When u=1, the recovery variable v in-
creases until v=V,,,.. When v=V,,,., u switches to the un-
excited state (#=0) and v decreases until v=0. The system is
then at the stable rest state (u=0, v=0).

Figure 2 shows a schematic diagram for excitable wave
dynamics. To represent a spatially distributed excitable field,
each cell obeys the dynamics in Fig. 2(b). The rule for the
spatial spreading of an excitation wave is that an unexcited
cell (u=0) will become excited (u=1) in the next time step if
it is sufficiently recovered (v €[0,V,,.]) and if a sufficient
number of its “neighbors” are already in the excited state. In
other words, the numbers of excited cells in the neighbor-
hood of the cell (i,j), EZ needs to exceed a threshold,
koy(v). This should be an increasing function of v, because
unexcited recovering cells that are farther from the resting
state are more refractory and require more excited neighbors
to push them to the excited state, (E};=k,.(v)). In Ger-
hardt’s model, k,,.(v) is written as

1%
kexc(v) = kgxc + Ru(2Ru + 1) - kgxcv_ .
exc
(b) < i
< ________________
4 ________________
D — Vi
720 O — N
---------------- >
e U e e e >
| A, »
u=0 u=1

FIG. 2. (a) Typical phase-plane diagram for a differential equa-
tion model of an excitable medium. (b) Schematic of the state evo-
lution of a cellular automaton [18].
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TABLE 1. Parameters set in this study.
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With regard to recovery from the excited state to the rest-
ing state, an excited cell (u=1) will become unexcited (u
=0) in the next time step if v =V,,.. In Gerhardt’s model, the
recovery dynamics can be more complex, depending on the
number of neighboring unexcited cells. In this study, to sim-
plify the dynamics, an excited cell becomes unexcited
independently.

The basic rules of wave propagation in this study obey the
following:

(b1) if u;(t) =0 then
vt + 1) = max[v;(1) = g4,-0]
if (v;(1) =V, and Ej; =k,
Sut+1)=1

(b2) if u;(1)=1 then
vi;(t+1) =min[v;;(1) + gup> Vina]
if [v(1) =V,

:>Mij(t+ 1) = 0,
where g, and g, are positive integers.

C. Interaction feedback

Here we introduce interaction feedback between
branching-formation dynamics and wave-propagation dy-
namics. In the coupled system, waves are allowed to exist
only in the branching path (cells in which a path trail or path
maker is positive). In this study, we assumed a simple inter-
action: positive feedback between the coupled dynamic pro-
cesses. Thus, branches at which a wave propagates grow or
extend, while those without wave propagation shrink. There-
fore, a sufficient history of wave propagation at a branch is
necessary in order to extend the branch. In contrast, to inves-
tigate branch deformation, to include the case when a resting
path trail changes to a path maker, the requirement for be-
coming a path maker can now be satisfied by either a suffi-
cient number of path makers in its neighborhood or the pres-
ence of a path trail.

The CA model obeys the rules given below. At each step,
wave-propagation dynamics are calculated by the following.
These rules are applied only to the cells where the path factor
(path maker or path trail) is positive. The difference from
stand-alone wave-propagation rules (bl) and (b2) is the ex-
istence rule (3). Rule (3) represents the integration of the
history of wave propagation (S,’.’j), in the neighborhood of the
target cell and constant decay to zero.

v;;(t+1) =max[v;(t) - g4,,0]

if [vij(t) = Vexc and EZ = kexc]
(2) uy(1)=1 then

Uij(t + 1) = min[vij(t) + gup’vmax]
if (Uij(t) = Vrec)

(3) Si(t+1)=S{t) + m,E;(t) - 1

To implement the difference in time constants, the follow-
ing branching rules run every nth time step in the signal-
propagating algorithm (7(s,4ncn)/ T(signaty="1)-

(4) if fi;() = f. and Sj}(r) =S, and

[Ef,(t) >a, or w;(t)>0]

=a;t+1)=1, Sit+1)=0
else if a;(1)=1

:>aij(t+ 1) = O,le(t+ 1) =1

(5) ft+ D=max| — X fit) = foonsttij(.,0 |.

# I r(ki-ij)=R;
(6) if wy(t) >0 and Si(t) =S, and Ej(r) <w,

One difference from the stand-alone branching path forma-
tion rules (al)—(a2) is the addition of the necessary condition
in rule (4); the history of wave propagation that is counted by
rule (3) and the permission of restitution of a path maker
from a path trail. To maintain an existing path, integration of
the history state of wave propagation in a cell (§*) needs to
be larger than a critical value of S.. The cell shrinks if the
integration variable S* is not larger than S.(S*=S.), and if
there is insufficient E¥(EY <w,), the inner state becomes w
=0 with probability p=0.1 [rule (6)]. This rule reflects de-
generation of the path, so that the path decreases in the ab-
sence of signal propagation, and the edges tend to shrink
more easily than the center of the path.
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Qoo

step 1000 3300 5600 7900

FIG. 3. (Color) Time-evolution of non dense pattern formation
at time steps 1000, 3300, 5600, and 7900. The parameters are R,
=2 and f;=68. In the top row, the black, yellow, and red cells
correspond to w=1, u=1, and a=1, respectively. The bottom row
shows corresponding profiles of the excitation wave u in a quasi-
three-dimensional representation. The dark region corresponds to
w=1.

III. RESULTS

This CA model has three major parameters: the initial
value of the growth factor fj, and R, and R, which corre-
spond to the diffusion coefficients of the path maker and the
growth factor, respectively. We calculated the rules for a
square lattice of lateral size L=500. The system was initially

prepared by assigning each cell to a position (i )
=(i+7;,j+7), with 7 assuming different, uncorrelated ran-
dom numerical values. These random values were assumed
to be uniformly distributed in the interval (0, 1), where the
unit cell length d=1. The growth factor f(0)=f, was as-
sumed to be uniformly distributed and the path maker u(0),
path trail w(0), activator u#(0), and inhibitor v(0) were given
values of zero, except for within a small central circle where
a(0)=u(0)=1. Periodic stimuli (u=1) were input to the small
central circle every 25 time steps. In this paper, we used the
parameters R;=9, R,=2, and w.=7, and other values were
set as in Table I.

Figure 3 and Fig. 4 [21] show the results of the pattern-
formation process obtained for different values of R, and f,.
The magnitude of R, indicates the mobility of the path maker
a in the field when R, is constant. Therefore, a larger R,
means that it is easier to move farther to take up the growth
factor. Under these conditions, because of an insufficient
amount of growth factor, the path maker a tries to take up the
limited growth factor (Figs. 3 and 4). As a result, the cluster
of path makers becomes divided into several clusters, and a
branching pattern appears as path trails. In this system, the
propagation of excitation waves is needed in order to elon-
gate the paths. The results in Figs. 3 and 4 show propagation

DC I

step 70 730

FIG. 4. (Color) Time evolution of dense pattern formation at
time steps 70, 290, 510, and 730. The parameters are R,=5 and

f0=77.
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FIG. 5. Morphological map of the patterns observed in the al-
gorithm with interaction. The region of the initial growth-factor
value is the same as that in Fig. 1. Black cells correspond to w=1.

waves and path elongation. Path makers are seen at the ends
of paths. In Fig. 3, the propagation of waves is sparse, con-
centric, and dominated by periodic input from the center area
(see [21]).

However, in Fig. 4, despite of the same input scheme,
propagating waves appear to be more dense and disordered.
During the time series of pattern formation and wave propa-
gation in Fig. 4, desultory generation of waves out of a cen-
ter is seen, where an external input is not given. In other
words, waves occur spontaneously. Because of this behavior
of wave propagation, the pattern becomes thicker (see [21]).

To provide an overview of how the pattern features de-
pend on the parameters, for comparison to the morphological
map in Fig. 1, Fig. 5 shows a morphological map with
coupled dynamics using rules (1)—(6). The parameters used
for branch formation are the same as those shown in Fig. 1,
which shows noncoupled dynamics. The parameter region
within which a branching pattern is observed is larger than
that with noncoupled dynamics, and the nature of branching
becomes straighter and less dense. In this paper, the condi-
tions are set so that pattern growth arises from a center seed
and external input signals are constantly provided; thus, a
shrinking effect does not appear.

Figure 6 shows a morphological map with the same con-
ditions as in Fig. 5, except that the initial value of the growth
factor f; is higher. The resulting patterns appear to quantita-
tively show two different types of patterns. Especially in the
region with higher growth factor for the condition R,=5, the
patterns bend more and are anisotropic. In this region, propa-
gating pulses interact so that the path region grows, and a
rotating wave occurs to make a spiral wave. Thus, from that
location, the path grows automatically with the autonomous
generation of pulses, as in a pacemaker. As a result, the
growth rate increases dramatically and the branches become
thick.

To quantitatively describe the features of these patterns in
a two-dimensional setting, we analyzed the fractal nature, the
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FIG. 6. Morphological map of the patterns observed in the al-
gorithm that included interaction. The region shown for the initial
growth-factor value is higher than that in Fig. 1. Black cells corre-
spond to w=1.

number of branches, and the growth rate of the patterns ob-
tained with the current CA model. The fractal dimension was
calculated using the radius-of-gyration method [22]. A log-
log plot is shown in Fig. 7. The vertical axis is the number of
cells in which path trails w are positive and the horizontal
axis is the pattern’s radius of gyration in which the unit of
length is the cell length. The slopes of the plots represent the
fractal dimensions.

The details of the patterns changed depending on the ran-
dom number used to determine the cell centers. Figure 8—10
show representative data for an average of 50 samples of the
fractal dimensions, the number of branches, and the growth
rate, respectively. The fractal dimension and the number of
branches were calculated for the patterns at the moment
when patterns grew to a given size: the farthest edge of
branches arose at a distance of 230 unit cells from the center.
The growth rate was calculated as follows. The distance from
the center of a pattern to the outermost edge increased nearly
monotonically with growth. The growth rate depended on the
existence of spiral wave generation. Thus, the growth rate

10°

Number of cells

101 | 1
10 100 [cell]

Radius of gyration

FIG. 7. Radius of gyration method for R;=9, (O): R,=2, fy
=68, and (M): R,=5, fy=77. The fractal dimensions are 1.65 and
1.81, respectively.
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FIG. 8. Fractal dimensions of patterns observed with changes in
the parameters f, and R,.

was calculated in terms of the growth rate of the outermost
edge of the pattern after the pattern radius was larger than
180.

The well-branched pattern seen with the DLA model is
a fractal pattern with a fractal dimension of 1.715 [23]. With
noncoupled dynamics, as shown in Fig. 1, when f, and R,
increase, the pattern becomes denser, and the fractal dimen-
sion approaches 2.0 [17]. In contrast, with coupled dynam-
ics, patterns continue to branch with increasing f,,, and the
fractal dimension gradually approaches 2.0 for f,>70 (Fig.
8). In the current model, patterns for R,=5 and R,=6 show
larger fractal dimensions for f,>70.

In Fig. 9, the number of branches for R,=5 shows a trend
different from other R, values, where the rate of increase
changes around f,=70, and the rate of increase for f,>70 is
different from that for f,<<70 and other values of R,,.

In Fig. 10, for R,=5, the graph increases dramatically
around f,=70, and for f,>70, the growth rate maintains a
higher value than for other values of R,. These results sug-
gest that patterns may change qualitatively around f,=70 for
R,=5.

IV. DISCUSSION

We calculated the fractal dimensions, the numbers of
branches, and the growth rates for these patterns. These val-
ues represent the two-dimensional features of the patterns
that result in signal propagation. Especially for R,=5 and
regions with a high f;, value, patterns have larger fractal di-
mensions, more branches, and these branches appear to drift
more and are thicker. For this parameter region, during the
process to make patterns that drift more and are thicker, au-
tonomous wave propagation is observed at multiple sites. A
typical example of this kind of behavior is shown in refer-
ence [21].

With regard to the mechanisms of wave generation, this
kind of behavior is often generated at the growth point of
each path. By enlarging the point of wave generation, Fig. 11
shows a typical mechanism for wave generation. The sce-
nario for autonomous wave generation is the following. If
the excitable path area is fixed, an excitation wave propa-
gates to the end point of the path and cannot reverse its in-
coming direction because of the presence of a refractory area
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FIG. 9. Numbers of pattern branches observed with changes in
the parameters f;, and R,,.

behind propagating excitation wave. However, when the path
extends around the tip where the wave arrives, a new excit-
able neutral area can appear at the front of the tip (red region
in Fig. 11, panel 2). If so, the wave propagates to the new
neutral area (yellow region in Fig. 11, panel 2), and then
propagates along both sides of the path and returns in the
in-coming direction (yellow regions in Fig. 11, panels 3, 4,
and 5). After they return back to both sides of the original
path, waves can penetrate into the original path because of
completion of the path’s refractory state (black regions in
Fig. 11). Then, a couple of waves collide in the path (yellow
region in Fig. 11, panel 7) and an out-going wave generates
a new path (red region in Fig. 11, panel 8).

In this way, recursive wave propagation and generation
occur. Once a pair of rotating waves develops, rotation is
maintained. This manner of wave propagation can be said to
be a kind of spiral wave. Because of this continuing recur-
sive wave propagation, it can be considered that a path be-
comes thicker because of the additional side region of the
path with a returning wave. At the thicker end point, tip-
splitting can occur more readily because of the competition
for obtaining the growth factor or to the instability of the
interface. Also, the branch tip grows faster with a frequent
recursive wave than with a sparse wave from the center. In
this way, the pattern tends to be thicker, has more branches,
and more drifting is apparent with frequent branching.

In the morphological maps, Figs. 5 and 6, successive pe-
riodic inputs are given at the center of the pattern. However,
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FIG. 10. Growth rates of the patterns observed with changes in
the parameters f, and R,.

PHYSICAL REVIEW E 82, 046205 (2010)

3 4

f

>

7 8
N

FIG. 11. (Color) Frame format for the process of spiral wave
generation at the end of a path. Yellow and black regions corre-
spond to the wave front (excited region) and wave back (unexcit-
able refractory region), respectively. Gray and red regions corre-
spond to the existing and newly formed neutral branching paths,
respectively.

once a spiral wave is generated, a pattern begins to grow
autonomously and independently of any external input. Thus,
if external inputs stop after several time steps, the pattern
cannot continue to grow without internal spiral waves. To
obtain this feature, we changed the input conditions from
those in the previously mentioned scheme. We made the ex-
ternal input stop after 10 iterations. Figure 12 shows a mor-
phological map to clarify the parameter region where spiral
waves are generated.

Figure 13 shows the probability of formation of a branch-
ing pattern with the first transient external inputs, which rep-
resents the occurrence of spiral wave generation. The details
of the patterns change depending on the random number
used to determine the cell centers. This figure shows repre-
sentative data for an average of 50 samples.

In particular, when R,=35, it appears that the spatiotempo-
ral conditions of wave propagation and path elongation are
suitable to generate a spiral wave. The difference in the time
constant between coupled dynamics, in other words, the
competition between the wave-propagation rate, including a

Sk
- . L]
65 . . . % L]
L] . L 4 -
59 0 . . - .
2/9 39 4/9 519 6/9 RZ,

FIG. 12. Morphological map of the patterns observed with the
algorithm that includes interaction, with the first transient external
inputs. Black cells correspond to w=1.

046205-7



IKUKO N. MOTOIKE AND HISAKO TAKIGAWA-IMAMURA

1 ».l
0.8 .IIIIIIIIIIIII.IIIIII.
> "
g 06 ] fe
E! 2 P ool
g o4l s ! b
= L] 28 !

initial f

R=4 B Rz=6
S

FIG. 13. Probability of formation of branching patterns ob-
served with changes in the parameters f; and R,,.

nonexcitable period and the path elongation rate, may be
essential for generating spiral waves. For the condition R,
=5, the wavelength, refractory period, and timing for the
formation of a new path may be in balance.

However, a theoretical analysis may not be applicable be-
cause the current model is described using discrete dynam-
ics. CA has reduced discrete dynamics; thus, because of this
simplicity, it is difficult to describe the intricate balancing
conditions. In contrast, continuous PDE systems can have
more degrees of freedom by choosing the form of the func-
tions and the relationships between variables. Thus, there
may exist a wider range of the parameter area in which re-
cursive waves are generated with a continuous PDE system,
in which branching path formation is coupled with excitation
wave propagation. It would be interesting to study if this
recursive process occurs with a PDE system.

Branching patterns are often observed in physical and liv-
ing systems. A typical example in a physical system is crystal
growth or viscous fingering, in which dendritic growth is
driven by the instabilities of a pattern’s interface [24]. For a
living system, a bacterial colony shows branching patterns
under the conditions of a solid culture medium and low nu-
trient levels. For these phenomena, the field (concentration
field, pressure field, etc.) can be regarded as a Laplace field,
and tip-splitting effects are driven by interface instabilities.
Correspondingly with the proposed model, outward signal
propagation enhances the effects of this instability as fol-
lows: tips tend to grow, and a longer branch induces a
screening effect for growth of other branches in its neighbor-
hood.

Instead, in this study, we considered wave propagation as
a “signal.” Thus, we will design our future studies of this
model in relationship to biological systems. However, the
model proposed here is rather simple; thus, it will not be
easy to find straightforward relationships between this model
and a biological process. To link this model with biological
systems, possibilities are systems of nerves, lungs, blood
vessels, slime molds, and others. Particularly for systems of
nerves, signal propagation and deformation of branching
paths is quite an attractive issue.

In the nervous system, branching patterns appear in many
shapes and sizes [25]. In recent biological neural research,
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it has become obvious that the spatial geometry of individual
neurons is crucial for neural computation [26]. Single neu-
rons can distinguish among image patterns because of their
geometrical properties [27]. Feinerman et al. reported that
mesoscale logical devices could be created in vitro based on
the geometrical design of neuron cultures [28].

Regarding other aspects in the context of the functionality
of characteristic path geometry, one possibility for a relation-
ship is an efficiency strategy for signal propagation against
resources for path formation. In other words, in these bio-
logical phenomena there are certain essential features, such
as some kind of conserved quantity (i.e., air or blood) at the
branching point or protoplasm in the tube of a slime mold.

One major difficulty for investigating biological systems
is the presence of significant factors in relation to a targeted
phenomenon. For example, in order to study the relationship
between signal propagation and deformation of cell’s shape
in the nervous system, we should take into account calcium
wave propagation, spatial distributions of ion channels, hier-
archical structures, and networks of many types of proteins
and other molecules. In contrast to this, the proposed model
is rather simple and there are several possible extensions,
such as the introduction of a conserved quality for a path
resource, connecting multiple branching patterns and input
signals, and so on. A simple physical model, such as the
proposed model, may possibly allow fundamental studies of
a signal-processing system in which functions can change
autonomously, as in living systems.

V. CONCLUSION

We adopted a system in which the dynamics of path for-
mation were correlated with signal propagation. This model
involved both branch-generation dynamics and signal-
propagation dynamics, and the interaction between these two
dynamic processes was set to have positive feedback. The
proposed model used five variables: path makers, path trails,
and growth factors to represent branching-path formation,
and activators and inhibitors to represent signal propagation.
The essential feature of branching pattern formation is com-
petition to obtain a growth factor.

An important feature of this model is the mutual interac-
tion between dynamic processes with different time con-
stants. This mutual interaction leads to autonomous wave
generation, similar to a pacemaker or the generation of spiral
waves. Because of the spontaneous occurrence of autono-
mous wave generation in the signal, the shapes of the
branching paths become distorted. Qualitative differences of
the patterns are important to study the mechanisms of pattern
generation and the functions of the target pattern.

In this paper, no additional growth factor was supplied
after the given initial amount. Under a constant supply of
growth factor, various patterns appear. For example, branch
growth, both outward and inward, may develop. This effect
may be clearer in a three-dimensional system because there
are more degrees of freedom for growing direction than two-
dimensional system. Hence, branching form may be ob-
served clearer in the three-dimensional system due to a lower
probability of overlap of paths compared to two-dimensional
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system. The effects of a constant-feeding system will be ad-
dressed in a future study.

Several studies [29-38] have provided interesting ex-
amples of information-processing using suitably simple ge-
ometries for RD fields based on the concept of field compu-
tation using time-sequential information. One of the next
questions to be addressed is how signal processing can be
driven by the properties of a complex geometry, such as a
well-branched pattern. Numerical simulation and simple ex-
periments are effective for identifying the effects of a com-
plex geometry on signal processing.

These interesting properties of field computation can ac-
tually be realized with a RD system, such as the BZ chemical
reaction [39]. However, a problem with the BZ reaction is its
fragility, as a liquid reaction medium is not suitable for use
as a practical computing machine. A remaining problem is
how to obtain a conventional excitable field on a reliable
solid circuit to construct a field computer. Thus, these opera-
tions together with time-sequential information could be
implemented into a solid circuit using modern electronic

PHYSICAL REVIEW E 82, 046205 (2010)

technology, as with semiconductor production [40] or on a
solid surface [41].

A simple algorithm to describe various branching geom-
etries may also be a good tool for simulating and realizing a
solid circuit. The main advantage of the method presented
here over PDE calculations is its simplicity. As an extension
of the present study, it may be useful to determine whether a
network of branching devices can perform signal processing,
and to identify the actual mechanism of the time operation in
a real biological system. Therefore, further studies are
needed.
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