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The fractal Weyl law connects the asymptotic level number with the fractal dimension of the chaotic repeller.
We provide the first test for the fractal Weyl law for a three-dimensional open scattering system. For the
four-sphere billiard, we investigate the chaotic repeller and discuss the semiclassical quantization of the system
by the method of cycle expansion with symmetry decomposition. We test the fractal Weyl law for various
symmetry subspaces and sphere-to-sphere separations.
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I. INTRODUCTION

The asymptotic eigenvalue distribution of partial differen-
tial equations such as the Schrödinger equation for free par-
ticles or the one-dimensional Helmholtz equation for sound
waves has been of interest as early as from 1912 on when
Hermann Weyl and Richard Courant first studied the prob-
lem �1,2�. They found expressions for the asymptotic level
number N�k� in closed systems to be proportional to kd, with
d the spatial dimension of the system. The so called “Weyl
law,” which has been well known from then on �3�, states
that for closed quantum systems, every accessible Planck cell
in phase space is occupied by one quantum state. A generali-
zation to chaotic open systems, where complex resonances

kn= k̄n−�n /2 with mean energies kn and lifetimes �n replace
real eigenvalues k, has been proposed in the 1990s �4,5�. The
number of resonances

N�k� = �kn: Re�kn� � k;Im�kn� � − C� �1�

inside a rectangle in the complex plane defined by the energy
k and the strip width C is conjectured to be proportional to k�

with the exponent

� =
D + 1

2
�2�

being related to the noninteger fractal dimension D of the
chaotic repeller. The number � takes the role of the effective
number of degrees of freedom. The repeller is the set of all
classical trajectories that stay trapped for t→+� or t→−�.
Considering only the stable manifold Ws of trapped trajecto-
ries for t→+� in a suitable Poincaré surface of section, the
fractal Weyl law reads �6�

N�k� � kdH+1, �3�

with dH the Hausdorff dimension of the chaotic repeller’s
stable manifold.

The fractal Weyl law �Eq. �3�� has been investigated for
various two-dimensional systems, e.g., a triple Gaussian po-
tential �7�, the three-disk billiard �6�, an optical microsta-
dium resonator �8� and a modified Hénon-Heiles potential
�9� as well as for quantum maps, e.g., the kicked rotator
�10,11�. The systems under consideration so far have all been
at most two-dimensional. We provide a first investigation of
a three-dimensional system in this paper.

The problem under consideration is scattering in the four-
sphere billiard. This system is characterized by four spheres
of the same radius R located on the vertices of an equilateral
tetrahedron with edge length d as visualized in Fig. 1. The
relevant configuration parameter is the ratio d /R. Different
from, e.g., the two-dimensional three-disk billiard, the four-
sphere billiard is an open system even for the case of touch-
ing spheres at d /R=2.

The paper is organized as follows. The fractal dimension
of the repeller is computed in Sec. II. Periodic-orbit theory
and cycle expansion methods are applied in Sec. III to obtain
semiclassical resonance spectra. The classical escape rate is
determined in Sec. IV. Results which allow for a test of the
fractal Weyl law are presented in Sec. V. Concluding remarks
are given in Sec. VI.

II. GAUGING THE REPELLER

As the fractal dimension D of the chaotic repeller enters
into the fractal Weyl law �Eq. �3��, it is crucial to determine
D accurately. The fractal structures in the four-sphere billiard
have already been studied experimentally and theoretically
�12–15�, however, all investigations so far have been limited
to small values of the configuration parameter d /R�2.5. In
this paper the fractal dimension of the repeller is determined
accurately for a wide range of the parameter d /R.

A. Fractal repeller

The stable manifold Ws of the chaotic repeller is a fractal
in phase space. The time spent in the scattering system can
be measured by the time-delay function T counting the num-
ber of reflections experienced by a trajectory. Choosing ini-
tial conditions in a plane parallel to the plane spanned by
three of the spheres, it is possible to iterate trajectories en-
tering the scattering system such that the fourth sphere is
visited first. For large ratios d /R, the boundary to the region
that contains those initial conditions is the projection of the
fourth sphere onto the plane from which the trajectories are
iterated. As there are three distinct possibilities to visit the
next sphere, there are three regions of higher values of T
inside this circle. Repeating this line of argument for any
region belonging to a given visitation sequence, the structure
of the fractal repeller can be understood. Figure 2 illustrates
the fractal structure.
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In principle, the Hausdorff dimension dH can be calcu-
lated from box-counting. This procedure, however, is not
suited for the billiards under consideration as it requires it-
eration of a vast amount of initial conditions on a grid. The
regions of high values of T that exhibit fractal properties may
not be resolved with acceptable computational effort. A
method better suited to billiards is introduced below.

B. Estimating dH through Hausdorff sums

Finite numerical precision and finite computing time
available prevent the determination of initial conditions that
lead to trapped orbits. Instead, it is possible to estimate the
Hausdorff dimension from regions of finite T. We introduce
the auxiliary quantity An

�i� that denotes the area of the nth
region of initial conditions with T	 i reflections in the sur-
face of section, and define the quantities

K�i��s� ª �
n

�An
�i��s �4�

which will be called Hausdorff sums below. These sums
have the following properties �16,17�:

lim
i→�

K�i��s� = �� for 0 � s 
 dH

const. � 0 for s = dH

0 for dH 
 s 
 �
	 . �5�

The property for s=dH stems from the fact that the Hausdorff
sums by definition are smooth functions of the variable s.
This allows one to estimate the Hausdorff dimension dH by
intersecting K�i��s� for different i �14,15�.

Existing methods of estimating the repeller’s fractal di-
mension have been confined to a narrow range of the param-
eter d /R, in particular to the case of almost-touching spheres
�14,15�. The algorithm discussed in the following allows for
calculations in a wider range of d /R. To estimate the stable
manifold Ws in the surface of initial conditions, it will be
necessary to accurately find boundaries of regions of a given
visitation sequence of the spheres and reflection count. Once
both a point inside the region in question and a point outside
are known, interval bisection may be used to compute the
boundary point on the line connecting both points. The bi-

section condition uses the visitation sequence and the reflec-
tion count T, i.e., the length of the symbolic code.

1. Finding regions

The algorithm used in this paper relies on the structure of
the time-delay functions discussed in Sec. II A. In the calcu-
lations, the following assumptions are made:

�i� Regions of a specific order of visits with the scatterers
described by the symbolic code are nonoverlapping.

�ii� Within a region of a given order of visits, there are
exactly three more regions each corresponding to additional
visits at one of the three other spheres.

Both conditions may be violated for d /R close to 2, i.e.,
the case of almost touching spheres. We find the assumptions
to be fulfilled for regions with T	2 and configurations
d /R�2.5.

All steps of the procedure are based on the Poincaré sur-
face of section chosen such that iteration starts from a plane

FIG. 1. �Color online� The four-sphere billiard. Four spheres of
equal radius R are located on the vertices of an equilateral tetrahe-
dron �indicated by bars� with edge length d. Shown is the case of
d /R=6.
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FIG. 2. �Color online� �a� Time-delay functions in the range
2�T�5 for d /R=3 and �b� a magnification thereof in the range
2�T�7. The time-delay functions are drawn as functions of the
coordinates x ,y in the surface of section. The colors indicate the
value of T and for clear identification some regions are explicitly
labeled with T. Only the boundaries of individual regions are
drawn; initial conditions chosen within the regions experience the
same number of reflections. The self-similarity suggests that the
stable manifold is a fractal set.
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parallel to the plane spanned by the three closest spheres.
The velocities are chosen parallel to the z axis such that the
uppermost sphere is visited first. Let us assume that regions
with Tmin�T�Tmax are sufficient for an estimation of dH.
Under this assumption, it is possible to find regions approxi-
mating the repeller with the following procedure.

In the a first step, the projection of the sphere visited first
onto the surface of section is determined. For small d /R, this
region is a circle, for larger d /R, projections of the other
spheres may be cut out of the circle. This is done by ran-
domly choosing a point in the surface of section and an
interval bisection between this point and points equally dis-
tributed on a large circle fully containing the projection of
sphere 4. By assumption, inside this region there are three
other regions with T=2. The corresponding visitation se-
quences differ in the second character. Once a point inside
each of the regions with T=2 is found, in a second step,
polygonal chains forming boundaries to each of the new dis-
tinct regions are calculated. This procedure is iterated until
all desired regions corresponding to Tmin�T�Tmax have
been found.

2. Areas from polygonal chains

One possibility to store the boundaries is by keeping a
polygonal chain. As in this procedure the number Nregions of
regions grows exponentially with Nregions=3T−1, this way of
data storage is memory expensive. However, the areas en-
closed by the polygons are easily calculated using numerical
quadrature of the area given by

A =
1

2



0

2�

r2��d , �6�

with r�� the distance of the boundary point from the “mid-
point” of the region. A fairly low number of supporting
points has proved to be sufficient for very high precision. All
calculations have been performed with 101 supporting
points.

3. Areas from ellipses

An alternative to the memory-expensive storage of po-
lygonal chains is to approximate the boundary by an ellipse
described by the polynomial

a1x2 + a2y2 + a3xy + a4x + a5y = 1. �7�

For five or more known points �xi ,yi� of the boundary the
coefficients a1 , . . . ,a5 can be determined from a linear least-
squares fit. The semimajor axes a ,b, the center shift �x0 ,y0�
as well as the rotation angle  of the ellipses can be easily
extracted from the coefficients of the polynomial in Eq. �7�.

Fitted ellipses allow to improve accuracy as it is now
possible to shift the regions’ “midpoints” used in the con-
struction of the polygonal chains to the midpoint of the el-
lipses. All bisections for the polygonal chain boundaries are
repeated in such a way that all lines connecting the ellipse’s
midpoints and the boundary points intersect at identical
angles. This will be beneficial for the quadrature of the areas
entering into the Hausdorff sums.

Once all desired boundaries have been calculated, the
fractal dimension dH can be estimated. To build the Haus-
dorff sums �Eq. �4��, the areas enclosed in the individual
regions have to be known. From the ellipses fitted to the
boundaries, the area A is trivially given by

A = �ab , �8�

where a and b are the semimajor axes.
Calculations have been performed for d /R=2.5 to d /R

=10. Sample plots for intersected Hausdorff sums K�i��s� are
shown in Fig. 3. Results for the Hausdorff dimension dH are
compiled in Fig. 4 and in Table I. The calculations using
polygonal chains agree up to four decimal digits with the
calculations using fitted ellipses.

Figure 4 clearly shows that with decreasing d /R the inter-
section of the stable manifold Ws with the Poincaré surface
of section fills the plane denser. The repeller’s dimension dH
thus increases as the tetrahedron gets packed more densely.
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FIG. 3. �Color online� Intersected Hausdorff sums K�i��s� for
various reflection numbers i=T calculated from �a� a polygonal
chain with 101 supporting points and �b� ellipses fitted to polygonal
chains for d /R=6. As can clearly be seen, the intersection points for
all shown curves agree perfectly. For this reason, the Hausdorff
dimensions can be determined to a precision of at least 4 significant
digits.
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In summary, the method presented here establishes a fast
and very precise method of gauging the repeller. Though the
assumptions are quite strong, they hold over a wide range of
the ratio d /R.

III. SEMICLASSICAL RESONANCES

Studying a billiard system in a purely quantum mechani-
cal fashion turns out to be intricate since—although particles
move freely in between the scatterers—it is a demanding
task to find wave functions that vanish on all scatterer’s
boundaries simultaneously. For attempts on N-sphere scatter-
ing systems in three dimensions, see �18�; for the two-
dimensional three-disk scattering system see �19�. Results
and comparisons of methods for the four-sphere scattering
system are presented in �20�. The techniques of semiclassical
quantization presented below are better suited for billiard
systems.

As one of the great achievements of semiclassical phys-
ics, Gutzwiller’s trace formula provides a mean of quantizing
a system via periodic orbits �21�. Unfortunately, the trace
formula is plagued by serious convergence problems. In cha-
otic systems, the number of periodic orbits typically grows
exponentially with length l, and this growth usually cannot
be compensated by the decrease of the amplitude factors. A
method of improving the convergence ideally suited for bil-
liard systems is based on the Gutzwiller-Voros zeta function.

The logarithmic derivative of the function

Z�k� = �
n

�k − kn� �9�

with the quantized wave numbers kn of a billiard system
yields the density of states

g�k� = −
1

�
Im

d

dk
ln Z�k� = −

1

�
Im �

n

1

k − kn + i�
. �10�

Voros �22� proposed a semiclassical formulation of Z�k�
which reads for billiard systems

ZGV�k� = exp�− �
p

�
r=1

�
1

r

�− 1�rnpeirlpk

�det�Mp
r − 1��

� , �11�

where lp is the length of a primitive periodic orbit and np the
number of reflections on hard wall boundaries. The index r
counts the number of repetitions of a primitive periodic orbit.
The reduced monodromy matrix Mp provides information on
the linear evolution of a small deviation from an initial con-
dition belonging to a periodic orbit over one period �23�. The
eigenvalues of Mp quantify the stability of the periodic orbit.
Due to the symplectic structure of Hamiltonian mechanics,
the eigenvalues come in tuples �, 1 /�, ��, and 1 /��.

For systems with symbolic dynamics such as billiards, the
method of cycle expansion �24–27� has proved to be espe-
cially successful. A cycle expansion of the Gutzwiller-Voros
zeta function ZGV�k� in Eq. �11� is achieved by replacing
�−1�rnp in Eq. �11� by the term �−z�rnp depending on the
book-keeping variable z, expanding ZGV as a power series in
z and then truncating the series. The highest power of z
equals the maximum cycle length nmax contributing to the
cycle expansion. After truncation, z has to be set to z=1. The
cycle-expanded zeta function has better convergence behav-
ior over the trace formulas as individual terms tend to cancel.

A. Symmetry group Td

The four-sphere billiard has discrete tetragonal symmetry
�20�. The associated symmetry group Td contains all symme-
try operations that leave a regular tetrahedron invariant. In
particular, there are the identity operation E, four rotations
C3 by 2� /3 around the axes defined by a vertex of the tet-
rahedron and the center of the facing triangular boundary
surface, four more rotations C3

2 by 4� /3 around the same
axes, three rotations C2 by � around the axes intersecting the
middle points of opposing edges, six reflections �d at planes
perpendicular to the tetrahedron’s edges and also containing
another vertex; and, furthermore, three permutations of the
vertices S4 which can be written as a combination of a rota-
tion C4 by � /2 and a reflection �h at the plane perpendicular
to the main rotation axis, i.e., the axes of C3. Finally, the
symmetry group Td also contains three distinct three-times
repeated rotary reflections S4

3.
The character table of the symmetry group is given in

Table II. The symmetry group can be decomposed into five
invariant subspaces, i.e., the representation matrices D of Td
can be decomposed into block-diagonal form where the di-
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FIG. 4. �Color online� Hausdorff dimension dH of the stable
manifold Ws as function of the ratio d /R. All data points have been
obtained by intersecting Hausdorff sums as demonstrated in Fig. 3.

TABLE I. Numerical values of the Hausdorff dimensions dH of the stable manifold Ws for various
configuration parameters d /R. All decimal digits are significant.

d /R 2.5 3 4 5 6 8 10

dH 0.4774 0.3818 0.2992 0.2596 0.2354 0.2063 0.1888
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agonal elements contain matrices representing the group’s
elements. The representation is called “irreducible” if no fur-
ther decomposition is possible.

From the character table, statements on the wave func-
tions � can be made. For the one-dimensional representa-
tions A1 and A2, the effect of the symmetry transformations
is described by a multiplication with the character �. For the
totally symmetric A1 subspace, all characters are equal to 1,
therefore the wave functions have the full symmetry of Td,
i.e., � is not altered by any symmetry transformation. In the
A2 subspace, the wave function changes sign under the re-
flection �d and permutation S4. For representations of higher
dimension, the effect of the symmetry transformations can-
not be described in such a simple way.

We note that repeated application of symmetry transforms
may be identical with other elements of the symmetry group,
e.g., �d

2=C2
2=C3

3=S4
4=E and S4

2=C2. These identities will be
useful for the symmetry decomposition of zeta functions
discussed below.

B. Symbolic dynamics and periodic orbits in the four-sphere
scattering system

The method of cycle expansion requires all periodic orbits
up to a given maximum cycle length np. In special billiards it
is convenient to assign a symbolic code to each periodic or-
bit. For the four-sphere scattering system the symbolic dy-
namics and periodic orbits have already been introduced in
Ref. �20�. For the convenience of the reader we briefly reca-
pitulate the central ideas and properties of the orbits.

In the four-sphere scattering system, periodic orbits are
determined by the periodic sequence in which the four scat-
terers are visited. For most cases, any sequence corresponds
to one periodic orbit. If this one-to-one correspondence is not
given, i.e., if some orbits become unphysical because they
penetrate the scatterers, one speaks of pruning. This is the
case for small center-to-center separations. In the four-sphere
scattering system, the symbolic dynamics has been shown to
be pruned for configurations with d /R
2.0482 �20�.

1. Periodic orbits in the fundamental domain

In systems with discrete symmetries such as the four-
sphere billiard, which is invariant under all symmetry opera-
tions of the tetrahedron group Td, whole classes of orbits are
equivalent to each other, e.g., the six orbits which are scat-

tered back and forth between two spheres can be mapped
onto each other using symmetry operations of Td. Further-
more, cyclic permutation of the sequence of spheres leaves
the orbits invariant. For these reasons, it is appropriate to use
the symmetry properties to introduce the following short no-
tation �20�. First, define the plane of reflection as the plane
that contains the centers of the last three distinct spheres
visited. Then, instead of labeling all spheres individually, the
label 0 will be used if the orbit visits the last sphere once
more, 1 will indicate a visit at the third other sphere in the
same plane of reflection, whereas the label 2 will be used for
a visit at the fourth sphere outside the plane of reflection.
With this nomenclature, all symbolic codes containing the
character 2 are three-dimensional, whereas orbits corre-
sponding to sequences of 0 and 1 are two-dimensional. The
new labeling reduces the number of characters in the alpha-
bet to three, i.e., the code is ternary. This reduction corre-
sponds to a reduction of the full physical phase space M to

the fundamental domain M̃ from which the whole phase
space can be reconstructed by applying the symmetry
group’s elements. Note that the symmetry reduced orbits are
in general shorter than the corresponding physical ones. Only
the symmetry reduced orbits that have the identity operation
E as maximum symmetry have the same length as the corre-
sponding physical orbits. The reduced orbits of symmetry
classes �d and C2 yield twice as long physical orbits, C3
orbits are three times longer than in the physical space, and,
finally, S4 orbits have quadruple length.

2. Finding periodic orbits

Periodic orbits of the four-sphere scattering system are
calculated by varying, for a given symbolic code, the reflec-
tion points on the spheres until the length of the orbit takes
its minimum value. Details of the numerical periodic orbit
search are described in �20� and the computation of the
monodromy matrix is explained in Refs �28,29�. Table III
lists the first few periodic orbits in the fundamental domain
as well as their properties for the ratio d /R=4. The table also
gives the maximum symmetry operation that leaves the orbit
invariant. In the fundamental domain, this operation corre-
sponds to the operation that maps the end point of the orbit
in the fundamental domain onto the starting point. Note that,
for example, the cycle t0 which visits two spheres in turns is
periodic in the fundamental domain, but not in full physical
space. In the full domain, the start and end point of the
0-cycle are not identical; application of the rotation C2 re-
spectively the reflection �d yields back the full periodic orbit.

C. Discrete symmetries and cycle expansion

In systems with discrete symmetries the full physical
spectrum can be decomposed into spectra belonging to dif-
ferent representations of the symmetry group. The discrete
symmetries lead to symmetry factorized zeta functions,
which allow for the computation of quantum spectra belong-
ing to a specific symmetry subspace. The symmetry decom-
position of zeta functions has been elaborated by Cvitanović
and Eckhardt �30� and examples have been given for the
symmetry groups of various two-dimensional N-disk pinball

TABLE II. Character table for the group Td �20�. The group
has five irreducible representations: the one-dimensional represen-
tations A1 and A2, the two-dimensional representation E and the
two three-dimensional representations T1 and T2.

Td E 8C3 3C2 6S4 6�d

A1 1 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

T1 3 0 −1 1 −1

T2 3 0 −1 −1 1
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models. Here, we present explicit results for the tetrahedron
group Td of the three-dimensional four-sphere scattering sys-
tem. As in �30� we first discuss the symmetry decomposition
of the dynamical zeta function

Z�k� = �
p

�1 − tp�k�� �12�

which is obtained from the Gutzwiller-Voros zeta function
�11� with the approximation

�det�Mp
r − 1��−1/2 � ��p

�1��p
�2��−r/2 = e−�up

�1�+up
�2��r/2 �13�

and the definition

tp�k� = eilpk−�up
�1�+up

�2��/2, �14�

and then generalize the results for the symmetry decomposi-
tion of the Gutzwiller-Voros zeta function.

In quantum mechanics, the full Hilbert space H of the
problem factorizes into subspaces belonging to certain irre-
ducible representations of the symmetry group, i.e.,

H = HA1
� HA2

� HE � HT1
� HT2

, �15�

for the four-sphere scattering system. In �30� it is pointed out
that zeta functions can be factorized in a similar way. The
fundamental domain of phase space is sufficient for all com-
putations, as the whole phase space M can be obtained from

the fundamental domain M̃ by

M = �
h�G

hM̃ , �16�

where G is the symmetry group. Evaluating traces of transfer

operators in the fundamental domain M̃, this symmetry re-
duction results in �26,30�

�1 − tp�mp = det�1 − D�hp̃�tp̃� , �17�

with mp the multiplicity of a primitive cycle p.
These expressions could be evaluated using a certain ex-

plicit representation D��h� of the group’s symmetry opera-
tions h. However, this is a computationally rather demanding
endeavor. Instead, the determinants can be expressed in
terms of traces � which can be read off from the symmetry
group’s character table �see Table II�. For example, the ex-
pansion of det�1−D�h�t� for dimension d=3 reads

det�1 − D�h�t� = 1 − ��h�t +
1

2
���h�2 − ��h2��t2

+
1

6
���h�3 − 3��h���h2� + 2��h3��t3,

�18�

where the trace of D�h� is as usual denoted by ��h�. Carrying
out this procedure explicitly, one obtains the factorizations
given in Table IV. Thus, the zeta function in Eq. �12� can be
rewritten in a symmetry reduced version

TABLE III. Primitive periodic orbits up to cycle length np̃=2 for d /R=4. The reduced symbolic code p̃
as well as the symmetry hp̃ of each cycle is given. Furthermore, the real and imaginary parts of the stability
eigenvalues �p̃

�i� are tabulated. All numbers have been rounded to five decimal digits. The shortest cycle,
labeled by 0, which visits two spheres in turns has ambiguous symmetry. Both the rotation about �, C2, as
well as the reflection about the plane perpendicular to the line connecting the sphere’s center, �d, map this
particular orbit onto itself.

p̃ hp̃ lp̃ Re �p̃
�1� Im �p̃

�1� Re �p̃
�2� Im �p̃

�2�

0 �d ,C2 2.00000 5.82843 0.00000 5.82843 0.00000

1 C3 2.26795 −7.09669 0.00000 5.75443 0.00000

2 S4 2.31059 −3.11111 5.69825 −3.11111 −5.69825

01 �d 4.34722 −46.21054 0.00000 32.08725 0.00000

02 C3 4.35831 −14.95013 35.68205 −14.95013 −35.68205

12 S4 4.58593 43.79192 0.00000 −39.51750 0.00000

TABLE IV. Symmetry factorization of the zeta function Z for all five irreducible representations of the
group Td. The table entries give the contribution of each fundamental cycle p̃ to the Euler product
Z=�p̃�1− tp̃�. This factorization allows the computation of quantum spectra for each symmetry subspace.

E C3 C2 S4 �d

A1 �1− tp̃� �1− tp̃� �1− tp̃� �1− tp̃� �1− tp̃�
A2 �1− tp̃� �1− tp̃� �1− tp̃� �1+ tp̃� �1+ tp̃�
E �1− tp̃�2 �1+ tp̃+ tp̃

2� �1− tp̃�2 �1− tp̃��1+ tp̃� �1− tp̃��1+ tp̃�
T1 �1− tp̃�3 �1− tp̃��1+ tp̃+ tp̃

2� �1− tp̃��1+ tp̃�2 �1− tp̃��1+ tp̃
2� �1− tp̃��1+ tp̃�2

T2 �1− tp̃�3 �1− tp̃��1+ tp̃+ tp̃
2� �1− tp̃��1+ tp̃�2 �1+ tp̃��1+ tp̃

2� �1+ tp̃��1− tp̃�2
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Z� = �
p̃

�1 − D��hp̃�tp̃� �19�

for the subspace �. The zeta function now depends only on
the fundamental cycles p̃. By this procedure, a factorization

Z�k� = �
�

Z��k�d� �20�

is achieved. The zeta function Z factorizes into zeta functions
belonging to certain irreducible representations � of the sym-
metry group. The dimensions d� of the representations enter
into the full zeta function—and with them, the quantum mul-
tiplicities of resonances belonging to a certain subspace.

1. Assigning weight factors

The method of cycle expansion expands the zeta function
Z into a truncated series in which all cycles up to a certain
cutoff length enter �24–27�. However, besides the primitive
cycles, also multiple traversals contribute. Therefore, it needs
to be clarified how repeated revolutions can be taken into
account. Let us assume the primitive fundamental cycles p̃
are known. Then, the contribution of an r-times repeated
revolution to the symmetry reduced zeta function �19� is
given by polynomials such as

�1 − zrtp̃,r� , �21�

where a dummy variable z has been introduced. The cycle
weights tp̃,r have the form of the terms in Eq. �11� and are
thus easily calculable from the cycle weight tp̃ of the primi-
tive fundamental cycle. By using the factorizations given in
Table IV, it is possible to determine the weight factor wp̃,r�k�
as the sum of all roots zi

r of the polynomials given in the
table,

wp̃,r = �
i

zi
r. �22�

If this is possible, a way to use the p̃ for repetitions as well
has been found. As an example, for the contribution of the
r-times repeated cycle p̃ to the A1 spectrum, we need to solve

�1 − zrtp̃,r� = 0, �23�

which is true for zr=1. Thus, in the A1 subspace, all weight
factors are wp̃,r=1. By this choice, the symmetry factoriza-
tion is retained. As another example, consider the E subspace
for cycles with C3 symmetry. Here, solutions to the equation

�1 + zrtp̃,r + zrtp̃,r
2 � = 0 �24�

are needed. A factorization is given by

�1 − e2�ir/3tp̃,r��1 − e−2�ir/3tp̃,r� = 0, �25�

where the exponentials are the roots zi. Evaluating the sum
z1

r +z2
r , we find the weight factors wp̃,r=−1,−1,2 ,−1 ,−1. . .

for r=1,2 , . . .. A short notation for this sequence is given by
wp̃,r=2 cos�2�r /3�. By similar calculations, the weight fac-
tors wp̃,r given in Table V are determined.

2. Ambiguous symmetry

The shortest cycle labeled by 0 in the four-sphere system
has ambiguous symmetry. It is possible to map this cycle
onto itself by both the rotation C2 and the reflection �d. This
ambiguity requires special care in the symmetry decomposi-
tion. This is particularly important as the 0-cycle is one of
the fundamental cycles that act as building block for longer
cycles in the sense of cycle expansion. The group theoretical
weight of the 0-cycle can be written as �30�

h0 =
C2 + �d

2
. �26�

The symmetry factorization can thus be not one of those
given in Table IV. However, it is possible to use a factoriza-
tion that contains factors in such a way that the factorization
is at most the greatest common divisor of the factors given
for C2 and �d in Table IV. The factorizations and weight
factors w0,r are given in Table VI. With that factorization the
product �Eq. �20�� of all zeta functions belonging to the irre-
ducible representations of the symmetry groups coincides
with the cycle expansion �Eq. �12�� using all orbits in the full
domain.

TABLE V. Weight factors wp̃,r for r traversals of the primitive cycle p̃. These factors allow for symmetry
factorizations with repetitions of primitive fundamental cycles.

E C3 C2 S4 �d

A1 1 1 1 1 1

A2 1 1 1 �−1�r �−1�r

E 2 2 cos2�r
3 2 1+ �−1�r 1+ �−1�r

T1 3 1+2 cos2�r
3 1+2�−1�r 1+2 cos�r

2 1+2�−1�r

T2 3 1+2 cos2�r
3 1+2�−1�r �−1�r+2 cos�r

2 2+ �−1�r

TABLE VI. Factorizations of Z�k� and weight factors w0,r for
the fundamental cycle 0 with ambiguous symmetry classes C2 ,�d in
all subspaces � of the symmetry group Td.

C2 ,�d w0,r

A1 �1− t0� 1

A2 1 0

E �1− t0� 1

T1 �1+ t0� �−1�r

T2 �1+ t0��1− t0� 1+ �−1�r
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The final form of the Gutzwiller-Voros zeta function we
use for our calculations is

ZGV;��k� = exp�− �
p̃

�
r=1

�
1

r

wp̃,r;��− z�rnp̃eirlp̃k

�det�Mp̃
r − 1��

� , �27�

with p̃ the primitive symmetry reduced cycles, r the number
of repetitions of it and � the symmetry subspace. A symme-
try reduced version of the cycle expansion is obtained by
expanding Eq. �27� into a power series in z which is trun-
cated at a maximum cycle length n max. Then, z has to be set
to z=1.

D. Harmonic inversion method

The Gutzwiller-Voros zeta function Z�k� in Eq. �27� con-
tains all energy eigenvalues k as complex zeros, and, in prin-
ciple, it is possible to obtain spectra by a numerical root
search. This method has been successfully used for billiards,
see e.g., �27�. However, the root search in cycle expansions
of high order is numerically expensive. For statistical pur-
poses it is important not to miss any resonances in the strip
of the complex plane under consideration. Therefore, a dense
grid of initial root guesses has to be used for the root search.
Consequently, many resonances will be found several times.
Thus, the problem is to distinguish for every new root
whether a new distinct resonance has been found or if the
new zero has already been computed. As the number of reso-
nances enters into the fractal Weyl law �Eq. �3�� through the
counting functions N�k�, it is crucial to count individual reso-
nances only once.

An alternative to the computation of zeros is based on the
harmonic inversion method for high-resolution spectral
analysis �31–33�. When Eq. �10� is evaluated along a line of
real-valued k or a shifted line k+i� with real k and �, we
obtain a spectrum

g�k� = �
n

1

�

�n/2 + �

�k − k̄n�2 + ��n/2 + ��2
, �28�

which is a superposition of resonances with a Lorentzian
shape. For negative shifts � the Lorentzians are located at the

positions k̄n, but with reduced widths �n+2�. The basic idea
is now to reformulate, via a Fourier transform, the problem
of extracting eigenvalues as a signal processing task. Details
of the method are given in �8�.

The procedure of calculating quantum spectra is summa-
rized as follows: First, the spectrum g�k� is calculated as a
superposition of Lorentzians. We use the cycle-expanded
zeta function Z�k� for this purpose. The quantity

g�k� = −
1

�
Im

d

dk
ln Z�k� = −

1

�
Im

Z��k�
Z�k�

�29�

is evaluated along lines parallel to the real axis with different
shifts �. Thus, the shifts that allow for better results in har-
monic inversion enter into the cycle expansion. Then, har-
monic inversion is used to obtain the Lorentzians’ parameters

k̄n and �n for spectra calculated with different shifts. In the
next step, the spectra are filtered via the amplitudes. The

quantity g�k� given in Eq. �29� should give resonances with
an amplitude of An=1. True resonances with amplitudes An
�1 can be clearly separated from spurious resonances with
nearly zero amplitudes. Finally, the spectra for different
shifts � are joined such that the individual strips do not over-
lap.

IV. CLASSICAL ESCAPE RATE

The classical escape rate �0 can be interpreted descrip-
tively as follows �34�: presume the scattering system under
consideration is located in a box much larger than the system
itself. Conducting N0 scattering experiments with the same
incident energy k, but different incident directions, one finds
that the number Nt of trajectories that are inside the box after
the time t has passed decays exponentially as

Nt � N0e−�0t. �30�

The relation of the escape rate and the imaginary part of the
quantum resonances can be understood from the correspon-
dence principle. The number of classical trajectories inside
the box corresponds to the quantum probability density
�� ���. The decay of this probability,

����� � e−�t, �31�

relates to the decay �Eq. �30�� of the number of classical
trajectories inside the box. Thus, in the classical limit

Im kn = −
�n

2
→ −

�0

2
�32�

holds.
The classical escape rate can be calculated by the method

of cycle expansion as well �25�. The escape rate �0 is found
to be the largest real zero of a dynamical zeta function

Z�s� = �
p̃

�1 − tp̃�s�� , �33�

with p̃ the primitive periodic cycles and tp̃ the cycle weights.
For a three-dimensional system,

tp̃�s� =
e−lp̃s

��p̃
�1��p̃

�2��
. �34�

The quantities �p̃
�i� are the leading stability eigenvalues. A

generalization to a zeta function for three dimensions and
multiple traversals r of the primitive cycle p̃ is given by

Z�s� = exp�− �
p̃

�
r

1

r

e−rlp̃s

��p̃
�1��p̃

�2��r� , �35�

with �p̃
�i� the leading two stability eigenvalues of p̃. This zeta

function can be cycle-expanded as described in Sec. III. Re-
sults for the escape rate �0 at various configurations d /R are
given in Table VII.

V. RESULTS

The fractal Weyl law has been put to test for billiard sys-
tems before. In �6�, the three-disk billiard has been studied.
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To make our own results comparable to those given in �6�,
we carry out a similar discussion.

A. Defining a scale for the strip widths

For the three-disk system discussed in �6�, the strip widths
C have been chosen in relation to the classical escape rate �0.
For large values k→�, the imaginary part of quantum reso-
nances converges to Im k=−�0 /2 �6,35�. Thus, the discus-
sion of the results is simplified by rescaling the strip widths
C to

C̃ ª

C

�0/2
, �36�

which defines a universal scale independent of the symmetry
subspace and the ratio d /R. Similar to �6�, we evaluate the

fractal Weyl law for scaled strip widths C̃� �1;1.6�.

B. Counting resonances

We have computed spectra for various values of d /R in all
symmetry subspaces. Generally, we find the best conver-
gence behavior of cycle expansions for large values of d /R.
Furthermore, the one-dimensional group representations A1
and A2 yield the largest number of converged resonances.
The two-dimensional representation E and the three-
dimensional T1, T2 representations converge not as well in
cycle expansion since the shadowing of individual cycles is
less efficient for the weight factors of these subspaces. For
A1, where all weight factors are equal to 1, the best conver-
gence is observed.

It is important to note that for the tests of the fractal Weyl
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FIG. 5. �Color online� �a� Spectrum and �b� counting functions
N�k� for A1 resonances calculated from cycle expansion in order 11
for the ratio d /R=10. Several counting functions for different strips
C are shown. The curves can be used as “raw data” to fit power
laws. In this way, the exponent � in the fractal Weyl law can be
obtained and compared to the classical calculations. More than
50 000 resonances have been used in the analysis.
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FIG. 6. �Color online� Exponents � obtained from least-squares
fits of a power law to measured counting functions for �a� A1 reso-
nances and �b� A2 resonances calculated for d /R=6 in order 13 of
the cycle expansion. The power law has been fitted to the interval
k� �0;2000�. The horizontal dotted line gives the classical expo-
nent �=1+dH=1.2354.

TABLE VII. Classical escape rates �0
�n� in order n of the cycle

expansion for various values of the configuration parameter d /R.

d /R �0
�1� �0

�2� �0
�3� �0

�4�

4 1.16655 1.16459 1.16440 1.16440

6 0.85042 0.84977 0.84974 0.84974

8 0.68259 0.68230 0.68230 0.68230

10 0.57634 0.57619 0.57619 0.57619
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law we have used only converged resonances. For example,
the A1 resonances at d /R=10 are sufficiently converged in
the region Re k
6000, Im k�−0.45 so that counting func-
tions N�k� obtained in orders 10 and 11 of the cycle expan-
sion fully agree. Thus, comparisons with the fractal Weyl law
are not affected by the order of the cycle expansion.

The fractal Weyl law �Eq. �3�� suggests that the counting
functions N�k� obey a power law,

N�k� � k�, �37�

thus, in a logarithmic plot of N�k�, straight lines of slope �
=1+dH are expected. A sample spectrum and corresponding
counting functions for d /R=10 are shown in Fig. 5.

This figure is generic in structure, i.e., we have found
similar behavior of N�k� in other subspaces and for other
ratios d /R as well. Thus, a brief discussion of these features
will be given in the following.

We first note that the strip width C has to be sufficiently
large, since otherwise, counting would not involve reason-
ably large numbers of resonances. In the spectrum shown in
Fig. 5�a�, we have found converged resonances in the rel-

evant strip C̃� �1;1.6� for Re k�6000. For small strip

widths such as C=0.28⇔ C̃=0.97, it is evident from Fig.
5�b� that counting involves only a limited number of reso-
nances. Larger strip widths involve more resonances in the
counting. However, choosing the strip width too large, the
counting may also involve resonances that may not have
been converged. Taking the asymptotic behavior of the reso-
nances’ imaginary parts into account, choosing rescaled strip

widths in the interval C̃� �1.0;1.6� turns out to be a reason-
able choice.

Figure 5�b� reveals that the counting functions N�k� devi-
ate from power laws that led to straight lines in the plot.
From this observation one infers that the exponent � will
clearly depend on the k-range one fits to. We follow �6� and
choose the largest interval converged resonances have been
computed for.

C. Putting the fractal Weyl law to test

To provide several tests for the fractal Weyl law, we will
provide plots showing the exponents � obtained from least-
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FIG. 7. �Color online� Exponents � obtained for d /R=8 from
least-squares fits of a power law to measured counting functions for
�a� A1 resonances and �b� A2 resonances. The power law has been
fitted to several k-intervals. The horizontal dotted line gives the
classical exponent �=1+dH=1.2063.
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exponent �=1+dH=1.1888.
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squares fitting a power function N�k��k� to the counting
functions calculated from the spectra for various subspaces,
fitting ranges �0;kmax�, configuration parameters d /R and

strip widths C̃. We have performed least-squares fits to match
the power function �37� to the measured N�k�.

1. Configuration d ÕR=6

For d /R=6, we obtain the exponents shown in Fig. 6. For
the A1 subspace, we find a very good agreement for moderate

values of C̃
1.4. The relative error in this C̃-interval is less
than 2%. However, in the A2 subspace, all computed expo-

nents are too large by about 8% for the same C̃-interval. One
possible reason is that the k-range used for fitting is too
small.

2. Configuration d ÕR=8

Performing the same procedure for a configuration param-
eter of d /R=8, we obtain the plots shown in Fig. 7. Both
plots reveal a clear tendency to obey the fractal Weyl law
within a smaller error range when the range of k values used
for the fit increases. However, for reasons of convergence,

longer spectra have not been used. We note that for C̃
1.4
and k� �0;3000�, the error is less than 7% for the A1 reso-
nances. The exponents obtained from A2 resonances are

larger than the expected exponent. For C̃=1.3, the relative
error is about 15%.

3. Configuration d ÕR=10

Finally, the system configuration given by d /R=10 has
been studied. Results are shown in Fig. 8. The counting func-
tions for the A1 subspace once more tend to give the ex-
pected exponent when the k-interval used for the fit in-
creases. For k� �0;6000�, the error is less than 3%. Again,
the A2 spectra yield exponents that are too large. Possibly the
k-range investigated here is not large enough to exhibit the
asymptotic behavior clearly.

D. Discussion

While the classical calculations for the fractal dimension
dH are accurate to at least four significant digits, the agree-
ment of the exponents � is at best 2–7 % for the A1 spectra.
However, we note that for the two-dimensional three-disk
billiard, the errors in the exponents are about 5–10 % �6�.

Therefore, we conclude that the fractal Weyl law for the
four-sphere scattering system is confirmed with roughly the
same accuracy as for the three-disk billiard.

A very large k-range seems to be necessary for a proper
investigation. This tendency is also visible for the A2 spectra.
The exponents obtained from the A2 spectra are too large.
However, using larger k-intervals, the exponents seem to ap-

proach the correct value for large strip widths C̃. Possibly, if
larger spectra were available, the expected exponents could
be obtained. Unfortunately, we are limited by the conver-
gence of the cycle expansions we use. The higher-
dimensional symmetry subspaces E, T1, and T2 could not be
used to put the fractal Weyl to test law since the spectra did
not contain enough converged resonances.

VI. SUMMARY AND OUTLOOK

This paper provides a test of the fractal Weyl law for a
three-dimensional scattering system. The four-sphere billiard
was investigated both classically and quantum mechanically.

In Sec. II, we have developed a fast and very precise
method to gauge the repeller. We found estimates for the
Hausdorff dimension dH with a relative accuracy of 10−4.
Although the algorithm is based on strong assumptions, it
works over a wider range of the configuration parameter d /R
than existing methods.

In Sec. III, we have discussed the methods of semiclassi-
cal quantization. We have applied the method of cycle ex-
pansion to the four-sphere billiard. Furthermore, the method
of symmetry decomposition was demonstrated for the
Gutzwiller-Voros zeta function of the system.

We have given results in Sec. V. We have provided tests
of the fractal Weyl law for various configurations of the sys-
tem. Although we have found the counting functions N�k� to
deviate from power functions, we could confirm the fractal
Weyl law for the A1 resonances of the four-sphere scattering
within a small error range. For those spectra we did not find
a convincing agreement of calculated level numbers N�k�
with the prediction N�k��k1+dH for, there is hope that larger
spectra would lead to the expected exponent. We also assume
that the deviations from pure power laws are due to the fact
that the energy range under consideration is too small.

As an outlook, the physical origin of the modulations in
the counting functions N�k� will have to be investigated.
Moreover, it is desirable to study further three-dimensional
scattering systems to find out to what extent the results found
for the four-sphere billiard carry over and are generic.
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