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The backward jump modification of the continuous-time random walk model or the version of the model
driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share
price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical
share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was
validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical
counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward
correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce
phenomenon where backward price jump has the same or almost the same length as preceding jump. We
suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although
assumptions of the model were inspired by the market high-frequency empirical data, its potential applications
extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of
contrariness.
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I. INTRODUCTION

The negative feedback is encountered both in nature and
in socioeconomical systems as a counteraction against some
exogenous factors, which aim at restoring of the initial con-
ditions of these systems. This effect is well defined for sys-
tems in equilibrium or, approximately, in partial equilibrium
by the commonly known Le Chatelier-Braun principle of
contrariness. The most prominent example of this principle
in finance could be the elimination of an arbitrage opportu-
nity that appeared on a market. Moreover, the backward
correlation1 in consecutive jumps of a tagged particle sub-
jecting a random walk within the fluctuating environment,
observed even in systems far from equilibrium and on a short
time scale, may be viewed as certain example of an exten-
sion of this principle.

Nearly three decades ago, the backward correlation was
considered �1–4� �and references therein�. This correlation
leads to reduction of the tracer diffusion. For example, it is
operative for metals for vanishing vacancy concentration �5�
and in solid electrolytes �6� as well as it causes reduction of
the hydrogen self-diffusion in transition metals where con-
centrations of vacancies can be arbitrary �2�. Furthermore, a
phonon-associated tunneling forming a polaron could be an-
other interesting example of this correlation �5,7�. Recently,
the problem of backward correlation came back in a quite
different, financial context �8–12� �and references therein�.

The backward correlation occurs over two consecutive
jumps of a tagged particle. This is because certainly, this
particle leaves a vacancy behind when making a jump.
Hence, there is an increased tendency for the tagged particle

to make a backward jump. This tendency becomes weaker
with lapse of time �2�. The backward correlation is time de-
pendent because the vacancy can also be filled by other
jumping particles of the neighborhood. In order to describe
dynamics of this process in a lattice gas, the properly suited
spatiotemporal waiting-time distributions �WTDs� were
found �2� in the frame of the renewal theory. These WTDs
enabled extension of formalism of the canonical continuous-
time random walk �CTRW� in such a way that the time-
dependent backward correlation became its dominant fea-
ture.

The canonical CTRW formalism was originally intro-
duced by physicists, Montroll and Weiss, in 1965 �13� as a
way to render time continuous in the classical random walk.
Almost one decade later, Tunaley �14,15� extended this for-
malism by incorporating distinct WTD for the first jump. The
CTRW model can be considered as an example of renewal
stochastic processes �16� �and references therein�, where
time intervals between jumps or holding time intervals are
random variables characterized by any �and not only Pois-
son� distribution. Then, also mathematicians developed a re-
lated theory of Markov renewal processes or semi-Markov
chains �17� as well as hidden semi-Markov models �17�. No-
ticeably, the hidden semi-Markov models were applied in
many fields ranging from biology through telecommunica-
tion to finance �18–29� including econometrics �30� and eco-
nomics �31�, and even to speech recognition �32�.

The CTRW found innumerable applications in many other
fields, still growing, such as the aging of glasses �33,34�, a
nearly constant dielectric loss response in structurally disor-
dered ionic conductors �35� as well as in modeling of hydro-
logical problems �36,37� and earthquakes �38�. Since CTRW
was first successfully applied by Scher and Lax in 1973
�39–44� �and references therein� and independently by
Moore one year later �45� to describe anomalous transient
photocurrent in an amorphous glassy material manifesting
the power-law relaxation, this formalism has achieved much
more than its original goal.
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1The backward correlation is also called anticorrelation or nega-

tive correlation. In this article the names correlation and autocor-
relation are used as synonyms.
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In financial high-frequency or tick-by-tick time series of a
single share price, the backward correlation between its con-
secutive jumps has been commonly observed for a long time
�29� �and references therein� while correlations over three
and more consecutive jumps have, in practice, been absent
there. The strong mutual dependence between consecutive
jumps of a share price has been observed on financial mar-
kets in contrast to its weak statistical dependence on time
intervals between consecutive trades.

Importantly, this strong dependence originating in the
market microstructure can deeper be understood by analysis
of the order book. The order book �46,47� is a deterministic
system developed to organize the double auction market
�48,49�. This book contains different kinds of buy and sell
orders �50�. The most prominent feature of this auction is the
so-called bid-ask spread �29�. This spread is a positive and
decisive difference between the lowest available sale offer
�ask� price that sellers are willing to accept and the highest
purchase �bid� price of an asset that buyers are willing to pay.
The existence of the bid-ask spread and intraday dynamics of
transaction prices in markets with a moderate liquidity, as is
apparently the case of emerging markets �e.g., the Polish
market�, leads to the phenomenon called bid-ask bounce
�29,51�. The presence of this bounce results in a strong anti-
correlation of successive price changes.

The present work is inspired by the Montero-Masoliver
�8� and our �11� recent versions of the CTRW model devel-
oped in the context of financial markets as well as by the
Haus-Kehr �1� and Kehr-Kutner-Binder �2–4� papers. Fur-
thermore, the present article remains under the influence of
the canonical model of Roll �29,51� considering the time
independent anticorrelation induced by the static bid-ask
spread. Herein, we consider the fluctuating intertransaction
time intervals in contrast to constant ones assumed in the
Roll model. Although this fluctuation introduces a nonsyn-
chronous trading �29� �and references therein�, which can
induce erroneous negative correlations between returns for a
single stock proportional to square of the mean value of re-
turns, this trading is in practice absent here as high-frequency
empirical data give approximately a vanishing mean value of
returns.

The principal aim of the present article is to describe sto-
chastic evolution of a typical share price on a financial mar-
ket with a moderate liquidity, on a high-frequency time scale.
This evolution is a short-term anticorrelated stochastic pro-
cess, which we describe in the frame of the backward jump
CTRW model. The model was mainly validated by satisfac-
tory agreement of our theoretical velocity autocorrelation
function �VAF� with its empirical counterpart obtained for
the continuous quotation or tick-by-tick data.

The paper is organized, as follows. In Sec. II, we discuss
possible origin of the observed correlation and postulate an
ansatz, which reflects the main feature of the empirical cor-
relation. In Sec. III, our version of the CTRW model, based
on the postulated ansatz or driven by the sharp anticorrela-
tion, is developed. We obtained there a general analytical and
closed formula in the Laplace domain for �i� different soft
and sharp stochastic propagators and useful, related quanti-
ties �ii� the mean-square displacement, and �iii� the velocity
autocorrelation function �VAF�. The explicit time depen-

dences of different VAFs were obtained in a closed form in
Sec. IV by the inverse Laplace transform of the particular
forms of the waiting-time distribution, namely, single expo-
nential and double exponential functions. In this Section our
theoretical VAF was also compared with empirical VAF. In
Sec. V, our main results and conclusions were shortly sum-
marized.

II. MOTIVATION AND INITIAL HYPOTHESES

The basis for the present considerations arises from the
public domain tick-by-tick empirical data for emerging, Pol-
ish market �52�. As an initial step, we consider an empirical
histogram of the static part of the joint probability density,
h�rn ,rn−1�, of two consecutive share price jumps, rn−1 and rn.
This histogram is presented in Fig. 1�a�, for instance, for the
PEKAO bank, which is the biggest private bank of the Polish
origin operating on our domestic market. The accuracy of the
empirical data as well as the histogram grid is �=0.1 PLN,
which is larger than the tick size. The acronym PLN means
the Polish Nominal or Polish New Złoty �Polish currency�.
This grid corresponds to the linear size of small squares seen
in Fig. 1. This square size is not smaller than the share price
currency unit.

Obviously, the empirical density h�rn ,rn−1� mainly con-
sists of the following components.

�i� The central cross defined by points �rn−1 ,0� and �0,rn�
confirming well established observation that at least one of
the successive transactions can occur without share price
change.

�ii� Points �rn−1 , rn=−rn−1��� belonging to the antidi-
agonal, which approximately defines the term proportional to
the Dirac delta ��rn−1+rn�. That is, direction of the jump of a
share price is opposite to that of the preceding jump but
length of both jumps is approximately the same because � is
small. Such a dependence between two successive price
jumps we call a sharp backward correlation. A similar histo-
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FIG. 1. Comparison of �a� empirical and �b� theoretical 2D
shadow histograms, where larger joint probability is visualized by
more intense grayness. The gray scale codes the decimal logarithms
of probabilities. These probabilities are shifted by small number
10−5 to avoid singularity supplied by log0. The empirical histogram
was obtained from empirical time series, for instance, for the PE-
KAO bank. The theoretical histogram is based on expression �1�,
where the single-variable distribution h�rn� is, however, empirical.
The weight �=0.198 was obtained from the fit of expression �1� to
the whole empirical histogram. Details of this fit were given in Sec.
IV D.
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gram for returns does not show such a sharp antidiagonal
shape—it is much more diffused.

The first observation �i� is, indeed, a consequence of ap-
pearing of transactions without any share price change, i.e.,
the existence of the nonvanishing joint probability density of
two successive price jumps where at least one of them is
vanishing. This nonvanishing probability density would exist
even if successive jumps were statistically independent.

The second observation �ii� can remind the Le Chatelier-
Braun principle or, more precisely, the result of the bid-ask
bounce. This phenomenon gives the bouncing of the transac-
tion price from the lower to upper border of the bid-ask
spread and back, repeating it many times; this phenomenon
is also fluctuating with time. Such a behavior results in the
increased, with respect to the case of independent successive
jumps, the joint probability of two successive jumps of op-
posite signs but equal or almost equal length. This trading
mechanism is hidden behind observation �ii� and considered
in details in Sec. II A.

A. Assumptions of the bid-ask bounce mechanism

Let us assume that, initially, our order book of the finan-
cial market with moderate liquidity contains a set of different
offers, shown by the snapshot picture in Fig. 2�a�. Suppose
that the last transaction price, marked by the tick, equals,
e.g., 100 currency units. We consider, for example, that a buy

market offer for three stocks was realized2 and the price
raised to 106 currency units. Hence, the upper border of the
bid-ask spread increased to 107 currency units, as it was
shown by the snapshot plot in Fig. 2�b�, while the price of
the highest buy offer still equals 99 charge units remaining
unchanged. The next offer can be of the following type.

�a� A completed buy offer, that is either the market offer
or the offer with the price limit, which is equal to the higher
bid-ask spread border or placed above it. Note that sell offers
with the limit higher than the last transaction price equal to
106 currency units �cf. Fig. 2�b�� were already present in the
order book. Hence, we can approximately assume that the
jump of the current transaction price �i.e., the forward jump�
is independent of the preceding jump.

�b� An internal buy offer, which is that with the price limit
within the bid-ask spread. This offer cannot be instantly re-
alized; its possible realization is delayed. The offer shrinks
bid-ask spread by shifting its lower border to the right, leav-
ing the last transaction price, i.e., 106 currency units, inside
the new bid-ask spread. This means that the next transaction
price will be the result of completion either the internal buy
offer or the one from sell offers waiting for realization and
placed to the right of the last transaction price. Hence, next
transaction price jump can occur to the left or to the right
relative to this last transaction price, with approximately
equal probability. Therefore, we can assume that, here, there
is no correlation between the next and the previous transac-
tion price jumps. Note that we deal here with a distribution
of current jumps.

�c� A completed sell offer, that is either the market offer or
the one with the price limit, which is equal to the lower
bid-ask spread border or placed below it. Even if the sell
offer is very small having, for example, the lowest nonvan-
ishing volume that equals a single stock, the transition will
take place and the price will locate in the vicinity of the
lower bid-ask spread border, which is here 99 currency units
�cf. Fig. 2�c��. Longer price jumps, i.e., jumps corresponding
to much lower share price, are much less probable as small
market offers are more frequent. In this case we can assume
that both preceding and current transaction price jumps have
approximately the same length but opposite directions, i.e.,
they are sharply backward correlated.

�d� An internal sell offer, which is that with the price limit
within the bid-ask spread. This offer also cannot be instantly
realized, which leads to a fluctuating shrinkage of the bid-ask
spread by shifting its upper border to the left. Right now, the
last transaction price, i.e., 106 currency units, remains above
the upper border of a new bid-ask spread. The next transac-
tion price will result from completion of either the internal
sell offer or that chosen from already present buy offers. For
both cases, next price jump is directed to the left. In the
former case, we can treat it as approximately independent of
the preceding price jump, in analogy to the �a�. In the latter
case, the transaction price returns to the vicinity of the lower
border of the bid-ask spread, as in �c�. Moreover, we can

2By market offer it is simply understood an offer without any
price limit, i.e., the sell offer with 0-limit and the buy offer with an
�-limit.

FIG. 2. The schematic view of two sides of the order book
divided by the bid-ask spread, marked by the shadowed region,
shown in three successive snapshot pictures �a�, �b�, and �c�. By
means of a typical example, these plots illustrate how the bid-ask
bounce, visualized by the position of the tick, is working. Filled
circles placed on bars above the abscissa denote the total volume of
the sell offers at that price level. If this volume is larger then the bar
is longer. The analogous offers below the abscissa denote the
complementary buy offers.
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postulate in this case that previous and next transaction price
jumps have approximately the same lengths but opposite di-
rections, which results in sharp backward correlation.

�e� Remaining offers can be ignored in this analysis be-
cause at a given moment they do not participate in the dy-
namics. If such an offer occurred, we would have to wait for
another one.

The above sequence of steps is continuously repeated.
This sequence constitutes the bid-ask bounce mechanism. In
our model, we assume that situations leading to independent
jumps of the transaction price appear with probability equal
to 1−�, where 0���1, while situations leading to sharp
backward correlation appear with complementary probability
of �.

We can add that assumptions introduced above are inde-
pendent of how large is the initial jump of the transaction
price, which in our example increases the price from 100 to
106 currency units. It is sufficient that this jump is greater
than the smallest admissible share price change. An interest-
ing observation is that the significant change of the transac-
tion price can be restored or almost restored even by a trans-
action of a small volume. Such a transaction leads to the
reverse price jump of the same or approximately the same
length as the initial jump of the transaction price. The large
volume transaction can be considered as a large fluctuation
or the one exerted by an external force driving the system out
of the equilibrium or partial equilibrium.

The analogous trading mechanism applies to the reverse
sequence of the share price changes. In fact, the aim of the
successive sections is a quantitative description of the bid-
ask bounce mechanism. Thus, we selected events which con-
stitute the basis for the analytical preparation of the condi-
tional probability density h�rn �rn−1� in Sec. II B.

B. Basic relation

Being influenced by the explanation given in Sec. II A
and inspired by empirical data shown in Fig. 1�a�, we pro-
pose the conditional probability density h�rn �rn−1� of two
consecutive share price jumps rn−1 and rn in the form, which
favors the sharp backward correlation

h�rn�rn−1� = �1 − ��h�rn� + ���rn + rn−1� . �1�

Here, distribution h�rn� is an �-independent, symmetric func-
tion, which means that no drift is considered in this work,
and degree of correlation 0���1 is a constant weight. The
above defined conditional probability density consists of two
terms. The first term appears with weight 1−�. This term
says that a new jump of the share price is drawn from the
distribution h�rn�, i.e., without any dependence on the previ-
ous jump. The second term, appearing with probability �,
describes the price returns to its previous value or sharply
backward correlated successive price jumps.

The conditional probability density given by expression
�1� seems to be better suites to describe our empirical data
than the corresponding one

h�rn�rn−1� = h�rn� − �h�rn�sgn�rn�sgn�rn−1�, ��� � 1 �2�

proposed by Montero-Masoliver �8�. This better suiting is
due to the presence in it of the second, �-Dirac term favoring

a sharp backward correlation in consecutive jumps of a price,
cf. the empirical histogram shown in Fig. 1�a� which clearly
shows the antidiagonal line.

For weight ��0 both expressions can coincide only
within the two-state distribution defined by the probability
density h�x�= ���x−c�+��x+c�� /2, where constant c means,
e.g., a single-tick movement. This probability density is a
particular case of Eq. �4� in �8� for weight Q=0. For �=0,
both conditional probability densities given by expressions
�1� and �2� become unconditional and identical, as it should
be.

The conditional probability density �Eq. �1�� obeys self-
consistency constraint

h�rn� = �
−�

�

h�rn�rn−1�h�rn−1�drn−1,

h�rn−1� = �
−�

�

h�rn�rn−1�h�rn−1�drn, �3�

cf �8�. for details. Indeed, expression �1� is implemented in
Sec. III into the backward jump version of the CTRW model.

III. BACKWARD JUMP VERSION OF CTRW

Let us consider a single realization or trajectory of a jump
process as an intraday high-frequency time series. We have
to deal with the stochastic process of the share price where
each step consists of the waiting time tn prior to the jump of
price rn. Note that transactions with no price change are also
permitted. We can quantify a single trajectory by using its
turning points �t1 ,r1 ; t2 ,r2 ; . . . ; tn ,rn� and define the process
by using the conditional probability density
��rn , tn �rn−1 , tn−1 ;rn−2 , tn−2 ; . . . ;r2 , t2 ;r1 , t1�. This probability
density says that the price jump rn occurring exactly at the
end of the waiting time tn is conditioned by the whole history
�t1 ,r1 ; t2 ,r2 ; . . . ; tn−1 ,rn−1�. Next, we make a self-restrain.

�1� In one, we introduce simplification, which reduces the
memory only to one step back, i.e., approximation �4�

��rn,tn�rn−1,tn−1;rn−2,tn−2; . . . ;r2,t2;r1,t1�

� ��rn,tn�rn−1� � h�rn�rn−1���tn� , �4�

is already sufficient for the analysis. Approximation �4� or
the factorization was tacitly used in Sec. II. This factoriza-
tion enables to consider two empirical variograms: �i� one
consisting of the share price jumps and �ii� the other of in-
tertransaction times, as mutually independent. Indeed, distri-
bution ��tn� is the waiting-time distribution �WTD�, which
concerns only the temporal part of the overall spatiotemporal
WTD, ��rn , tn �rn−1�.

�2� In the other, we assume that the stationary initial situ-
ation makes possible to neglect some daily pattern of inves-
tors’ activity, e.g., the influence of the so-called lunch effect,
remaining the crucial antidiagonal line present in histograms
�shown in Fig. 1� still sufficiently sharp. Unfortunately, only
crude methods of elimination of this effect are known up to
now �see, for example �53��.

The aim of this section is to derive the conditional prob-
ability density, P�X , t �	�, to find share price value X at time t,
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at condition that the share price initial value was assumed as
the origin reached by the share price preinitial jump 	. Fur-
ther in the text we call this probability the soft stochastic
propagator, in contrast to the sharp one, which we define
below. Note that t denotes here the clock or current time and
not the waiting or pausing time. The derivation consists of
few steps described in the following sections.

A. Stochastic propagators

The intermediate dynamic quantity describing the sto-
chastic process is the stochastic, sharp, n-step propagator
Qn�X ,rn ; t �	�, n=1,2 , . . .. This propagator is defined as the
conditional probability density that the share price, which
had initially �at t=0� the original value �X=0� reached by
preinitial jump 	, makes its nth jump by rn from X−rn to X
exactly at time t. The recursion relation between two succes-
sive sharp stochastic propagators can be written for any form
of h�rn �rn−1�, as follows:

Qn�X,rn;t�	� = �
0

t

dt���t���
−�

�

drn−1h�rn�rn−1�


Qn−1�X − rn,rn−1;t − t��	� , �5�

where all spatial variables X, rn, rn−1, and 	 are continuous.
Equation �5� relates successive sharp propagators by the spa-
tiotempotral convolution. As the first jump must be treated
differently, this equation is valid only for n�3. Equation �5�
is the fundamental relation used in the backward jump ver-
sion of the CTRW model. As the space variables in Eq. �5�
are continuous, this version is more general than the back-
ward jump models developed only for regular lattices �1–4�.

By substituting the concrete form of h�rn �rn−1�, given by
expression �1�, into Eq. �5� and by performing the Fourier-
Laplace transform, we obtain

Q̃n�k,rn;s�	� = �̃�s�eikrn�
−�

�

drn−1��1 − ��h�rn�

+ ���rn + rn−1��Q̃n−1�k,rn−1;s�	� , �6�

where Õ means the Fourier, Laplace, or Fourier-Laplace
transform of O.

Our practical aim is to obtain from Eq. �6� the summa-
rized, indispensable for further considerations, stochastic,
sharp n-step propagator

Q̃n�k;s�	� = �
−�

�

drnQ̃n�k,rn;s�	� . �7�

Therefore, from Eq. �6� we derive the recursion equation in
the algebraic form

Q̃n�k,s�	� = �1 − ��h̃�k��̃�s�Q̃n−1�k,s�	� + ��̃�s�2Q̃n−2�k,s�	�
�8�

valid for n�3. The summation of the recursion Eq. �8� over
n from 1 to infinity yields, after simple algebraic manipula-
tions,

Q̃�k,s�	� =
Q̃2�k,s�	� + Q̃1�k,s�	��1 − h̃�k��1 − ���̃�s��

1 − �1 − ��h̃�k��̃�s� − ��̃�s�2
,

�9�

depending on the unknown one- and two-step sharp propa-

gator Q̃1�k ,s �	� and Q̃2�k ,s �	�, respectively. Here, the sum-
marized sharp propagator is defined as

Q̃�k,s�	� = �
n=1

�

Q̃n�k,s�	� . �10�

The illustration of the derivation of the one- and two-step
stochastic sharp propagators is shown in Figs. 3�a� and 3�b�.
Note that we cannot use the same waiting-time distribution
for the first jump as for other jumps. This is because the
previous �preinitial� jump might occur at any time before t
=0. In the stationary state, which we consider here, the time
origin can be chosen arbitrarily. Otherwise, the time homo-
geneity of the process would be destroyed. Therefore, we can
average over all possible time intervals of the preinitial
jump, i.e., over all time differences t� between time origin
t=0 and the time of the last transaction. Hence and following
Eqs. �3.3� and �3.4� shown in �4�, we assume that

�1�t� =

�
0

�

dt���t + t��

�
0

�

dt��
0

�

dt���t� + t��
⇔ �̃1�s� =

1

	t

1 − �̃�s�

s
,

�11�

where expected �mean� waiting-time 	t
=�0
�t��t�dt��. The

denominator in the first equation in Eq. �11� is required for
normalization. The only case when �1�t�=��t� is an expo-
nential waiting-time distribution of a Poisson process. Gen-
erally, the choice of �1�t� decisively depends on the type of
the considered problem �4,10,53,54�, namely, on whether a
random walk has stationary or nonstationary character. Be-
sides, �1�t� can be arbitrary chosen.

FIG. 3. The illustration of derivation of �a� the one-step stochas-
tic sharp propagator and �b� the two-step propagator. For both cases,
the characteristic sequences of basic probabilities �marked by
braces� were visualized. Moreover, the preinitial jump 	 was
marked �together with other jumps of prices� by vertical bars having
small filled circles on the top.
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For arbitrary conditional probability distribution
h�rn �rn−1� we can write

Q1�X,t�	� = �1�t�h�X�	�

and

Q2�X,t�	� = �
0

t

dt1�1�t1���t − t1��
−�

�

dr1h�r1�	�h�X − r1�r1� .

�12�

By writing above equations in the Fourier-Laplace domain
and substituting an explicit form �Eq. �1�� of distribution
h�r1 �	�, we obtain the searched one- and two-step propaga-
tors. Substituting these propagators into Eq. �9� we have

Q̃�k,s�	� = �̃1�s�
�1 − ��h̃�k� + ��eik�−	� + �̃�s��

1 − �1 − ��h̃�k��̃�s� − ��̃�s�2
, �13�

as an important successive intermediate step.

B. Soft stochastic propagator, its variance, and the velocity
autocorrelation function

In order to find an unconditional stochastic propagator

Q̃�k ;s� we take the following average over the pre-initial
jump vector 	,

Q̃�k;s� = �
−�

�

d	 Q̃�k,s�	�h�	�

= �̃1�s�
h̃�k� + ��̃�s�

1 − �1 − ��h̃�k��̃�s� − ��̃�s�2
. �14�

Equation �14� only slightly differs from the corresponding
expression �4.18� derived in �4� by different way, as the vari-
able 	 is a continuous one. The present approach uses more
fundamental parent Eq. �5� than the corresponding Eq. �4.15�
in �4�.

Finally, we obtain the soft stochastic propagator in the
form of the superposition of two essentially different terms

P̃�k,s� = ̃1�s� + ̃�s�Q̃�k;s� , �15�

where sojourn probabilities �in time and Laplace domains�
are defined by the corresponding waiting-time distributions

�t� = �
t

�

����d� ⇔ ̃�s� =
1 − �̃�s�

s

and

1�t� = �
t

�

�1���d� ⇔ ̃1�s� =
1 − �̃1�s�

s
. �16�

The first term in expression �15�, which we can call the pas-
sive one, describes no jumps of the share price for t�0,
including only the information concerning the initial state of
the process. The second term describes any nonvanishing
number of jumps; we can call it the active term.

Substituting expressions �14� and �16� into Eq. �15� we
obtain

P̃�k,s� =
1

s
−

1

	t
s2

�1 − �̃�s���1 − ��̃�s���1 − h̃�k��

1 − �1 − ��h̃�k��̃�s� − ��̃�s�2
. �17�

For �→0, Eq. �17� corresponds to Eq. �3.18� in �4� where
both backward and forward correlations are absent; this latter
equation concerns the nonseparable CTRW.

Now, we are ready to calculate the variance of the soft
propagator in the Laplace domain

	X̃2
�s� = −� �2P̃�k,s�
�k2 �

k=0
=

�2

s2	t

1 − ��̃�s�

1 + ��̃�s�
,

where

�2 = �
−�

�

dxx2h�x� . �18�

The Laplace transform of the VAF and VAF itself are given
by

C̃�s� =
s2

2
	X̃2
�s� =

�2

2	t

1 − ��̃�s�

1 + ��̃�s�
⇔ C�t�

=
�2

2	t

��t� − �

�2

	t

Lt

−1 �̃�s�

1 + ��̃�s�
� , �19�

where Lt
−1� . . . � is an inverse Laplace transform to the time

domain. The second equation in Eq. �19� is the main formula
of the present work similar to the corresponding one derived
in our early paper �2�. However, in this paper we restricted
our approach only to the random walk of a tagged particle on
a regular lattice. Moreover, it is straightforward to obtain
from VAF the related useful quantities, such as the power
spectrum and the frequency-dependent diffusion coefficient.
Hence, Eq. �19� can particularly be useful to study a wide
spectrum of random walks. Obviously, in order to derive
explicit form of VAF, the explicit form of WTD is necessary.

IV. COMPARISON WITH TYPICAL FINANCIAL
DATA

In this section we consider VAF normalized in the time
domain

Cn�t� = ��t� − 2�Lt
−1 �̃�s�

1 + ��̃�s�
� . �20�

The upper index n means that the quantity is normalized to
the Dirac � value at t=0. Particularly useful here is expres-
sion �20� for the normalized VAF, although more popular in
literature is an approximate approach where, instead of VAF,
autocorrelations of price changes are calculated at a fixed
small time step. Fortunately, both quantities are equal, with
good approximation, after the normalization.

The expressions corresponding to Eq. �20� were derived
in �11� by assuming the Montero-Masoliver form of the con-
ditional distribution h�rn �rn−1� defined by expression �2�,
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CMM
n �t� = ��t� − 2�

�1
2

�2
Lt

−1 �̃�s�

1 + ��̃�s�
� ,

where

�1 = �
−�

�

dx�x�h�x� . �21�

The generic useful property of expression �20� is that nor-
malized VAF does not depend on the single-variable distri-
bution of jump lengths. This VAF is only scaled by factor 2�,
which for t�0 measures the strength of the correlation of
two successive price jumps. Hence, the formal difference
between our expression �20� and that of Montero-Masoliver
�Eq. �21�� is given by the scaling factor �1

2 /�2, which de-
pends on the ratio of the corresponding moments of the
single-variable distribution. In both cases, however, the time
dependence of VAF is fully determined only by the waiting-
time distribution and �. In case of two-state model mentioned
in Sec. II B, we have �1

2=�2=c2 and both formulas �20� and
�21� become identical, as expected.

It is illustrative to consider two simple cases of VAF by
using two different forms of the waiting-time distribution,
which makes possible to perform the inverse Laplace trans-
formation Lt

−1 to analytic, closed expressions.

A. Single exponential waiting-time distribution

As a simple reference example, we provide WTD of a
Poisson process,

��t� =
1

	t

e−t/	t
 ⇔ �̃�s� =

1

	t
s + 1
. �22�

With the use of expression �22�, the normalized autocor-
relation function corresponding to expression �20� takes the
following form:

Cn�t� = ��t� −
2�

	t

e−�1+��t/	t
. �23�

To perform numerical calculations, the value of the mean
waiting time 	t
 is required as the weight � was calculated
separately. However, the Montero-Masoliver model addition-
ally requires, according to expression �21�, the knowledge of
the ratio of the moments �1

2 /�2.

B. Waiting-time distribution given by sum of two exponentials

A more realistic form of the waiting-time distribution
seems to be a superposition �weighted sum� of two exponen-
tials

��t� =
w

�1
e−t/�1 +

1 − w

�2
e−t/�2 ⇔ �̃�s� =

w

1 + s�1
+

1 − w

1 + s�2
,

�24�

where 0�w�1 is the weight while �1 and �2 are the corre-
sponding �partial� relaxation times. This form of WTD leads
to

Cn�t� = ��t� − 2��A1e−�1t + A2e−�2t� , �25�

where

�1,2 =
1

2
��1 + �2 + �� � ���1 + �2 + ���2 − 4�1�2�1 + ��� ,

Aj = �− 1� j�1�2
1 − �1�

�1 − �2
,

� j = 1/� j, j = 1,2, �26�

where �=w�1+ �1−w��2 while coefficients Aj play the role
of the un-normalized weights. As it is seen, the formulas for
partial relaxation times 1 /�1 and 1 /�2 essentially differ from
the corresponding times �1 and �2.

C. Numerical algorithm for calculation of VAF

Direct calculation of the velocity autocorrelation function
for the tick-by-tick data is a bit more complicated than analo-
gous calculation for the discretized �by a fixed time-step�
empirical time series. We are not using any method of de-
trending the empirical data or removing daily activity pattern
to protect the observed negative, sharp correlations expressed
by Eq. �1�. Despite the observed nonstationarity in the stock
price empirical data, we consider the stock price change as a
stationary process. Otherwise, we could not calculate veloc-
ity autocorrelation function by using the moving average. In
other words, we permit at most slowly varying influence of
the nonstationarity pattern on studied normalized quantities.

Our procedure of calculation a VAF is straightforward.
The empirical data �52� contain dmax days. In each day d
=1,2 , . . . ,dmax, the number of transactions nd is fluctuating.
Let us denote by rd,i the price change �jump� at ith transac-
tion at day d and by td,i the time interval directly preceding
the ith transaction at day d. The time accuracy or grid of the
data is one second. So, with such accuracy we calculate the
velocity autocorrelation function using the following moving
average

C�t� �
1

T�t� �
d=1

dmax

�
i=1

nd

�
j=1

nd

rd,ird,j�� �
k=i+1

j

td,k − t� − 	v
2,

where

T�t� = �
d=1

dmax

�
i=1

nd

td,i − tdmax

and

	v
 =
1

T�0� �
d=1

dmax

�
i=1

nd

rd,i. �27�

Here, all time intervals are fluctuating, as it is supplied by the
continuous quotation on a stock market. Hence, there is here
no possibility to create artifacts �e.g., artificial autocorrela-
tion� in contrast to the traditional approach assuming a fixed
�small� discretization time step. Obviously, it is sufficient to
divide C�t� �which is, of course, a histogram� by the factor
C�0� in order to calculate the normalized VAF, Cn�t�.
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D. Results and discussion

Our data analysis consists of three stages. Within first two
stages the parameters were calculated, which are mutually
independent. This is because they were obtained from inde-
pendent data sets. They are needed for the third, final stage.
The obtained results are systematically presented and dis-
cussed in this section.

1. Initial stage

This stage was realized in Sec. II, where
�i� the functional form of the conditional probability dis-

tribution, h�rn �rn−1�, was established together with
�ii� numerical calculation of weight �,
both supported by the same set of empirical data.
In fact, our empirical analysis is based on the public do-

main database �52� containing tick-by-tick market data since
2000–11–17 till 2009–1-31. We focused on the 20 largest
companies composing the WIG20 index of the Warsaw Stock
Exchange. This database contains sufficiently large data sets
to calculate the required estimators with acceptable accuracy
not exceeded 10%. For instance, we disposed the data set
containing 938 264 records for PEKAO.

To determine our basic parameter �, we constructed the
empirical histogram shown in Fig. 1�a� for the price jumps
counted with accuracy of �=0.1 PLN and confined to a suf-
ficiently wide range �−3 PLN, +3 PLN�. That is, the joint
distribution h�rn ,rn−1� is represented here by 61
61 matrix.
Next, we fitted to this empirical histogram our theoretical
histogram based on approximate distribution �Eq. �1��, where

�iii� the single-jump distribution, h�rn�, was determined
from the corresponding empirical single-variable histogram,
prepared also in this stage.

For completeness, we calculated here
�iv� the factor �1

2 /�2=0.228, which is required by the
Montero-Masoliver approach for their normalized VAF �Eq.
�21��.

We applied two different fitting routines to estimate the
value of �. The first one was the method of least-squares
while the second one was the Maximum Likelihood Method.
We found parameter � varying no more than about 10% for
each company, when we changed the method from one to the
other. For 20 companies, we obtained weight � between
0.169 and 0.413. For the PEKAO bank, as for the most other
companies, both methods gave to a good approximation the
same weight, here �=0.198.

We repeated the whole procedure by dividing the set of all
empirical share price changes rn−1 and rn into the positive,
negative, and vanishing value groups, still keeping the grid
accuracy at �=0.1 PLN. Thus, we prepared an empirical
distribution in the form of 3
3 sign matrix, used e.g., by
Tsay �29� and in Montero-Masoliver paper �9�, classifying
the price movements into “down,” “unchanged,” and “up”
ranges. By applying the above mentioned fitting routines we
found again the set of values of � for 20 companies which
differ only by a few percentage from the above given more
refined values. For example, for the PEKAO bank this dif-
ference was merely 4%. Therefore, we can state that the
estimation of � is stable.

2. Intermediate stage

The unknown parameters �in case of double exponential
WTD given by the first expression in Eq. �24��, namely,

�i� weight w as well as
�ii� partial relaxation time �1 and �2,
were obtained by the least-square fit of the first relation in

Eq. �24� to the empirical histogram of the intertransaction
time intervals for t� �2,100�, cf. solid curve and small black
squares in Fig. 4, respectively. Notably, the data set used here
is complementary to that used in the previous stage.

However, we used the reduced number of fit parameters
for the fit. That is, from those mentioned above we reduced
three �w ,�1 ,�2� to two ��1 ,�2� by using relation 	t
=w�1
+ �1−w��2. In this relation the mean waiting time, 	t
, was
calculated in this stage directly from empirical data as an
arithmetic average over all intertransation times, separately
for each company. For example, we obtained 	t
=55.647 s
for the PEKAO bank considered here. Noticeably, very simi-
lar values of mean waiting-time intervals were found by
Montero et al. �9� for several companies quoted on NYSE
for the period of 1995–1998. From the fit, we obtained also
partial relaxation times, �1=9.017 s and �2=93.148 s, and
derived weight, w=0.446.

As it is seen in Fig. 4, WTD given by the first expression
in Eq. �24� �solid curve� much better fits to the empirical data
�small squares� than that given by the first expression in Eq.
�22� �dashed curve�. WTD given by this latter expression has
no free parameters as 	t
 was already calculated indepen-
dently and it is common for all WTD considered here.

However, the double exponential form of WTD is still the
first approximation as for extremely short time �the order of
1 s� and the long one, i.e., longer than 	t
 �equals here
=55.647 s�, some deviation is observed in the semilogarith-
mic scale �cf. insert to Fig. 4�. Moreover, as systematic de-
viations for longer time are placed on the exponential tail,
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FIG. 4. Comparison of the empirical waiting-time distribution
�small black squares� and that theoretical �solid curve� fitted to it.
The latter is defined by two exponentials given by the first expres-
sion in Eq. �24�; the former WTD concerns, for example, the PE-
KAO bank. For completeness, the dashed curve shows the predic-
tion of WTD given by the single exponential �cf. the first expression
in Eq. �22��. Remarkably, its slope �in the semilogarithmic coordi-
nates� is �to a good approximation� the same for longer time as that
of the empirical curve; i.e., it is approximately correct only for the
long-term dynamics.
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they seem to have less meaning. Nevertheless, this result
suggests that WTD consisting of more exponentials could
better approximate the overall empirical curve. However, it
would require extensive calculations involving too many pa-
rameters.

3. Final stage

Finally, we were able to calculate values of the parameters
1 /�1=8.272 s and 1 /�2=84.619 s as well as A1=0.050 and
A2=0.005 defining normalized VAF �Eq. �25��. It was ex-
pected that the components of each pair of parameters �1,
1 /�1 and �2, 1 /�2 are of the same order of magnitude and
one pair of parameters differs from the other by one order of
magnitude. However, a quite surprising result could be that
the coefficient A2 is by one order of magnitude smaller than
the coefficient A1.

In Fig. 5, we compared predictions of our model with
empirical VAF �cf. curves and small black squares, respec-
tively�. Noticeably, as theoretical VAFs �here given by ex-
pressions �22� and �24�� have no free parameters, curves
shown in Fig. 5 are not a fit. This theoretical VAF refer to the
empirical data set, which is independent from that used
within the second stage to construct waiting-time distribu-
tion. Although the agreement between prediction of formula
�25� �solid curve� and empirical data �small black squares� is
quite satisfactory, a systematic deviation is observed. Never-
theless, this result much better reproduces the main relax-
ation phenomenon than that for the Poisson VAF �dashed
curve�. Hence, we can state that observed correlation effect
is mainly driven by the sharp backward correlation where
the current backward share price jump has the same or al-
most the same length as the preceding jump.

V. SUMMARY AND CONCLUDING REMARKS

The understanding, including the quantitative description,
of the financial markets’ evolution is a long standing chal-

lenge strongly depending on the time scale considered.
Therefore, so useful principle of the time scales separation
was tacitly used here. In the present work, in complementary
to the Montero-Masoliver one �8�, we realized an ambitious
goal to study intraday, tick-by-tick or high-frequency empiri-
cal data, i.e., to come down in our study to the resolution of
single offers.

Despite the potential importance of the high-frequency
time scale as the most significant microscopic time scale, no
model systematically accounts up to now the microstructure
of so richly fluctuating stock market with a moderate liquid-
ity, even in crude approximation. In fact, this microstructure
is defined by all offers contained in the stock market order
book, on the time scale yet as short as it is possible. By
presenting the high-frequency trading, concerning a single,
typical company on the level of its order book, we argued
that statistical dependence of two successive jumps of a
given share price is mainly of the sharp backward type.
Moreover, we argued that this is a dominating property
caused by the fluctuating bid-ask spread leading to bid-ask
bouncing.

Although the mean value of the bid-ask spread is small,
the temporary bid-ask spread can be large, constituting the
frame for the significant sharp backward correlation studied
in this article. We suggest that this backward correlation is an
universal property mainly dominating order books of stock
markets of small and even intermediate sizes.

We described the static part of the backward correlation
by the conditional probability density �Eq. �1��, which was
directly inspired by corresponding empirical data, cf. histo-
gram �a� in Fig. 1. The main dynamical part was approxi-
mately described by WTD consisting of two exponentials
�Eq. �24�� again inspired by the corresponding empirical data
�cf. Fig. 4�. Due to the use of so simple forms of expressions
�1� and �24�, we were able to apply the generic formula, Eq.
�20�, of the backward jump CTRW model by comparing their
predictions with the corresponding empirical data �cf. Fig.
5�.

Note that in the frame of the backward jump CTRW
model we derived useful formulas for

�i� sharp propagators given by expressions �13� and �14�,
and

�ii� the soft propagator given by expression �17�; this lat-
ter expression easily gives

�iii� the mean-square displacement �Eq. �18�� and hence
the velocity autocorrelation function �19�.

All tools given above can describe in detail not only the
dynamics of the share price changes but are potentially able
to describe an evolution based on more complicated negative
feedback; in this sense the dynamics has a generic character.
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