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Emergence of heterogeneous structures in chemical reaction-diffusion networks

Qi Xuan™
Department of Automation, Zhejiang University of Technology, Hangzhou 310023, China

Fang Du and Tie-Jun Wu
Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

Guanrong Chen
Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
(Received 8 June 2010; revised manuscript received 14 September 2010; published 25 October 2010)

This paper suggests that reaction-diffusion processes, rather than pure topological rules, are responsible for
the emergence of heterogeneous structures of complex chemical reaction networks. In such a network, chemi-
cal substances react in each node and diffuse between connected nodes. At the same time, each node is able to
sense the difference between its own state and the environmental conditions and can rearrange its neighbors via
a local rewiring process so as to eliminate the sensed difference. Then, the network, even originally homoge-
neous, will develop a heterogeneous structure under certain environmental conditions. Such a resultant hetero-
geneous network may be disassortative, highly clustering, and small world as well. This implies that the
reaction-diffusion equilibrium can be statistically controlled by slightly changing the structure of the underly-
ing network. This structure-control mechanism may be especially useful in the situations where some other
macroscopic measurements, such as temperature and pressure, are not allowed to be changed through the

process.
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I. INTRODUCTION

Various complex systems consist of different particles,
e.g., atoms in chemical materials [1], organisms in ecological
systems [2], people in social communities [3], documents in
computer networks [4], etc. Typically, particles of same scale
locally react with each other and diffuse in space, forming
the so-called reaction-diffusion (RD) processes [5], which
have been widely studied and used to model spatially distrib-
uted dynamics such as chemical reactions [6], population
evolution [7], epidemic or computer virus spreading [4,8],
and so on. Obviously, the results produced by RD processes,
i.e., spatial distributions of different types of particles, are
not only determined by the reaction equations but also
largely influenced by the topological structures of their un-
derlying networks in which the diffusions take place.

RD processes are usually simulated on regular lattices as
a good approximation of the Euclidean space [9,10]. Par-
ticles are randomly placed in some lattice nodes and those in
the same node react with each other. At the same time, they
diffuse to neighboring nodes simultaneously. Traditionally,
there are two types of RD processes: fermionic RD pro-
cesses, such as the diffusion-annihilation [11] and the
diffusion-coagulation [12] processes, assuming that there is a
limitation on the number of particles in each node, and
bosonic RD processes [13,14], such as the classical chemical
reactions and the epidemic spreading on metropolitan net-
works where particles represent people traveling between
different locations, allowing each node to be occupied by any
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finite number of particles. Recently, it was revealed that
many real-world biological [15], social [16], and technologi-
cal [17] systems can be described by networks or graphs and
they share a common property of having heterogeneous
structures. Various RD processes are now being studied on
heterogeneous networks, such as scale-free networks [18,19],
characterized by nontrivial power-law degree distributions. It
has been found that most RD processes on heterogeneous
networks behave totally differently from those on regular
lattices [11-14]. These research results are very interesting
and seem more realistic and suitable for explaining many
observed phenomena.

But, why are there so many real-world networks possess-
ing a similar heterogeneous structure with a power-law de-
gree distribution? Does this structural feature benefit the net-
works on their dynamics, e.g., RD processes? Although the
preferential attachment rule [18] (i.e., a newly added node
always prefers to connect to an existent node of larger de-
gree) and its expanding versions, such as hierarchical models
[20], ranking models [21], and local-world models [22,23],
can indeed explain the power-law degree distribution, such
structure-based mechanisms are unable to answer the second
question which is more essential. Colizza et al. [13] pointed
out that heterogeneous networks indeed have advantages in
producing more active particles in a susceptible-infected-
susceptible model, as further detailed by Baronchelli et al. in
[14].

In this paper, we investigate a closely related problem as
to whether or not, and how, RD processes and environmental
conditions can shape the network structure via a local rewir-
ing process. This study may provide a good explanation for
the common structural heterogeneity revealed in many real-
world networks. More importantly, as a distributed control
problem [24], it also provides a new way to dynamically
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adjust the equilibrium points of a chemical reaction process
so as to increase the conversion rate by slightly changing the
structure of the underlying network in the embedded space.
It seems especially useful for microfabrication techniques
[25,26], which are becoming more and more popular in in-
dustry today due to their enormous advantages in green en-
vironmental protection, energy conservation, waste reduc-
tion, and security operation.

The rest of the paper is organized as follows. In Sec. II,
some theoretical analysis is reviewed for a special bosonic
RD process on a network. In Sec. III, a framework of struc-
ture control is proposed and the corresponding numerical
mechanism of an adaptive network is introduced. The struc-
ture of the network in different stages is carefully investi-
gated in Sec. IV, and the RD results are analyzed in Sec. V.
The work is finally summarized in Sec. VI.

II. THEORETICAL BACKGROUND

In order to investigate the effects of a typical chemical
reaction process and its environmental conditions on the un-
derlying network structure, we adopt a simple model with
only two types of particles, which has been studied in both
physics and mathematical epidemiology [13]. The process is
composed of the following two reactions:

B— a, (1)
a+B—2B. ()

From these reaction equations, one can see that the total
number of particles does not change in the process. Here, 8
particles are identified as active particles because « particles
cannot spontaneously generate 3 particles. Denoting the re-
action rates of Egs. (1) and (2) by u, and u, and the current
numbers of « and S particles in node i by n, (1) and ng (1),
respectively, each time, after reaction, the numbers of a and
B particles in node i change to

Mai(t) =ng (1) + ping (1) — uol'i(1), (3)

fig (1) = (1 = wng (1) + wol'i(1), 4)

where the reaction kernel I',(r) takes the form of I',(r)
=n, (t)ng,(t). Each time, in diffusion process, a number of
particles jump out of node i to its neighbors, at the same
time, another group of particles jump into node i from its
neighbors, denoting the diffusion rates of two types of par-
ticles by 7, and 7, respectively, then, after RD process, the
total numbers of particles in node i can be statistically recal-
culated by

()

M1+ 1) = (1= )iy (0 + 7, 2 "5, (5)
/E7T ]

nai+ )= =0+ 7, S B (g
JET; ]

where a7; is the neighboring set of node i. From Egs. (3)—(6),
it can be easily concluded that the dynamical RD equations
in each node i can be represented by
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where the time indices ¢ are dropped for convenience and 7,
7gs M1, and w, are all constants. Supposing 7,=7g=7 and
denoting the number of total particles in node i by n;=n,;
+ng;, after summing Eqs. (7) and (8), one has

E"](E% n) )

jem j

Denoting ¢;=n;/k;, Eq. (9) becomes

-——n(E ¢, - k¢,) (10)

ot jem

Assume that the RD process takes place on a connected
network with totally V nodes, defined by an adjacency matrix
A with element a;; equal to 1 if nodes i and j are connected
and 0 otherwise. Then, Eq. (10) can be further simplified to a
matrix form,

¢

Jat

where ¢=[d,,d,,...,¢,]", K=diag(k,,k,,...,ky,), and L
=A-K is the well-known Laplacian matrix. Equation (11)
has a steady solution ¢=[c,c,...,c]” under the condition
Evln E _ kipi=cV{k)=N, where N= 2_,n is the total
number of particles on the network. Denoting p=N/V, one
has ¢=p/({k), so that the steady solution of Eq. (9) can be
obtained as

KL, (11)

ki
n;=-—-——-p.
(k)

This result is consistent with the solution derived by the
mean-field theory [13,14,27] when considering only the dif-
fusion process of a single type of bosonic particles on a
network, which means that a node of larger degree always
attracts more particles to pass through it.

Suppose there are V, nodes possessing degree k in the
network and denoting by N, and Ng, the numbers of a and
B particles, respectively, in these nodes. Then, the quantities

(12)

N, N

Pa,k=7];k, Pﬁ,k=_‘% (13)
represent the average numbers of « and [ particles, respec-
tively, in each node of degree k, denoting by P(k) the degree
distribution of the network. Then, by the mean-field theory
and under the assumption of no degree correlation between
linked nodes [13], Egs. (7) and (8) become
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9Pa,
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with pa/:EkP(k)pa,k? pB=EkP(k)szk’ and Q=Ekp(k)9k,
where the reaction kernel now takes the form of (),
=PaiPp k-

Let 7,=7=1 throughout the paper. Equations (14) and
(15) have simple steady solutions,

ko k 06
pa,k_ <k>pa’ pB,k_ <k>pﬂ’
with
pa=p-"20, py=E0. (17)
My M1

From Egs. (16) and (17) and the definition of ), one can get
the average densities of « and S particles, respectively, on
the network

_m k)’ (k)

Pa= s Pp=p— s
po 2y P o (k%)

when the dynamics is statistically steady. In Eq. (18), one
can see that the steady-state density of S particles on the
network is indeed not only determined by the reaction pa-
rameters, such as p, w;, and w,, but also influenced by a
degree-related structural property of the network, (k)%/(k%),
the value of which is typically used to define the heteroge-
neity of a network, i.e.,

(18)

2
H:%. (19)

III. MECHANISM

Now, we propose a feedback framework to study the
emergence of the heterogeneous structure when each node in
the network has the ability to sense the environment and to
rearrange its neighbors.

In many cases, nodes in a network are considered as dif-
ferent kinds of agents [28,29], which can rearrange their as-
sociates in a planed or random way in order to increase their
advantages in natural or social competitions. For RD pro-
cesses, such advantages may be reflected by certain ratios of
particles in the nodes, e.g., ng,/n;. Motivated by these obser-
vations, we propose a feedback framework as shown in Fig.
1. Intuitively, different external conditions may lead to adap-
tive networks of different topological structures. In this pa-
per, specially, the network dynamics are performed by the
following five steps:
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FIG. 1. (Color online) The RD-driven adaptive network. Here,
only the bosonic RD process is considered. « and S particles dif-
fuse on the network but inside each node they react with each other.
Each node can sense the environment, and once the ratio of « or 8
in a node does not meet the external natural or artificial conditions
or requirements, the node undergoes a rewiring process, and thus
the network evolves adaptively as the external conditions change.

(1) Initialization. To start, numbers N,(0) of « particles
and Ng(0) of B particles are randomly distributed in an
LX L two-dimensional lattice containing V=L? nodes. Set
y=0.

(2) Reaction. At every time step ¢, in each node i, num-
bers n,(t—1) of a particles and ng;(1—1) of B particles
react with each other according to Egs. (1) and (2). Here,
Nqi(t=1) and ng(t—1) can be any integers including zero.
That is, with probability u,, particle B is transformed to
particle «, and at the same time, with probability 1—(1
— 11y)"84=D)  particle « is transformed to particle 8 [13].

(3) Diffusion. After every reaction, all the particles in each
node diffuse to its direct neighbors with an equal probability;
i.e., at each time step, a particle in a node with degree k will
jump into one of its direct neighbors with probability 1/k.
Then, the number of « particles and that of B particles in
each node i are updated by n,,(r) and ng (1), respectively.

(4) Rewiring. When t>T, (T, is a sufficient number of
time steps needed to achieve a relatively steady state), in
every 7 (7> 1) time steps, count the total times 7{ that the
state of each node i fails to meet the external conditions.
Once 7{ /7> ¢, node i is added into a rewiring candidate set
R. If R=Q, set y=7y+1; otherwise, randomly select a candi-
date from the set R, denoted by a, and one of its neighbors,
denoted by b, release the link between them, and then create
a new link between node a and one neighbor of node b,
denoted by c, as shown in Fig. 1. It should be noted that
self-loops and multiple edges are not allowed; therefore, if
node a and node ¢ were already connected, then the network
keeps unchanged and the rewiring is canceled. Set R=0, y
=0, and turn to step 2. Such a local rewiring strategy is quite
natural, which does not change the total connectivity of the
network. For each node i, the external condition or require-
ment could be to encourage or to discourage the active par-
ticles B, as represented by
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FIG. 2. (Color online) (a) The initial lattice as well as some
scenes of the adaptive network in different stages: (b)—(e) increas-
ing stages #=0.3, 0.4, 0.6, and 0.8; (f)-(h) decreasing stages 6
=0.7, 0.5, and 0.3. The node size is proportional to the node degree.
In each scene, the links between the nodes with degree not smaller
than 10 are plotted by blue bold lines, those between the nodes with
degree smaller than 10 are plotted by green solid lines, and the
remaining ones (the links between high-degree nodes and low-
degree nodes) are plotted by red dashed lines.

opi= ’%;L >0, (20)
Np:
0pi= _;f_ <. (21)

(5) Termination. When y=T, or t=T,, the process is ter-
minated.

When the size of the lattice and the number of particles
are fixed, the parameter 6 in Egs. (20) and (21) is the only
input to the system which determines the final RD steady
states and the structure of the adaptive network. In simula-
tion, we steadily increase 6 from 0.1 to 0.8 adopting the
condition of Eq. (20) and then decrease it from 0.8 to 0.1
adopting the different condition of Eq. (21), so as to study
the responses of the adaptive network. When the parameters
are set to be =02, u,=0.05, p=5 with p,(0)/pg(0)
=N,(0)/Ng0)=1, V=1?=625, £=0.9, T,=10°, 7=100, T,
=200, and T2=107, the scenes of the adaptive network in
different stages are shown in Fig. 2. Note that, with the val-
ues chosen for the reaction rates, the proportion of a or 3
particles in the whole network can change steadily in a large
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range as the network evolves. With the values chosen for the
parameters & 7, and T, in most cases, the structure of the
network is changed frequently at the beginning and can be
statistically stable at somewhere in limited steps when a new
environmental condition is provided.

Intuitively, in the increasing stages by adopting the con-
dition of Eq. (20), the adaptive network is getting more and
more heterogeneous so that most of nodes in the network can
possess relatively higher ratios of active particles . At the
beginning, high-degree nodes (e.g., k=10) emerge sepa-
rately, as shown in Fig. 2(c). As the requirement is further
enhanced, these hub nodes begin to connect with each other
and a prominent skeleton, i.e., the subnetwork connected by
the blue bold lines in Fig. 2(d), comes into being. The skel-
eton is further condensed when 6 increases to 0.8 and, in this
stage, a kernel forms and the adaptive network evolves to a
quasistar network, as shown in Fig. 2(e). In the opposite
direction by adopting the condition of Eq. (21), the kernel
explodes until most of the hub nodes disappear and the net-
work becomes homogeneous again.

IV. STRUCTURAL PROPERTIES

In the past decade, more and more countermeasures [30],
such as degree, clustering coefficient, distance, assortativity
[31], symmetry [32], and so on, have been proposed. Such
measures, whether they originated from practical engineering
problems or are just mathematically inspired, provide a way
to quantitatively compare and further classify and model dif-
ferent real-world complex networks.

Essentially, the adaptive network proposed in this paper
provides a set of network scenes through its continuously
adjusting the structure to satisfy the external conditions.
Characterizing this adaptive network in different stages has
scientific significance because the obtained structural proper-
ties may validate the structural similarity between the adap-
tive network in some stages and those real-world biological
or technological networks. More importantly, in this case we
can say that the common heterogeneous structure of these
networks is a natural result of adaptation. Hopefully, it can
help engineers to design better reconstructing mechanisms
for technological networks, such as microreactor networks
and data-traffic networks, to produce more required or less
unwilling particles as quickly as possible in RD processes.

Next, we review several classical network measures and
then adopt them to characterize the proposed adaptive net-
work in different stages. The first one is the heterogeneity
defined by Eq. (19). In the literature, heterogeneous networks
are usually depreciated due to their weakness to hub-node
attacks [33], unbalanced load distribution [34], and poor syn-
chronizing ability [35], although these types of networks are
quite universal in the real world. Here, as can be seen in Fig.
3(a), the adaptive network indeed gets more heterogeneous
spontaneously when each node can only sense the environ-
mental conditions for more active particles and to rearrange
their neighbors independently. Perhaps this is one reason
why heterogeneous structure is still widely encountered in
biological and technological systems although it may be un-
desirable for some other dynamics.
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FIG. 3. (Color online) Several topological properties, such as (a) heterogeneity, (b) average assortativity coefficient, (c) average cluster-
ing coefficient, and (d) average distance for the adaptive network in different increasing and decreasing stages.

In a network, it is also very interesting to investigate
whether high-degree nodes prefer to attach to other high-
degree nodes (assortativeness) or to low-degree ones (disas-
sortativeness). In order to measure such preference more
quantitatively, Newman [31] proposed a normalized assorta-
tivity coefficient, -1 =R =1, represented by

2

1
M_IE Diq;— lM_IE E(Pj‘”]j)]
j j

R_

_ 1 1 )
1S 307w [0S S|
J J

where p; and q; are the degrees of the end nodes of the jth
link, with j=1,...,M. Newman [31] found that social net-
works are mostly assortative (R>0), while biological and
technological networks are mostly disassortative (R <0), and
some artificial networks are nonassortative (R=0). Gener-
ally, the adaptive network proposed here is disassortative in
most evolving stages, as shown in Fig. 3(b). Such disassor-
tativity is slightly weakened as 6 increases in the increasing
stages before the network evolves to possessing a quasistar
structure. In this process, more and more large-degree nodes
emerge and they are connected with each other to form a
skeleton of the adaptive network, as shown in Fig. 2(d). Such
a structure may improve the transferring efficiency of par-
ticles and further help produce more active particles. In the
decreasing stages, the adaptive network becomes more and
more homogeneous as € decreases, and it seems quite natural
that the disassortativity also steadily weakens in this process.
It should be noted that such a degree correlation is obviously

inconsistent with the above no-correlation assumption when
we attempt to infer the theoretical solutions of Egs. (7) and
(8) by the mean-field theory. As a result, there could be a gap
between theoretical and experimental results, which will be
further discussed in Sec. V.

The clustering coefficient of node i, representing the con-
necting density among its neighbors, is denoted by

2@[

Ci=—/7—7 7,
|7Ti|(|77i|— 1)

(23)

where ¢; is the total number of links among its | r,| neighbors.
The network distance between two nodes is defined by the
smallest number of connections included in any path be-
tween them. Moreover, the average clustering coefficient C
and the average distance D are always considered together in
the literature [36] to investigate whether the studied network
is both highly clustering (large C) and small world (small D),
like many real-world networks. For the adaptive network,
these properties could be achieved in the increasing stages
when 0 is large enough, i.e., #=0.6, as shown in Figs. 3(c)
and 3(d). It should be noted that the requirement op,;>0.8
seems much too strict. In fact, the adaptive network cannot
satisfy such a requirement when other parameters keep un-
changed. The adaptive dynamics are forcibly terminated by
the condition 7=10" and, naturally, the quasistar structure
shown in Fig. 2(e) is unreachable.

As one can see, all these characteristics, namely, hetero-
geneous, disassortative, highly clustering, and small-world
features, can be reproduced in this adaptive network when
0=0.6. In order to provide more structural evidences, we
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FIG. 4. (Color online) (a) Degree distribution, (b) degree correlation function, and (c) clustering function as well as their fitted lines and
linear residuals for the stable adaptive network scene in the increasing stage when 6=0.6.

also investigated several other topological properties of the
adaptive network in the increasing stage when 6=0.6. Al-
though the relatively small maximum node degree makes it
somewhat ambiguous to claim that some distribution related
to degree k follows a certain distribution form, its degree
distribution P(k) representing the fraction of nodes with de-
gree k indeed seems compatible with the scale-free property,
i.e., P(k)~k™ with \;=2.1. This is consistent with the re-
ports on many other real-world complex networks
[16-18,37]. Besides, its degree correlation function k,,,(k),
denoting the average degree on the nodes directly connected
to those with degree k, and its clustering function C(k), de-
noting the average clustering coefficient on the nodes with
degree k (Fig. 4), are also compatible with the scale-free
property, i.e., k,,(k) ~ k™2 and C(k) ~ k™3 with A\,=0.15 and
N3=0.74 (close to 1), respectively, both frequently seen in
technological and biological networks [31,38,39].

All of these phenomena suggest that many real-world net-
works as self-organized systems may experience inner RD
dynamics. In order to increase the proportion of certain par-
ticles to satisfy the environmental conditions, each node in
such a network undergoes a rewiring process, so finally a
similar heterogeneous structure emerges. Such an explana-
tion sounds more substantial than the argument based only
on topological rules. More interestingly, when the external
conditions discourage the active particles, the adaptive net-
work evolves to a relatively homogeneous structure with
lower clustering and a smaller average distance instead. It
has been revealed [40] that such a structure has its advantage
in some other aspects, such as being robust to attacks, bal-
ancing load distribution, and synchronizing individuals’ dy-
namics.

V. RD PROCESS

Assume that each node i in the adaptive network as an
agent can sense the difference between its state op; and the

external conditions specified by Eq. (20) or (21) and at the
same time has the ability to respond to the difference by
rearranging its neighbors. Through a local randomly rewiring
process as described in Fig. 1, it appears that most nodes can
independently find their right places in the network to statis-
tically decrease or even eliminate the differences between
their states and those not so strict conditions, and finally the
adaptive network can be stabilized onto somewhere and the
RD equilibrium can be reached.

Next, we investigate the corresponding shift of the RD
equilibrium and the proportions of different reactants in the
adaptive network under different environmental conditions.
Given the total density of particles p and the reaction param-
eters u; and u,, it was proven [13] that the RD result is
determined only by the network structure and is independent
of the initial ratio p,(0)/pg(0), except for very early time
transients. Here, we study the RD process in different adap-
tive network scenes obtained by the mechanism introduced
in Sec. II under different external conditions. The average
ratio of B particles over all the nodes and the proportion of 8
particles in the whole network are defined by

1%
1
op=—> 0pi, (24)
Vi=1
p
Xp= —pﬁ (25)

respectively. Generally, both o and xg increase steadily as
the threshold 6 is increased in the increasing stages when [
particles are encouraged and decrease when  particles are
discouraged, as shown in Figs. 5(a) and 5(b). This phenom-
enon suggests that the RD equilibrium in each node, and
furthermore that in the whole network, can indeed be statis-
tically controlled by a local rewiring process. This is espe-
cially important for biological networks where each compo-
nent may not have information about the structure of the
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FIG. 5. (Color online) The average ratio of B particles over all the nodes and the theoretical and experimental proportions of B particles
in the whole network in the adaptive network: (a) increasing stages; (b) decreasing stages. The normalized error between the theoretical and
experimental proportions of B particles and the normalized average assortativity coefficient of the network: (c) increasing stages; (d)
decreasing stages. In each network scene, the RD process is parallelly implemented for 10* times after the early time transients and then the

corresponding results are recorded.

whole network and the inner reaction rates cannot be ad-
justed by changing some macroscopic measures such as tem-
perature, pressure, and so on.

Moreover, from Egs. (18), (19), and (25), one can get the
theoretical average proportion of S particles in the whole
network as follows:

(26)

When the parameters are set to be p=5, u©;=0.2, and u,
=0.05, Eq. (26) can be simplified to be xz=1-0.8/H. The-
oretical g in different stages is also shown in Figs. 5(a) and
5(b) by dashed lines. As mentioned, the distinct gap between
theoretical and experimental yz may be caused by the defi-
nite degree correlation between pairwise linked nodes in the
adaptive network because the theoretical result is obtained
by the mean-field theory under the assumption of having no
such degree correlations. Denoting by E(6) the difference
between theoretical and experimental x4 for a certain 6 in the
increasing or decreasing stage and by E,,;, and E,,,, the cor-
responding minimum and maximum values, respectively, the
difference can be normalized in [-1,1] by

E,(6)=

[E(e) - Emin] -1 (27)

E

max ~ Emin

Similarly, the absolute value of the assortativity coefficient
of the adaptive network at certain # can be normalized in

[_1 > 1] by

Rn(e) = [|R(0)| - |R|min] -1 (28)

|R|max - |R|min

The values of E,(6) and R,(6) in different increasing and
decreasing stages are shown in Figs. 5(c) and 5(d), respec-
tively, where one can see that E,(6) and R,(6) are indeed
strongly correlated with each other in most cases; i.e.,
E,(6) X R,(0)>0 is satisfied. In other words, the mean-field
theory may fail to produce an acceptable result if there is a
strong degree correlation between pairwise linked nodes in
the adaptive network.

When both « and S particles are allowed to diffuse, it is
quite natural that nodes of larger degrees always contain
more particles [13]. As predicted by Egs. (12) and (16), one
has p,=s.k+06, and pg=sgk+ g, where the parameters
can be calculated as s,=p,/(k)=1.7068/3.84=0.44 and sz
=pp/(k)=3.2932/3.84=0.86 in the increasing stage when 6
=0.7. This can also be validated by the simulations shown in
Fig. 6(a). Moreover, in Fig. 6(b), one can see that the average
ratio of S particles inside nodes of degree k, denoted by
o(k), keeps almost constant as k> 1 increases. This is the
reason why the adaptive network can be statistically stabi-
lized onto somewhere when each node is exposed to the
same external conditions specified by Egs. (20) and (21). The
somewhat smaller value of o74(1) = 0.5 may be caused by the
low density of particles in the leaf nodes of degree 1. In fact,
there are always no S particles in these nodes when the av-

046116-7



XUAN et al.
70 ‘
O Py 0.86k — 0.14
60f - - -Fitedline Ppk= "0
sof O Ppx
) —— Fitted line
Q_ﬂ 40 L 4
- J
g 30r .- -
a PPhe
20} -7 »/
ol Py = 044k +0.16
o
0 20 40 60 80
(a) K

PHYSICAL REVIEW E 82, 046116 (2010)

0.7

o
(%1
o

( b) Zb 41-(0 éO 80

FIG. 6. (Color online) (a) Average densities of « particles and S particles inside nodes of degree k as linear functions of k in the
increasing stage when 0=0.7. (b) Average ratio of B particles inside nodes of degree k keeps almost constant for various values of k.

erage density of S particles is close to sg/(s,+55)=0.72, as
shown in the above simulation figures.

VI. SUMMARY

The mechanism introduced here can be used to study the
effects of microscopic reaction-diffusion processes on the
structures of the underlying networks, which can provide
more convincing explanations for the existence of common
heterogeneous structures of many biological and technologi-
cal networks. Furthermore, the approach may provide a way
for engineers to design changeable reactor networks where
chemical equilibriums can be dynamically adjusted by a
simple reactor rewiring process, which is especially useful in

the area of microfabrication industries. In the future, more
chemical reaction-diffusion processes will be considered un-
der the new framework and better structural control strate-
gies will be developed.
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