
Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs
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The morphology of a typical developing biological transportation network, the vein network of the plasmo-
dium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a
classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation
networks which show small-world or scale-free properties. The complexity of the vein network arises from the
weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential
distributions, while the widths are distributed log-normally. These functional dependencies are robust during
the entire evolution of the network, even though the exponents change with time due to the coarsening of the
vein network.
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I. INTRODUCTION

Transportation networks are ubiquitous in both biological
and technical systems. A problem of the topology of trans-
portation networks, namely, the problem of the bridges of
Königsberg, has lead to the foundation of graph theory. Since
then, graph theory has been developed and applied to solve a
multitude of problems, including transportation networks �1�.
However, in the last decades, an increasing number of evolv-
ing transportation networks was found not to behave accord-
ing to the rules of the classical graph theory, but to possess
features that are typical for complex dynamic networks.
Since in the real world evolving transportation networks fol-
lowing the classical graph theory are seldom, graph theory
has been extended to complex network theory �2� by intro-
ducing new classes of graphs, such as random �3� and small-
world graphs �2,4�.

One important property of networks is their topology, i.e.,
the connectivity pattern of the nodes of a network or graph.
Small-world networks lie between completely regular and
completely random graphs �4�, and are characterized by the
occurrence of connections between distinctively different re-
gions separated from each other by large distances in the
network. Many of these networks are scale-free, i.e., they
show a power-law degree distribution �2�. Networks in the
real world also very frequently possess some highly con-
nected nodes that act as hubs. Examples can be found among
man-made and biological transportation networks, such as
the air transportation �5,6� and railway networks �7,8�, elec-
tric power grids �4�, as well as in blood vascularization net-
works �9� and insect trails and galleries �10,11�. Small-world
networks are also abundant in social and economic activities,
as shown for scientific co-author �12� or co-starring film ac-
tors networks �4�, and the world trade network �13�. For an
overview see Refs. �2,3�.

The second important property defining any network is
the weight or intensity associated with each of the connec-

tions �edges� between a connected pair of nodes. Together,
the topology and the weighting of the connections determine
the performance and dynamics of a network �2�. Real-world
networks generally display a large heterogeneity in the
weights of the connections.

Which topological network structure optimizes a network
with respect to a given transportation characteristics is an
important topic of current research �14,15�. The optimal to-
pology depends strongly on the optimizing functional, i.e.,
the functional task with respect to which the network
was optimized. For instance, networks optimized for high
throughput efficiency form topological trees without any
loops �14,16�. This means that the rupture of an edge leads to
two disconnected sub-networks. By contrast, networks opti-
mized with respect to resilience to damage will contain
loops, since they provide alternative pathways through the
network once an edge is removed or ruptured �17,18�. Re-
cently, loop-containing networks were also identified as op-
timal for handling a spatially and temporally varying trans-
portation load �17�.

In the present article, we analyze the structure of the
transportation vein network of the plasmodium of the slime
mold �myxomycete� Physarum polycephalum �19�. The plas-
modium is a multinucleate giant single cell that moves about
with amoeboid motility. Its large aggregate of protoplasm
extends over some tens of square centimeters and forms a
vein network, through which its protoplasm flows to and fro
periodically due to differences in hydrostatic pressure �20�.
Thus, geometric parameters such as the lengths and widths
of the veins are related quantitatively to the performance of
the edges between the nodes.

Moreover, the plasmodium is able to adapt to the environ-
mental conditions by changing its shape dynamically, nota-
bly by optimizing the structure of its vein network �21–23�.
In the presence of multiple food sources, the cell connects
them through its vein network at a minimum cost. This is
achieved by shrinking all veins other than those providing
the direct connection between the food sources. This prop-
erty has been exploited to let the slime mold solve a maze
�24,25� or other graph theoretical problems, like constructing
Steiner minimum pathway trees �26�, or finding minimum-
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risk pathways in an environment, where the slime mold is
subjected to two competing cost factors �27�. In fact, it has
recently been shown that the optimization of the plasmodial
vein network aims at simultaneously reducing the network
length, increasing the transport efficiency in the vein system,
and achieving a high fault tolerance of the network against
rupture of individual veins �23�.

Surprisingly, the graph properties of the plasmodial vein
network have not been investigated yet. In earlier papers the
vein network is described colloquially as a more or less regu-
lar network �28�, and recently it was assumed that the net-
work possesses a narrow node degree distribution �29�.

In the present paper, we wish to unravel the topological
structure and the weighting pattern realized in the plasmodial
vein network of P. polycephalum. To this purpose images of
the expanding plasmodial network are acquired and subse-
quently analyzed. It is found from the connectivity of the
nodes in the plasmodium that this slime mold forms regular
graphs in the sense of graph theory. Finally, we determine the
statistical properties of the vein segments connecting every
pair of nodes, and follow their development as the vein net-
work becomes larger and larger with time.

II. MATERIALS AND METHODS

The plasmodia of the slime mold Physarum polyceph-
alum, strain HU195�HU200 �30�, were cultured on moist
filter paper by feeding with oat flakes �Kölln Flocken� at
21 °C in the dark. Sclerotia were obtained by drying the wet
filter paper on which a sufficient amount of the plasmodium
had crawled, and stored in the dark for 3 to 10 months. The
sclerotium is a dormant, dehydrated state of P. polycephalum
that may convert back into the plasmodium whence the en-
vironmental conditions turn favorable again.

For experiments, 1% �w/v� plain agar gels �Difco BactoA-
gar� were prepared in square polystyrene Petri dishes �10
�10 cm2�. A strip of filter paper �70�5 mm2� covered
with sclerotia was moistened and placed on the agar gel
along one edge of the dish. The sclerotia germinated and the
plasmodium began to expand over the agar gel after about
26 000 s. This evolving plasmodium expanded over the gel
layer and began to form a network of veins and venules �Fig.
1�. Since the network formation was sensitive to humidity
and temperature, the Petri dish was covered and the tempera-
ture kept constant at 21.0�0.5 °C.

The Petri dish was illuminated homogeneously from be-
low by a cold light source �Polytec� emitting white light and
monitored from above by an 8 bit charge controlled device
�CCD� camera �Hamamatsu C3077�. The images were col-
lected with a resolution of 768�576 pix2 corresponding to
an area of 61.5�46.1 mm2 �i.e., a resolution of
0.08 mm pix−1� at a sampling frequency of 0.1 Hz. The
frames were transferred to a computer for later data process-
ing and analysis. This analysis involves the extraction of the
vein network from the acquired images. To this purpose, the
background-subtracted images were binarized, corrected for
missing pixels, and finally collapsed to their skeletonized
graphs, as reported in detail in Ref. �31�. In the skeletonized
images, the nodes were defined as the branching points of the

venes. A vene connecting a pair of nodes was defined as an
edge of the graph. Since in between two nodes there were no
subdivisions, a long vein was considered as a single edge
�31�. These procedures were repeated for all images, giving
access to the temporal evolution of the graph.

The binarization of images requires the selection of a
threshold value. To obtain a robust extracted graph, the im-
ages were binarized using a series of threshold values that
vary slightly around the optimal binarization threshold �31�
and subsequently corrected and collapsed to the skeletonized
graphs. Those domains of the skeletonized networks that
were not affected by the small variations in the threshold
value for the binarization, were used for the analysis of the
network structure �see Figs. 1�b�, 1�d�, and 1�f��. The surface
covered by such a domain is the area A of the region of
investigation.

III. RESULTS

The plasmodium of Physarum polycephalum strain
HU195�HU200 exhibits a peculiar shape, which is charac-
teristic for myxomycetes. Figure 1 depicts the background-
subtracted images of the plasmodium, as well as the corre-
sponding skeletonized graphs �the domains shown in Figs.

FIG. 1. Development of the plasmodial vein network of Phys-
arum polycephalum. The left column shows the background-
subtracted images at �a� t=54 000 s, �c� t=60 000 s, and �e� t
=70 000 s, while the right column shows the corresponding skel-
etonized regions of the networks ��b� t=54 000 s, �d� t=60 000 s,
and �f� t=70 000 s�. The plasmodium begins to grow from the right
edge of the frames at t�26 000 s after the start of the experiment.
The area of observation is always 61.5�46.1 mm2.
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1�b�, 1�d�, and 1�f� are the domains A of the skeleton that can
be extracted unambiguously�. The protoplasm distributes
densely near the extending front, and in the wake of this
apical zone the plasmodium transforms into a complex net-
work of tubular veins, in which protoplasm flows vigorously
to and fro. Thus, the vein system ensures that the large plas-
modium behaves as a single organism. As the plasmodium
advances, the vein network becomes sparser.

The organization of the plamsodial vein network was ana-
lyzed in the context of graph theory. Each branching point of
the network forms a node that is connected to other nodes via
veins or venules. The latter form the edges of the graph G,
which is given by

G = F · A , �1�

where A is the adjacency matrix that denotes whether a pair
of nodes is connected, while the matrix F contains the areas
of the vein segments �edges�. The adjacency matrix A de-
fines the topology of the graph, while F encodes the weights
of the connections �or edges�.

A. Topology of the vein network

The topology of the plasmodial vein networks is given by
the adjacency matrix A, which is extracted from the experi-
mental data by identifying all pairs of connected nodes
present in the skeletonized graphs. Connected nodes lead to
entries aij =1 in the adjacency matrix A, unconnected nodes
to entries aij =0. The number of connections leaving �or en-
tering� each node is also determined; this corresponds to a
row-wise summation over the entries k=� jaij of matrix A.
Each individual node is found to be connected to exactly
three other nodes. This property is preserved during the en-
tire evolution of the vein network. The connectivity of a
node is its node degree k. Graphs with delta distributed node
degrees are called regular and they are characterized by a
constant ratio of edges to nodes

M =
1

2
kN , �2�

where M and N are the number of edges �veins� and nodes,
respectively. This correlation is indeed fulfilled in the studied
vein network �Fig. 2�, where the ratio of edges to nodes is
1.56�0.06. Thus, in terms of graph theory, the vein network
of P. polycephalum forms a regular graph of degree 3, also
known as a cubic graph.

The clustering coefficient c of the vein network measures
to which extent the neighboring edges of a given edge are
connected among each other. Hence the clustering coefficient
c provides an indication for how close the graph is to form a
clique �where any member knows all other members of the
clique, therefore c=1� �4�. In the P. polycephalum vein net-
work we obtained c=0.021�0.005. This relatively low
value is consistent with the regular graph nature of the plas-
modial vein network. As the network expands, the value of c
decreases.

B. Weights of the edges

In real-world networks the connections between the nodes
�i.e., the edges� frequently possess nonuniform weights. Such
networks are called weighted networks. In fact, the plasmo-
dial vein network also displays heterogeneities in the inten-
sity of the vein connections. Therefore, we determine the
lengths of the veins �compiled in matrix L�, their widths
�matrix W�, and their areas �matrix F, Eq. �1��. The ij-th
entry of the matrix F of the areas of the veins is given by the
product Fij =Wij ·Lij.

The distribution of the lengths of the veins between con-
nected nodes is determined at different instants of the net-
work development, and is found to follow the exponential
dependence

P�x� = P0e−�x, �3�

where P�x� is the probability to find a segment of length x in
the network �Fig. 3�.

FIG. 2. Dependence of the number of veins �edges� M from the
number of nodes N. The number of edges increases 1.56�0.06
times faster than the number of nodes.

FIG. 3. Exponential scaling of the length distribution of vein
segments. With time �t=50 000 s, full squares; t=56 000 s, open
squares; t=65 000 open circles; t=70 000 s full circles� the slope �
of the logarithmic plots decreases, while the functional dependence
still holds.
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At early instants of the development, the expanding plas-
modial vein network forms a dense mesh of short-range fila-
ments �Figs. 1�a� and 1�b��. With time, the network expands
and its apical zone advances, exploring new spaces. At a
certain distance from the apical zone, the mesh network
coarsens �Figs. 1�c�–1�f��. While the length dependence �Eq.
�3�� always remains exponential, the value of the exponent �
decreases as the plasmodial vein network expands �Fig. 4�.
This reflects the coarsening of the tubular vein network,
where tiny venules are deleted as the network evolves. As a
venule disappears, so does the node associated to it. In con-
sequence, this leads to a coarsening of the network. At the
same time larger vein segments become more frequent at the
expense of shorter ones, thus yielding a decreasing exponent
�.

The temporal development of the vein network is also
reflected by the ratio R

R =
�i

xi

A
�4�

of the sum over the lengths xi of all veins to the area A
covered by the network �Fig. 5�. When a plasmodium begins
exploring its surroundings �i.e., from t=50 000 s to t
=52 400 s in the experiment shown in Fig. 1�, it forms a
very dense vein network that searches the area for food
sources. This is reflected by a high ratio R. As the apical
zone advances in space, the network left behind begins to
coarsen by deleting ‘superfluous’ tiny venules. Hence, there
is a competition between the formation of a dense mesh ad-
jacent to the apical zone and the sparsening of the vein net-
work further away from the growth zone of the plasmodium.
As the network increases, the coarsening becomes more ef-
fective, thus leading to a decrease of R �for 52 500 s� t
�61 000 s, Fig. 5�. In extended plasmodia, far from the
apical zone, the coarsening process approaches a limit, form-
ing networks whose total vein length to area ratio R settles
onto a stationary value of R�0.06 pix−1. This indicates the
existence of a preferred asymptotic mesh size.

Next, we focus on the matrix W of the widths of veins
and venules. At early instants of network development, the

widths of veins obey a log-normal distribution �Fig. 6�,
where P�y� is the probability to find a vein or venule of
width y. This probability scales as

P�y� =
1

�y�2�
e−�1/2��ln y − ��2/�2

�5�

where � is the maximum of the distribution and � its vari-
ance. As the network coarsens, the log-normal distribution of
the widths of the veins converges to a normal �Gaussian�
distribution,

P�y� =
1

��2�
e−�1/2��y − ��2/�2

�6�

whose maximum is shifted toward larger widths, reflecting
the fact that in the sparse network smaller and thinner seg-
ments �venules� give way to fewer but thicker veins �Fig. 6�.
It should be noted that for coarsened networks the vein
widths satisfy a Gaussian distribution slightly better than a
log-normal one. In other words, it is also possible to fit the
width distribution solely by a log-normal function.

FIG. 4. Temporal evolution of the exponents � �open circles�
and 	 �solid squares� of the exponential probability distributions of
the lengths �Eq. �3�� and areas �Eq. �7�� of the vein segments,
respectively.

FIG. 5. Development of the ratio R of the total length of the vein
network to the area covered by the plasmodium in time. “Young”
networks are relatively dense, while the value of R decreases with
time due to coarsening. For longer times, R approaches a constant
asymptotic value.

FIG. 6. Distribution of the widths y of the veins. At early stages
of the plasmodial development, the widths follow a log-normal dis-
tribution �t=56 000 s, solid symbols, solid line�, while the width
distribution becomes normal as the network coarsens �t=68 000 s,
open symbols, dashed line�.
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Finally, we studied the areas xy of the individual vein
segments in the network. As in the case of the length distri-
bution P�x�, the distribution of the areas P�xy� of the veins
follows an exponential distribution

P�xy� = P0e−	xy �7�

as shown in Fig. 7. Again, the form of the probability distri-
bution of the area of the veins remains exponential at all
times, while the exponent 	 decreases as the vein network
evolves �Fig. 4�.

Analogously to the temporal evolution of the total length
of the vein network �reflected by the ratio R defined by Eq.
�4��, we have followed the evolution of the total area of the
veins in time. We define the ratio S

S =
�i

�xy�i

A
�8�

of the total area of the veins �xy�i to the area A covered by
the network. The ratio S decreases as the vein network be-
comes sparser �Fig. 8�. In extended plasmodia the fraction of
the area of the network actually covered by the veins con-
verges to a stationary value of S�0.20. This means that in

the sparse network the plasmodium occupies about 20% of
the total area spanned by the tubular vein network.

IV. DISCUSSION

The plasmodial vein network of Physarum polycephalum
forms a regular, cubic graph. It is amazing that an extended
cellular system that lacks any central controlling unit is able
to reliably form a classical, regular graph, which often is
considered as a somewhat artificial mathematical construct
�3�. However, evolution has selected exactly this regular
graph structure to very efficiently perform vital and often
conflicting tasks, such as the simultaneous reduction of costs,
the maximization of transport efficiency through the net-
work, and the minimization of risks, as reported in Ref. �23�.

The formation and evolution of a classical graph repre-
sents a fundamental difference to the organization of most of
the evolving transport networks. For instance, the grid of
power lines shows small-world characteristics �4�, while the
world air-transportation network is a small-world graph with
scale-free properties �5,6�. Neither of these properties is
found in the vein network of P. polycephalum.

The cubic graph nature of the plasmodial vein network is
also evidenced by a ratio of 1.56�0.06 edges to nodes �Fig.
2�. This is slightly higher than the theoretical value of 1.5
that is obtained for infinitively large regular graphs of degree
k=3. The deviation from the theoretical value is due to the
coarsening of the network, which leads to the rupture of a
vein into two disconnected venules. Consequently, this leads
to a slightly higher ratio of edges to nodes.

The regular graph of the plasmodial vein network of P.
polycephalum is weighted by the lengths, widths, and areas
of the vein segments. Each of these three weighting matrices
shows a pronounced probability distribution. While the prob-
ability to find a certain width of a vein was found to follow
a log-normal or normal distribution, the lengths and the areas
of the vein segments show exponential distributions. Inter-
estingly, these functional dependencies are robust and remain
valid during the entire evolution of the vein network, while
the individual exponents change as the network evolves and
coarsens.

The remarkable robustness of the statistical properties of
the lengths, widths, and areas of the vein segments may be
used to distinguish and classify different network structures
and morphologies realized in different strains and mutants of
P. polycephalum as well as in other classes of myxomycetes.
Such an approach provides hard and unambiguous criteria
based on statistical physics for the distinction among differ-
ent network morphologies. This may help to define and dis-
criminate between different phenotypes based on plasmodial
morphology, which so far rely on colloquial descriptions of
the network topology.

V. CONCLUSION

In conclusion, the vein network of Physarum polyceph-
alum is one of the rare evolving transportation network sys-
tems to spontaneously form a classical regular graph which
consequently does not possess small-world or scale-free

FIG. 7. Exponential scaling of the area distribution of vein seg-
ments. With time �t=50 000 s, full squares; t=56 000 s, open
squares; t=65 000 open circles; t=70 000 s full circles� the slope 	
of the logarithmic plots decreases, while the functional dependence
remains robust.

FIG. 8. Temporal evolution of the ratio S of the total area of the
vein network to the area covered by the plasmodium. At early in-
stants of plasmodial development, the network shows a high surface
coverage by plasmodial cell mass. As the network becomes sparser,
S decreases until it reaches an asymptotic value.
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properties. Instead, all nodes have a unique degree, namely,
k=3. This graph is weighted by the strengths of the veins
connecting any pair of nodes. It is found that the lengths and
areas of the segments follow distinct distributions. Although
the vein network coarsens with time, the functional relations
remain unaffected by the dynamics.
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