
Column generation algorithms for exact modularity maximization in networks

Daniel Aloise*
Department of Production Engineering, Universidade Federal do Rio Grande do Norte, Campus Universitário s/n,

Natal, RN 59072-970, Brazil

Sonia Cafieri†

Département de Mathématiques et Informatique, École Nationale de l’Aviation Civile, 7 Ave. E. Belin, F-31055 Toulouse, France

Gilles Caporossi,‡ Pierre Hansen,§ and Sylvain Perron�

GERAD and HEC Montreal, 3000 Chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

Leo Liberti¶

LIX, École Polytechnique, F-91128 Palaiseau, France
�Received 4 June 2010; published 21 October 2010�

Finding modules, or clusters, in networks currently attracts much attention in several domains. The most
studied criterion for doing so, due to Newman and Girvan �Phys. Rev. E 69, 026113 �2004��, is modularity
maximization. Many heuristics have been proposed for maximizing modularity and yield rapidly near optimal
solution or sometimes optimal ones but without a guarantee of optimality. There are few exact algorithms,
prominent among which is a paper by Xu et al. �Eur. Phys. J. B 60, 231 �2007��. Modularity maximization can
also be expressed as a clique partitioning problem and the row generation algorithm of Grötschel and Waka-
bayashi �Math. Program. 45, 59 �1989�� applied. We propose to extend both of these algorithms using the
powerful column generation methods for linear and non linear integer programming. Performance of the four
resulting algorithms is compared on problems from the literature. Instances with up to 512 entities are solved
exactly. Moreover, the computing time of previously solved problems are reduced substantially.

DOI: 10.1103/PhysRevE.82.046112 PACS number�s�: 89.75.Hc, 87.23.Ge, 02.70.�c

I. INTRODUCTION

Clustering is an important chapter of data analysis and
data mining with numerous applications in a variety of fields.
It aims at solving the following general problem: given a set
of entities, find subsets, or clusters, which are homogeneous
and/or well separated. As the concepts of homogeneity and
of separation can be made precise in many ways, there are a
large variety of clustering problems �1–4�. These problems in
turn are solved by exact algorithms or, more often and par-
ticularly for large data sets, by heuristics. An exact algorithm
provides, hopefully in reasonable computing time, an opti-
mal solution together with a proof of its optimality. A heu-
ristic provides, usually in moderate computing time, a near
optimal solution or sometimes an optimal solution but with-
out proof of its optimality.

In the last decade, clustering on networks has been exten-
sively studied, mostly in the physics and computer science
research communities. Rather than using the term cluster, the
words module or community are often adopted in the physics
literature to denote homogeneous and/or well separated sub-

sets of entities. Recall that a network, or graph, G= �V ,E� is
composed of a set V of n vertices and a set E of m edges,
which join pairs of vertices. A vertex v j is represented by a
point and an edge eij = �vi ,v j� by a line joining its two end
vertices vi and v j. The shape of this line does not matter, only
the presence or absence of an edge is important. In a simple
graph, there is at most one edge between any pair of vertices,
otherwise one has a multigraph. With a slight abuse of set
notation, a loop eii= �vi ,vi� is an edge for which both end
vertices coincide. The degree ki of a vertex vi�V is the
number of edges incident with vi. In this paper, we focus on
undirected, unweighted graphs without loops.

A subgraph GS= �S ,ES� of a graph G= �V ,E� induced by a
set of vertices S�V is a graph with vertex set S and edge set
ES equal to all edges with both vertices in S. Such a subgraph
corresponds to a cluster �or module or community� and many
heuristics aim at finding a partition of V into pairwise dis-
joint nonempty subsets V1 ,V2 , . . . ,VN inducing subgraphs of
G. Various objective functions have been proposed for evalu-
ating such a partition. Roughly speaking, one seeks modules
which contain more inner edges �with both vertices in the
same module� than cut edges �with vertices in different mod-
ules�. The degree ki of the vertex vi can be split in two: the
indegree ki

in or number of neighbors within its community
and the outdegree ki

out or number of neighbors outside its
community. Several concepts of community follow.

In 2004, Radicchi et al. �5� defined a community in the
strong sense as a subgraph all vertices of which have larger
indegree than outdegree and a community in the weak sense
as a subgraph for which the sum of vertex indegrees is larger
than the sum of vertex outdegrees. As an inner edge contrib-

*daniel.aloise@gerad.ca
†sonia.cafieri@enac.fr
‡gilles.caporossi@gerad.ca
§Also at LIX, Ecole Polytechnique, France.

pierre.hansen@gerad.ca
�sylvain.perron@gerad.ca
¶liberti@lix.polytechnique.fr

PHYSICAL REVIEW E 82, 046112 �2010�

1539-3755/2010/82�4�/046112�9� ©2010 The American Physical Society046112-1

http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1140/epjb/e2007-00331-0
http://dx.doi.org/10.1007/BF01589097
http://dx.doi.org/10.1103/PhysRevE.82.046112


utes by two to the sum of the indegrees and a cut edge
contributes by one to the sum of outdegrees, the number of
inner edges in a community in the weak sense must be at
least as large as half the number of cut edges. As cut edges
contribute to the sum of degrees of two communities, this
definition entails that for the network as a whole the number
of inner edges is larger than the number of cut edges. Re-
cently, several extensions of the definition of the community
in the weak sense have been proposed. One may consider the
difference for each community of the sum of indegrees and
the sum of outdegrees. Then summing these contributions for
all communities gives a multiway cut problem. Another ap-
proach is to normalize the contribution of each community
by dividing it by its number of vertices �6�. The resulting
function, to be maximized, is called modularity density. Al-
ternatively, contributions of communities may be divided by
their number of edges �7�. Finally, one may consider maxi-
mizing, in a divisive hierarchical method, the minimum ratio
of the number of edges in a community divided by the num-
ber of cut edges �8�.

A different, and currently mainstream, approach was in-
augurated by Newman and Girvan also in 2004 �9�. They
propose to find a partition of V which maximizes the sum,
over all modules, of the number of inner edges minus the
expected number of such edges assuming that they are drawn
at random with the same distribution of degrees as in G. In
�9� the following precise definition of modularity is given:

Q = �
s

�as − es� , �1�

where as is the fraction of all edges that lie within module s
and es is the expected value of the same quantity in a graph
in which the vertices have the same expected degrees but
edges are placed at random. A maximum value of Q near to
0 indicates that the network considered is close to a random
one �barring fluctuations�, while a maximum value of Q near
to 1 indicates strong community structure. Observe that
maximizing modularity gives an optimal partition together
with the optimal number of modules.

The modularity maximization problem has been exten-
sively studied both from the algorithmic and from the appli-
cations viewpoints. Some papers discuss a few of its math-
ematical properties, among which are the following:

�i� Even if the networks under study most of the time have
no loops nor multiple edges, the expected number of loops
may be positive. Moreover, for some pairs of end vertices,
their expected number of edges may be greater than 1 �10�;

�ii� Modularity maximization suffers from a resolution
limit �11�, i.e., when the network is large small modules can
be absorbed by larger ones even if they are very dense;

�iii� The partition with optimal or near optimal modularity
may contain modules which are not communities in the weak
sense, or even in the most weak sense �12� that twice the
number of inner edges is never less than the number of edges
joining this module to another one.

Modification to the model and/or to heuristics have been
proposed to address these problems. Changing slightly the
null model �i.e., the value of es in Eq. �1��, by simulation
�10� or by using an analytical formula �13� allows the re-

moval of loops and multiple edges. A parameter can also be
introduced together with multiresolution heuristics �14,15�.
Nevertheless, the original modularity maximization appears
presently to be much used. In this paper, we limit ourselves
to this classical problem.

Brandes et al. �16� have shown that modularity maximi-
zation is NP-hard. Numerous heuristics have been proposed
to maximize modularity. They are based on divisive hierar-
chical clustering, agglomerative hierarchical clustering, par-
titioning, and hybrids. They rely upon various criteria for
agglomeration or division �17–21�, simulated annealing
�10,22,23�, mean field annealing �24�, genetic search �25�,
extremal optimization �26�, spectral clustering �27–29�, lin-
ear programming followed by randomized rounding �30�, dy-
namical clustering �31�, multilevel partitioning �32�,
contraction-dilation �33�, multistep greedy search �34�, quan-
tum mechanics �35�, and other approaches �14,21,29,36–38�.

In contrast, papers proposing exact algorithms or using
mathematical programming are rare for modularity maximi-
zation. There are two approaches. In the first one, the origi-
nal graph G= �V ,E� is replaced by a complete weighted
graph Kn= �V ,E�� of order n= 	V	 as G and such that for any
pair of vertices vi ,v j �G, Kn has an edge eij� with a weight
equal to 1

m �aij −
kikj

m �, where aij =1 if vi and v j are adjacent in
G and m is the number of edges �27�.

In addition to the complexity result mentioned above,
Brandes et al. �16� give an integer programming formulation
for modularity maximization and mention that the optimal
solution of two test problems with 34 and with 105 entities
were determined. Their approach is in fact close to the work
of Grötschel and Wakabayashi �39,40� on clique partitioning.
It is discussed in the next section. The second approach
works directly on the original graph G= �V ,E�. Xu, Tsoka,
and Papageorgiou �41� propose a mixed integer convex qua-
dratic programming model, discussed below. They solve ex-
actly four test problems with up to 104 entities.

The purpose of the present paper is to assess and advance
the state of the art of algorithms for exact modularity maxi-
mization. To this effect, we discuss and compare four exact
algorithms, two of which are new. Two of these algorithms
work on a reduction of modularity maximization to clique
partitioning; the other two work on the direct formulation.
They are: �i� the row generation algorithm of �39�, which
subsumes the algorithm of �16�, �ii� a new stabilized column
generation algorithm for clique partitioning which enhances
the efficiency of that approach, �iii� the mixed integer convex
quadratic programming approach of �41�, �iv� another new
stabilized column generation algorithm which enhances the
efficiency of the second approach.

Column generation algorithms implicitly take into ac-
count all possible communities �or in other words all subsets
of the set of entities under study�. They replace the problem
of finding simultaneously all communities in an optimal par-
tition by a sequence of optimization problems for finding one
community at a time, or more precisely a community which
improves the modularity of the current solution. So, prob-
lems are solved much faster than with previous algorithms
and larger instances can be tackled, the largest to date having
512 entities.

Clearly, in many applications of modularity maximiza-
tion, instances are still larger and sometimes very much

ALOISE et al. PHYSICAL REVIEW E 82, 046112 �2010�

046112-2



larger, than those which can be solved exactly with the pro-
posed algorithms. Nevertheless, it is our belief that exact
algorithms are worthy of study for several reasons.

�i� Instances which are more than toy problems can pres-
ently be solved exactly. As shown below, these include many
problems used to illustrate the performance of various heu-
ristics.

�ii� As mentioned in several papers, finding the signifi-
cance of the detected communities is difficult. Indeed, vari-
ous heuristics often lead to partitions that disagree on two or
more of their communities. Having an exact solution solves
the problem of separating possible inadequacies of the model
from eventual errors resulting from the use of heuristics. Un-
suspected communities may be interpreted with more confi-
dence and proposed to the user for a substantive analysis.
This is one of the main aims of clustering.

�iii� If solving a given instance proves to be too time
consuming, the exact algorithm may often be stopped and
the best solution found considered as a heuristic one. It is not
uncommon that the optimal solution is found at an early
stage of the resolution. Then, the problem of maximizing
modularity will, in fact, be solved but without a proof of
optimality.

�iv� An exact algorithm can provide a benchmark of ex-
actly solved instances which can be used to compare heuris-
tics and fine tune them. More precisely, the comparison of
the symmetric differences between the optimal solution and
the heuristically obtained ones may suggest additional moves
which improve the heuristic under study. Iterating this ap-
proach with several heuristics may lead to performant hy-
brids. As a rule of thumb, a sophisticated heuristic should be
able to find quickly an optimal solution for most or possibly
all practical instances which can be solved exactly with a
proof of optimality.

�v� Using projection, i.e., fixing some of the communities
found by a heuristic, an exact algorithm can be applied to
this reduced network in order to improve the heuristic solu-
tion �42�.

�vi� Getting improved heuristics will in turn lead to more
efficient exact algorithms. Indeed, there are usually some
steps in such algorithms which can be solved heuristically,
always or most of the time, without forfeiting the guarantee
of optimality. In column generation algorithms, as discussed
below, knowledge of a good or possibly optimal initial solu-
tion enhances stabilization substantially. Heuristics are also
useful in solving the auxiliary problem.

�vii� An exact algorithm can also be used as a tool for the
theoretical study of maximum modularity partitions, e.g., the
fact that they satisfy or not conditions on the number of inner
and of cut edges of communities, or conditions of robustness
�12�.

�viii� With active research, regularly improved math-
ematical programming packages such as CPLEX �43� and
increasing computer power, the size of problems solved ex-
actly is likely to increase substantially with time. A compari-
son with a central problem of Operations Research, i.e., the
traveling salesman problem, illustrates this point. Given a set
of cities and pairwise distances between them, the traveling
salesman problem is to find a minimum length tour visiting
once and only once each city. In 1954, Dantzig, Fulkerson,

and Johnson �44� solved optimally an instance with 49 cities.
In 2009, Applegate et al. �45� were able to solve to optimal-
ity an instance with 85 900 cities.

II. MODULARITY MAXIMIZATION
AS CLIQUE PARTITIONING

A. Row generation

The modularity function was expressed above as a sum of
values over all communities. As shown in �27�, modularity
can also be written as a sum of values over all edges of the
complete graph Kn.

Q =
1

2m
�

i,j�V

aij −

kikj

2m
���ci,cj� , �2�

where m corresponds to the cardinality of E, ki ,kj are the
degrees of vertices i and j, respectively, aij is the ij compo-
nent of the adjacency matrix of G, equal to 1 if vertices i and
j are adjacent, and to 0 otherwise. Finally, ��ci ,cj� is the
Kronecker symbol equal to 1 if the communities ci and cj, to
which i and j belong, are the same, and to 0 otherwise. The
quantity

kikj

2m is the expected number of edges between verti-
ces i and j in a null model where edges are placed at random,
while the distribution of degrees remains the same.

Introducing binary variables xij equal to 1 if vertices i and
j belong to the same module and 0 otherwise, and setting

wij =
1

m

aij −

kikj

2m
� , �3�

modularity maximization can be reformulated as a clique
partitioning problem. Since Kn is complete, it is a clique and
any of its induced subgraphs are cliques also. Partitioning G
is thus equivalent to partitioning Kn into cliques. The result-
ing partition is an equivalence relation, i.e., reflexive, sym-
metric, and transitive. From reflexivity �or the fact that each
entity is in the same module as itself� all xii=1. Thus the sum
of elements on the main diagonal is a constant for all parti-
tions, equal to

− C = − �
i�V

kiki

2m
. �4�

From symmetry, using xij =xji, one can eliminate variables
corresponding to values of indices i� j. The model can then
be written, as in �39,40�,

max �
i�j�V

wijxij − C ,

s.t. xij + xjk − xik � 1 for all 1 � i � j � k � n ,

xij − xjk + xik � 1 for all 1 � i � j � k � n , �5�

− xij + xjk + xik � 1 for all 1 � i � j � k � n ,

xij � �0,1� for all 1 � i � j � n .

This model has n�n−1�
2 variables and 3� n

3 �= n�n−1��n−2�
2

=O�n3� constraints. The first three sets of constraints express

COLUMN GENERATION ALGORITHMS FOR EXACT… PHYSICAL REVIEW E 82, 046112 �2010�

046112-3



transitivity, i.e., if entities i and j are in the same module and
entities j and k are in the same module, then entities i and k
must be in the same module. The fourth �and last� set of
constraints expresses integrality, i.e., edges are present in the
solution entirely or not at all.

Problem �Eq. �5�� is a linear program in 0–1 variables and
thus small instances may be solved by integer linear pro-
gramming packages such as CPLEX. In the solution process,
the linear programming relaxation obtained by replacing the
constraints xij � �0,1� by xij � �0,1� is first solved. If the
optimal solution of this relaxation is in integers, which is
often the case, it corresponds to a partition of maximum
modularity.

Should the solution of the continuous relaxation be frac-
tional, one can branch, or add one or several cutting planes,
i.e., additional linear constraints which cut off the current
fractional solution but do not eliminate any feasible integer
solution. Branching is done by setting a fractional 0–1 vari-
able xij to 1 or 0, i.e., imposing on the one hand that entities
i and j belong to the same community and on the other hand
that they belong to different communities. Two linear pro-
gramming subproblems are thus obtained and their solution
gives bounds valid for the former and the latter case, respec-
tively. These bounds are not larger than the bound given by
the solution of the subproblem on which branching took
place. Branching on a subproblem stops if the value of the
corresponding bound is smaller than that of the best solution
known, or incumbent. As the possible number of branching
choices is finite, the algorithm converges. Choosing a vari-
able xij with value closest to 1

2 balances improvement of both
bounds. These rules and others are discussed in �46�. In prac-
tice, branching is done by CPLEX. Several families of cutting
planes were obtained in �39,40� and could be used as an
alternative or complement to branching.

Note that a similar formulation is presented in �16� but
with constraints of the type xij +xjk−2xik�1 instead of xij
+xjk−xik�1, and so forth. While this does not change the set
of feasible solutions in 0–1 variables, the continuous relax-
ation in the algorithm of �16� will be less tight than that of
Eq. �5�. Consequently, the algorithm is more time consuming
than that of �39� as it is shown in our computational experi-
ments �see Sec. IV below�.

Unfortunately, the number of constraints of problem �Eq.
�5�� grows rapidly with n. Not all of these constraints will be
tight at the optimum. Those which are not could be deleted
without changing the optimal solution but it is not known a
priori which ones they are. Grötschel and Wakabayashi �39�
therefore proposed to add the constraints progressively. More
precisely, they add by batches of 300 those constraints which
are most violated by the current solution. In their experi-
ments on a variety of clustering problems, they found that
only a small number of such constraints were tight at the
optimum and that the solution of the continuous relaxation
was very often integer. Our computation experiments �see
Sec. IV below� show this appears also to be the case for
modularity maximization.

B. Column generation

Column generation is a powerful technique of linear pro-
gramming which allows the exact solution of linear pro-

grams with a number of columns exponential in the size of
the input �there may be billions of them and, in some cases,
much more�. To this effect, it follows the usual steps of the
simplex algorithm, apart from finding an entering column
with a positive reduced cost in case of maximization which
is done by solving an auxiliary problem. The precise form of
this last problem depends on the type of problem under
study. It is often a combinatorial optimization or a global
optimization problem. It can be solved heuristically as long
as a column with a reduced cost of the required sign can be
found. When this is no longer the case, an exact algorithm
for the auxiliary problem must be applied either to find a
column with the adequate reduced cost sign, undetected by
the heuristic, or to prove that there is no such column and
hence the linear programming relaxation is solved. Column
generation has proven to be very useful in the solution of
large clustering problems, e.g., minimum sum-of-squares
clustering �1,47,48�.

For modularity maximization clustering, as for other clus-
tering problems with an objective function additive over the
clusters, the columns correspond to all subsets of V, i.e., to
all nonempty modules.

To express this problem, define ait=1 if vertex i belongs
to module t and to ait=0 otherwise. One can then write the
model as

max �
t�T

ctzt − C , �6�

s.t. �
t�T

aitzt = 1 ∀ i = 1, . . . ,n , �7�

zt � �0,1� ∀ t � T , �8�

where ct=�i� j�iwijaitajt, i.e., the value of the module in-
dexed by t with t=1. . .2n−1.

The objective function �6� of the primal problem ex-
presses that modularity is equal to the sum of modularities of
all selected modules minus a constant corresponding to the
diagonal terms. The first set of constraints �Eq. �7�� expresses
that each entity must belong to one and only one module and
the second set of constraints that modules must be selected
entirely or not at all.

If the integrality constraints �Eq. �8�� are replaced by

zt � 0, ∀ t � T , �9�

the upper bound zt�1 being implied by constraint �Eq. �7��,
one obtains a relaxation of Eqs. �6�–�8� which is a linear
program.

Recall that to any primal linear program is associated an-
other linear program called its dual. This dual program has as
many variables as the primal has constraints and as many
constraints as the primal has variables.

The dual of the relaxation of the problem in Eqs. �6�, �7�,
and �9� can be written

min �
i=1

n

�i − C , �10�

ALOISE et al. PHYSICAL REVIEW E 82, 046112 �2010�

046112-4



s.t. �
i=1

n

ait�i � ct ∀ t � T , �11�

�i � R ∀ i = 1 . . . n . �12�

The objective function �10� of the dual problem �Eqs.
�10�–�12�� is equal to the sum of all dual variables minus a
constant C. The constraints in Eq. �11� express that the sum
of dual variables associated with the entities of any commu-
nity must be at least as large as its modularity. Finally, the
constraints in Eq. �12� express the fact that the dual variables
are unrestricted in sign.

From the duality theorem of linear programming,
the optimal solutions �z1

� ,z2
� , . . . ,zT

�� of the primal and
��1

� ,�2
� , . . . ,�n

�,� of the dual have the same value,

�
t�T

ctzt
� = �

i=1

n

�i
�. �13�

Moreover, any feasible solution of the primal has smaller
or equal value than any solution of the dual. Geometrically,
the sets of feasible solutions of the primal and dual are poly-
hedra. Finding the optimal solution of the primal or of the
dual amounts to finding an optimal vertex and the corre-
sponding cone in either of these polyhedra.

Problem described by Eqs. �6�, �7�, and �9� is called the
master problem. It is the relaxation of a partitioning problem
which can in principle be solved by a package such as
CPLEX. However, as the number of columns is exponential,
this is possible only for very small n. To overcome these
difficulties, one resorts to column generation. Following that
approach a reduced master problem with considerably fewer
columns is solved instead of the full master problem �Eqs.
�6�, �7�, and �9��. As usual in the branch and bound approach
to mixed integer programming, one first solves the continu-
ous relaxation of this restricted master problem. One begins
with a relaxed problem containing some feasible columns
and possibly artificial variables. Then improving columns
will be added progressively. Finding such column�s� is the
auxiliary problem whose role is to find a column with posi-
tive �negative� reduced cost in case of maximization �mini-
mization�. For problem �Eqs. �6�, �7�, and �9��, the reduced
cost associated with column t will be equal to ct−�i�iait
where the �i are the current values of the dual variables of
the continuous relaxation of problem �Eqs. �6�, �7�, and �9��.
Replacing the coefficients ait by binary variables yi leads to
the following expression of the auxiliary problem,

max
y�Bn

�
i

�
j�i

wijyiyj − �
i

�iyi.

This is a quadratic program in 0–1 variables with a 100%
dense matrix of coefficients. Many algorithms and numerous
heuristics have been proposed to solve it. In our experiments,
we use a Variable Neighborhood Search �VNS� heuristic
�49,50� as long as it can find a column with positive reduced
cost. VNS is a metaheuristic, i.e., a framework for building
heuristics, based on the idea of systematic change of neigh-
borhood during the search. It explores progressively larger
neighborhoods of the incumbent �or best known� solution in

a probabilistic way. Therefore, often favorable characteristics
of the incumbent will be kept and used to obtain promising
neighboring solutions. VNS applies a local search routine re-
peatedly to get from these neighboring solutions to local op-
tima.

When VNS fails to find an improving column, we use as
exact method a simple branch and bound algorithm �51� or a
recent algorithm using bounds based on semidefinite pro-
gramming �52�.

It is well known that column generation algorithms suffer
from slow convergence particularly when the optimal solu-
tion is degenerate, i.e., when such a solution has many vari-
ables equal to 0, which is the case for clustering problems.
Column generation algorithms also suffer from the plateau
effect, i.e., the optimal solution keeps the same value for
several or many iterations �53�.

To alleviate these defects, one can use a variant of the
stabilization methods for column generation due to du Merle
et al. �54�, which we call focussed column generation.

The principle is to identify, from a heuristic solution, a
small region in the space of dual variables hopefully contain-
ing the optimal solution ��1

� ,�2
� , . . . ,�n

�,�. Then departures
from this zone are penalized. To that effect, we first seek a
good heuristic solution of the modularity maximization prob-
lem. Recently, Noack and Rotta �55� compared experimen-
tally codes for eight heuristics. We used the SS+ML heuris-
tic which is the best according to their experiments, i.e.,
Single-Step greedy coarsening by Significance with Multi-
Level Fast Greedy refinement �SS+ML�. This heuristic so-
lution can be further improved by a local application of
modularity maximization to each pair of modules at a time
�42�. Then, a dual solution is derived from this last heuristic
primal solution, and intervals hopefully containing the opti-
mal values are determined. This is done by computing the
increase �respectively, the decrease� of the objective function
value if a vertex is duplicated �respectively, removed�. Pen-
alties for getting out of these intervals are imposed and pro-
gressively diminished until they get down to 0. Details on
this method are given in �54�.

III. MODULARITY MAXIMIZATION BY MIXED 0–1
QUADRATIC PROGRAMMING

A. Direct formulation

Maximizing modularity by the clique partitioning ap-
proach discussed in Sec. II has a drawback: it replaces a
usually sparse matrix of coefficients by a 100% dense one.
An alternative approach is to work directly with a graph G
= �V ,E� instead of the complete graph Kn. This was done by
Xu, Tsoka, and Papageorgiou �41� and leads to a 0–1 mixed
integer quadratic problem whose continuous relaxation is
convex, and which can therefore be solved by CPLEX. We
next recall the main elements of Xu et al.’s model as they
provide the necessary background for a new column genera-
tion algorithm described in the second part of this section.
Considering again the definition of Q as a sum over modules
of their modularities rewrite Q as

COLUMN GENERATION ALGORITHMS FOR EXACT… PHYSICAL REVIEW E 82, 046112 �2010�

046112-5



Q = �
s

�as − es� = �
s
�ms

m
− 
 Ds

2m
�2 , �14�

where ms denotes the number of edges in module s, i.e., the
subgraph induced by the set of vertices Vs�V and Ds de-
notes the sum of degrees ki of the vertices of module s.
Binary variables are then used to identify the modules to
which each vertex and each edge belongs. To this effect, list
all edges with a single index r=1,2 , . . . ,m. Then, introduce
the following variables:

Xrs = �1 if edge r belongs to module s

0 otherwise,
�

for r=1,2 , . . .m and s=1,2 , . . .M and

Yis = �1 if vertex i belongs to module s

0 otherwise.
�

The number of edges and sum of vertex degrees can then
be expressed as

ms = �
r

Xrs

and

Ds = �
i

kiYis.

A second series of constraints express that each vertex
belongs to exactly one module,

�
s

Yis = 1 ∀ i = 1,2, . . . n .

A third series of constraints express that any edge r
= �vi ,v j� with end vertices indiced by i and j can only belong
to module s if both of those end vertices belong to that mod-
ule.

Xrs � Yis ∀ r = �vi,v j� � E ,

Xrs � Y js ∀ r = �vi,v j� � E .

Note that these constraints are part of Fortet’s �56� linear-
ization of quadratic 0–1 programs. They impose that Xrs=0 if
either Yis or Y js or both are equal to 0. They do not impose
that Xis is equal to 1 if Yis=Y js=1. Although the constraints
Xrs�Yis+Y js−1 could be added to impose that, this is not
necessary as adding an edge between vertices i and j when
they are in the same module increases ms and hence Q.

The number of modules is a priori unknown; indicator
variables us=1 if module s is nonempty and us=0 otherwise
are used. Then constraints

us � us−1 ∀ s � 2,3, . . . S ,

where S is an upper bound on the number of modules, are
added and express that module s can be nonempty only if
module s−1 is so.

Consequently,

�
r

Xrs � us

and

�
r

Xrs � �n − s + 1�us.

The value n−s+1 in the latter constraints is due to the fact
that each of the modules 1 ,2 , . . .s−1 must be nonempty. In
fact, Xu et al. use more general parametric formulas which
allow imposing lower and upper bounds on the cardinality of
the modules.

It is well-known that for any given solution to a clustering
problem, alternative equivalent solutions can be obtained by
simply reindexing clusters. For an optimal solution with M
modules, M! equivalent solutions exist. Symmetry-breaking
constraints for clustering problems can be found in the lit-
erature �57–59�, and were used in �41�. Such symmetry
breaking constraints notwithstanding, this problem has M�n
+m� binary variables and M continuous variables, subject to
M�1+2m+2n� linear constraints.

B. Column generation reformulation

Once again, a linear programming master problem will be
solved by the simplex algorithm where the entering column
will be determined by solving an auxiliary problem. The
master problem will be the same as in the previous column
generation algorithm, i.e., its equations are given in Eqs. �6�,
�7�, and �9� of Sec. II B. The auxiliary problem will be dif-
ferent from the quadratic 0–1 program used in the clique
partitioning formulation. It will be close to the formulation
of Xu et al. �41� described in Sec. III A, but much simpler.
As a single community is to be determined at a time, it can
be written as follows:

max
x�Bn,D�R

�
r

xr

m
− 
 D

2m
�2

− �
i

�iyi,

s.t. D = �
i

kiyi,

xr � yi ∀ r = �i, j� � E ,

xr � yj ∀ r = �i, j� � E .

As before, edges are indexed by r and vertices by i �or j�.
Variable xr is equal to 1 if edge r belongs to the community
which maximizes the objective function and to 0 otherwise.
Similarly, yi is equal to 1 if the ith vertex belongs to the
community and 0 otherwise. The objective function is equal
to the modularity of the community to be determined minus
the scalar product of the current value �i of the dual variables
times the indicator variable yi. Observe that this last term is
the same as in the objective function of the auxiliary problem
for clique partitioning. This is a mixed integer quadratic
problem with n+m binary variables and 1 continuous vari-
able, in the objective function, subject to 2m+1 linear con-

ALOISE et al. PHYSICAL REVIEW E 82, 046112 �2010�

046112-6



straints. In the objective function there is a single concave
nonlinear term. Clearly, the size of this auxiliary problem is
much smaller than that of the direct formulation described in
Sec. III A, particularly for large number of communities M.
This auxiliary problem is first solved with a VNS heuristic as
long as a column with a positive reduced cost can be found.
When this is no more the case, CPLEX is called to find such a
column or prove that there are no more.

IV. COMPUTATIONAL COMPARISON

To compare the four algorithms described in the previous
sections, we selected 11 test problems from the modularity

maximization literature. Their names, orders and sizes are
given in Table I.

The data of these test problems can be found in various
databases mentioned in a recent paper from Noack and
Rotta. Note that we always assume unit edge weights.

Results are given in Table II. The first column gives the
problem ID as in Table I, the next six columns give the
modularity value �Q� and the number of modules �M� for:
�a� the solution obtained by Noack-Rotta’s heuristic �NR
Sol�; �b� the improved solution obtained from Noack-Rotta’s
solution �Imp Sol�; �c� the optimal solution �Opt Sol�.

The remaining columns summarize the performance of
the different exact algorithms:

�i� CPRG: clique partitioning row generation of �39�;
�ii� CPCG-HJM: clique partitioning column generation

with the exact method of �51� for the auxiliary problem;
�iii� CPCG-BE: clique partitioning column generation

with the exact method of �52� for the auxiliary problem;
�iv� 0–1 MIQP: 0–1 mixed integer programming formu-

lation of �41�;
�v� 0–1 MICG: 0–1 mixed integer column generation.
For CPRG column, the CPU time is reported when pos-

sible or an “OM” is used to indicate that the program reaches
the memory limit. The formulation of �39� is implemented in
AMPL �60� and solved using the “lazy constraints” feature of
CPLEX. We do not present the results for the formulation of
�16� as it is much more time consuming. For example, the
solution of Problem 1 takes 674 s instead of 0.23 s.

For the 0–1 MIQP column, we give the CPU time re-
ported in �41� or indicate by “NA” the problem not consid-
ered in �41�. It was not possible for us to obtain comparable

TABLE I. Name, order and size of 11 test problems. All net-
works are undirected, unweighted and without loops.

Problem ID Name n m

1 Zachary’s karate club 34 78

2 Dolphins social network 62 159

3 Les Misérables 77 254

4 A00_main 83 135

5 Protein p53 104 226

6 Books about U.S. politics 105 441

7 American College Football 115 613

8 A01_main 249 635

9 USAir97 332 2126

10 Netscience_main 379 914

11 Electronic Circuit �s838� 512 819

TABLE II. Results of the comparison between algorithms for modularity maximization, in terms of CPU time, on the 11 test problems
described in Table I. These algorithms are: the clique partitioning row generation of �39� �CPRG�, the clique partitioning column generation
with the exact method of �51� for the auxiliary problem �CPCG-HJM�, the clique partitioning column generation with the exact method of
�52� for the auxiliary problem �CPCG-BE�, the 0–1 mixed integer programming formulation of �41� �0–1 MIQP�, the 0–1 mixed integer
column generation �0–1 MICG�. In parentheses, the number of calls to the exact algorithm for the auxiliary problem and the number of calls
to the heuristic for the same purpose are shown. NR Sol, Imp Sol, and Opt Sol denote, respectively, the solution obtained by Noack-Rotta’s
heuristic, the improved solution obtained from that heuristic solution �42� and the optimal solution. Q and M are the modularity value and
the number of modules. Results for CPRG were known for problems 1–2-3–6-7 �13�, as well as results for 0–1 MIQP for problems 1–2-3–5
�41�. The other results are new and show superiority of column generation. Best results are reported in boldface. OM: memory limit attained
�on a computer with a 3GB RAM�; OT: optimal solution not found after 100 000 s; NA: test problem not considered.

Pb. NR Sol Imp Sol Opt Sol CPRG CPCG- 0–1 MIQP 0–1 MICG

ID Q M Q M Q M HJM BE

1 0.4198 4 0.4198 4 0.4198 4 0.23 0.18 �3/7� 0.73 �3/7� 1.03 0.34 �3/8�
2 0.5238 4 0.5285 5 0.5285 5 9.70 7.49 �1/13� 18.69 �1/13� 197.89 7.75 �1/13�
3 0.5600 6 0.5600 6 0.5600 6 5.07 6.89 �1/13� 12.92 �1/13� 55.58 7.26 �1/13�
4 0.5251 7 0.5283 9 0.5309 9 17.09 3.57 �1/26� 262.13 �1/26� NA 3.66 �1/26�
5 0.5322 7 0.5350 6 0.5351 7 4164.15 11.33 �1/44� 351.87 �1/44� 1844.31 11.60 �1/44�
6 0.5269 4 0.5272 5 0.5272 5 663.05 318.99 �2/13� 32287.23 �2/13� NA 45.65 �2/13�
7 0.6002 10 0.6046 10 0.6046 10 282.58 OT 593.01 �1/8� NA 249.41 �1/8�
8 0.6203 12 0.6203 12 0.6329 14 OM OT OT NA 1014.48 �12/145�
9 0.3658 6 0.3660 6 0.3682 6 OM OT OT NA 16216.77 �3/104�

10 0.8474 19 0.8485 19 0.8486 19 OM OT OT NA 1615.14 �12/66�
11 0.8162 16 0.8166 16 0.8194 12 OM OT OT NA 7655.56 �140/225�

COLUMN GENERATION ALGORITHMS FOR EXACT… PHYSICAL REVIEW E 82, 046112 �2010�

046112-7



computing time as the parameters setting used to obtain these
results were not detailed in the paper.

For the column generation algorithms, the table contains
CPU time as well as, in parentheses, the number of calls for
the exact algorithm for the auxiliary problem followed by the
number of calls to the heuristic. The term “OT” means that
the optimal solution could not be found after more than
100 000 s.

All results are in seconds of CPU. Except for 0–1 MIQP,
all results were obtained on a dual processor computer Intel
Pentium computer with 3.20 GHz, 2 Mb cache memory, 3
GB RAM running under Linux. ILOG CPLEX 10.110 was
used for the linear programming part of all algorithms.

From Table II it appears that:
�i� Surprisingly, in view of the many heuristics proposed

for modularity maximization, those applied here seldom
reach the optimal value: in 2 cases out of 11 of Noack and
Rotta and 5 cases out of 11 for the improved heuristic;

�ii� Both row generation and column generation algo-
rithms based on reformulation of modularity maximization
as a clique partitioning problem are competitive for small
instances, but become too time or memory consuming for
larger ones due to the rapid increase in the number of vari-
ables and constraints;

�iii� For the largest instances, the 0–1 MICG algorithm
appears to be the only one able to find an optimal solution;

�iv� The reduction in resolution times in comparison of
the results of �41� are very substantial: the use of 0–1 MICG
algorithm divides these times by a factor of 3 to 159;

�v� The size of the largest problem solved is raised from
105 entities to 512 entities. Larger problems could not be
solved because of memory or time limit reached by all the
considered algorithms.

In summary, the column generation algorithm reformu-
lated from �41� direct formulation �0–1 MICG� appears to be
the best choice since its computing time is comparable for
small instances, lower for medium instances and is the only
algorithm able to solve large instances to optimality.

We note that the four exact algorithms that we compared
provided the same partitions on all the tested data sets. This
does not imply that alternate optimal partitions do not exist,
but should they do they are not likely to be very numerous.

V. CONCLUSIONS

In this paper, we have studied exact maximization of the
modularity of a network according to the definition of New-

man and Girvan. Two approaches were proposed previous to
this work: on the one hand the row generation algorithm of
�39� to which modularity maximization can be reduced and
on the other hand the direct formulation of Xu et al. �41�. We
have proposed column generation algorithms based on these
two approaches and performed a computation comparison on
a series of well-known problems from the literature. These
results show that: �i� while row generation is fast for small
problems, it is outperformed by column generation for larger
ones; �ii� the column generation algorithm based on direct
formulation performs best for the larger problems; �iii� size
of the larger problems has substantially augmented: the larg-
est problem solved to date has 512 entities versus 105 enti-
ties before; �iv� computation times are substantially reduced.
While it would of course be desirable to solve exactly larger
problems, the results obtained by the proposed algorithm al-
ready appear to be useful for the several reasons detailed in
the introduction.

It is easy to see that the first two approaches can also be
applied to several variants of the standard modularity defini-
tion, i.e., weighted networks, directed networks, and net-
works which are both directed and weighted �61�. Moreover,
the column generation framework is easily adaptable to yield
exact algorithms for other definitions of communities than
those of Newman and Girvan, allowing comparison which
do not depend on the specific heuristic used.

Among topics for future research are �i� the design of
better heuristics, �ii� the use of cutting planes in the solution
of the master problem and/or the auxiliary problem, �iii� a
further study of the properties of the auxiliary problem which
might lead to improvements in its resolution. The importance
of this last point stems from the fact that the proportion of
the resolution time devoted to the resolution of the auxiliary
problem tends to increase with problem size.

ACKNOWLEDGMENTS

Financial support by Grants ANR 07-JCJC-0151 “ARS,”
Digiteo 2009-14D “RMNCCO,” Digiteo 2009-55D “ARM,”
are gratefully acknowledged. P.H. acknowledges support
from Digiteo Foundation. S.P. has been supported by the
NSERC �Natural Sciences and Engineering Research Coun-
cil of Canada� Grant No. 327435-06. G.C., P.H., and S.P.
would like to thank the research office of HEC Montreal for
support of their participation to the 2009-2010 research
workshop.327435-06

�1� P. Hansen and B. Jaumard, Math. Program. 79, 191 �1997�.
�2� A. Jain, M. Murty, and P. Flynn, ACM Comput. Surv. 31, 264

�1999�.
�3� L. Kaufman and P. Rousseeuw, Finding Groups in Data: An

Introduction to Cluster Analysis, Wiley Series in Probability
and Statistics �Wiley, New York, 2005�.

�4� B. Mirkin, Clustering for Data Mining: A Data Recovery Ap-
proach �Chapman and Hall; CRC, Boca Raton, FL, 2005�.

�5� F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Pa-
risi, Proc. Natl. Acad. Sci. U.S.A. 101, 2658 �2004�.

�6� Z. Li, S. Zhang, R.-S. Wang, X.-S. Zhang, and L. Chen, Phys.
Rev. E 77, 036109 �2008�.

�7� A. D. Medus and C. O. Dorso, Phys. Rev. E 79, 066111
�2009�.

�8� S. Cafieri, P. Hansen, and L. Liberti, Phys. Rev. E 81, 026105
�2010�.

ALOISE et al. PHYSICAL REVIEW E 82, 046112 �2010�

046112-8

http://dx.doi.org/10.1007/BF02614317
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1103/PhysRevE.77.036109
http://dx.doi.org/10.1103/PhysRevE.77.036109
http://dx.doi.org/10.1103/PhysRevE.79.066111
http://dx.doi.org/10.1103/PhysRevE.79.066111
http://dx.doi.org/10.1103/PhysRevE.81.026105
http://dx.doi.org/10.1103/PhysRevE.81.026105


�9� M. Newman and M. Girvan, Phys. Rev. E 69, 026113 �2004�.
�10� C. P. Massen and J. P. K. Doye, Phys. Rev. E 71, 046101

�2005�.
�11� S. Fortunato and M. Barthelemy, Proc. Natl. Acad. Sci. U.S.A.

104, 36 �2007�.
�12� X. S. Zhang, R. S. Wang, Y. Wang, J. Wang, Y. Qiu, L. Wang,

and L. Chen, EPL 87, 38002 �2009�.
�13� S. Cafieri, P. Hansen, and L. Liberti, Phys. Rev. E 81, 046102

�2010�.
�14� J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész, Fluct.

Noise Lett. 7, L209 �2007�.
�15� J.-G. Wang, L. Wang, Y.-Q. Qui, Y. Wang, and X.-S. Zhang, in

Proceedings of the Third International Symposium on Optimi-
zation and Systems Biology, Zhangjiajie, China, Vol. 11 of
Lecture Notes in Operations Research, edited by L. Chen,
X.-S. Zhang, L.-Y. Wu, and Y. Wang �World Publishing Corp.,
Beijing, 2009�, pp. 142–150.

�16� U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z.
Nikoloski, and D. Wagner, IEEE Trans. Knowl. Data Eng. 20,
172 �2008�.

�17� M. E. J. Newman, Phys. Rev. E 69, 066133 �2004�.
�18� A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,

066111 �2004�.
�19� L. Danon, A. Diaz-Guilera, and A. Arenas, J. Stat. Mech.:

Theory Exp. �2006� P11010.
�20� K. Wakita and T. Tsurumi, e-print arXiv:cond-mat/0702048.
�21� V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, J.

Stat. Mech.: Theory Exp. �2008� P10008.
�22� R. Guimerà and L. A. Nunes Amaral, Nature �London� 433,

895 �2005�.
�23� A. Medus, G. Acuna, and C. Dorso, Physica A 358, 593

�2005�.
�24� S. Lehmann and L. Hansen, Eur. Phys. J. B 60, 83 �2007�.
�25� M. Tasgin, A. Herdagdelen, and H. Bingol, e-print

arXiv:0711.0491.
�26� J. Duch and A. Arenas, Phys. Rev. E 72, 027104 �2005�.
�27� M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 103, 8577

�2006�.
�28� T. Richardson, P. J. Mucha, and M. A. Porter, Phys. Rev. E 80,

036111 �2009�.
�29� Y. Sun, B. Danila, K. Josic, and K. E. Bassler, EPL 86, 28004

�2009�.
�30� G. Agarwal and D. Kempe, Eur. Phys. J. B 66, 409 �2008�.
�31� S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, and A.

Rapisarda, Phys. Rev. E 75, 045102�R� �2007�.
�32� H. N. Djidjev, Lect. Notes Comput. Sci. 4936, 117 �2008�.
�33� J. Mei, S. He, G. Shi, Z. Wang, and W. Li, New J. Phys. 11,

043025 �2009�.
�34� P. Schuetz and A. Caflisch, Phys. Rev. E 77, 046112 �2008�.

�35� Y. Niu, B. Hu, W. Zhang, and M. Wang, Physica A 387, 6215
�2008�.

�36� D. Chen, Y. Fu, and M. Shang, Physica A 388, 2741 �2009�.
�37� J. Ruan and W. Zhang, Phys. Rev. E 77, 016104 �2008�.
�38� Y. Fan, M. Li, P. Zhang, J. Wu, and Z. Di, Physica A 377, 363

�2007�.
�39� M. Grötschel and Y. Wakabayashi, Math. Program. 45, 59

�1989�.
�40� M. Grötschel and Y. Wakabayashi, Math. Program. 47, 367

�1990�.
�41� G. Xu, S. Tsoka, and L. Papageorgiou, Eur. Phys. J. B 60, 231

�2007�.
�42� S. Cafieri, P. Hansen, and L. Liberti, Matheuristics 2010 �Vi-

enna, 2010�.
�43� ILOG, ILOG CPLEX 11.0 User’s Manual, ILOG S.A �Gentilly,

France, 2008�.
�44� G. Dantzig, R. Fulkerson, and S. Johnson, Oper. Res. 2, 393

�1954�.
�45� D. Applegate, R. Bixby, V. Chvátal, W. Cook, D. Espinoza, M.

Goycoolea, and K. Helsgaun, Oper. Res. Lett. 37, 11 �2009�.
�46� T. Achterberg, T. Koch, and A. Martin, Oper. Res. Lett. 33, 42

�2005�.
�47� O. du Merle, P. Hansen, B. Jaumard, and N. Mladenovic,

SIAM J. Sci. Comput. �USA� 21, 1485 �1999�.
�48� D. Aloise, P. Hansen, and L. Liberti, Math. Program. �to be

published�.
�49� N. Mladenovic and P. Hansen, Comput. Oper. Res. 24, 1097

�1997�.
�50� P. Hansen and N. Mladenovic, Eur. J. Oper. Res. 130, 449

�2001�.
�51� P. Hansen, B. Jaumard, and C. Meyer, Les Cahiers du GERAD

Report No. G-2000–59, 2000 �unpublished�.
�52� A. Billionnet and S. Elloumi, Math. Program. 109, 55 �2007�.
�53� F. Vanderbeck and M. Savelsbergh, Oper. Res. Lett. 34, 296

�2006�.
�54� O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, Dis-

crete Math. 194, 229 �1999�.
�55� A. Noack and R. Rotta, Lect. Notes Comput. Sci. 5526, 257

�2009�.
�56� R. Fortet, Cahier du centre d’études de recherche opéra-

tionnelle 1, 5 �1959�.
�57� G. Klein and J. Aronson, Naval Research Logistics 38, 447

�1991�.
�58� H. Sherali and J. Desai, J. Global Optim. 32, 281 �2005�.
�59� F. Plastria, Eur. J. Oper. Res. 140, 338 �2002�.
�60� R. Fourer and D. Gay, The AMPL Book �Duxbury Press, Pa-

cific Grove, 2002�.
�61� S. Fortunato, Phys. Rep. 486, 75 �2010�.

COLUMN GENERATION ALGORITHMS FOR EXACT… PHYSICAL REVIEW E 82, 046112 �2010�

046112-9

http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.71.046101
http://dx.doi.org/10.1103/PhysRevE.71.046101
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1209/0295-5075/87/38002
http://dx.doi.org/10.1103/PhysRevE.81.046102
http://dx.doi.org/10.1103/PhysRevE.81.046102
http://dx.doi.org/10.1142/S0219477507003854
http://dx.doi.org/10.1142/S0219477507003854
http://dx.doi.org/10.1109/TKDE.2007.190689
http://dx.doi.org/10.1109/TKDE.2007.190689
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1088/1742-5468/2006/11/P11010
http://dx.doi.org/10.1088/1742-5468/2006/11/P11010
http://arXiv.org/abs/arXiv:cond-mat/0702048
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1016/j.physa.2005.04.022
http://dx.doi.org/10.1016/j.physa.2005.04.022
http://dx.doi.org/10.1140/epjb/e2007-00313-2
http://arXiv.org/abs/arXiv:0711.0491
http://dx.doi.org/10.1103/PhysRevE.72.027104
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1103/PhysRevE.80.036111
http://dx.doi.org/10.1103/PhysRevE.80.036111
http://dx.doi.org/10.1209/0295-5075/86/28004
http://dx.doi.org/10.1209/0295-5075/86/28004
http://dx.doi.org/10.1140/epjb/e2008-00425-1
http://dx.doi.org/10.1103/PhysRevE.75.045102
http://dx.doi.org/10.1007/978-3-540-78808-9_11
http://dx.doi.org/10.1088/1367-2630/11/4/043025
http://dx.doi.org/10.1088/1367-2630/11/4/043025
http://dx.doi.org/10.1103/PhysRevE.77.046112
http://dx.doi.org/10.1016/j.physa.2008.07.008
http://dx.doi.org/10.1016/j.physa.2008.07.008
http://dx.doi.org/10.1016/j.physa.2009.03.022
http://dx.doi.org/10.1103/PhysRevE.77.016104
http://dx.doi.org/10.1016/j.physa.2006.11.036
http://dx.doi.org/10.1016/j.physa.2006.11.036
http://dx.doi.org/10.1007/BF01589097
http://dx.doi.org/10.1007/BF01589097
http://dx.doi.org/10.1007/BF01580870
http://dx.doi.org/10.1007/BF01580870
http://dx.doi.org/10.1140/epjb/e2007-00331-0
http://dx.doi.org/10.1140/epjb/e2007-00331-0
http://dx.doi.org/10.1287/opre.2.4.393
http://dx.doi.org/10.1287/opre.2.4.393
http://dx.doi.org/10.1016/j.orl.2008.09.006
http://dx.doi.org/10.1016/j.orl.2004.04.002
http://dx.doi.org/10.1016/j.orl.2004.04.002
http://dx.doi.org/10.1137/S1064827597328327
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/S0377-2217(00)00100-4
http://dx.doi.org/10.1016/S0377-2217(00)00100-4
http://dx.doi.org/10.1007/s10107-005-0637-9
http://dx.doi.org/10.1016/j.orl.2005.05.009
http://dx.doi.org/10.1016/j.orl.2005.05.009
http://dx.doi.org/10.1016/S0012-365X(98)00213-1
http://dx.doi.org/10.1016/S0012-365X(98)00213-1
http://dx.doi.org/10.1007/978-3-642-02011-7_24
http://dx.doi.org/10.1007/978-3-642-02011-7_24
http://dx.doi.org/10.1002/1520-6750(199106)38:3<447::AID-NAV3220380312>3.0.CO;2-0
http://dx.doi.org/10.1002/1520-6750(199106)38:3<447::AID-NAV3220380312>3.0.CO;2-0
http://dx.doi.org/10.1007/s10898-004-2706-7
http://dx.doi.org/10.1016/S0377-2217(02)00073-5
http://dx.doi.org/10.1016/j.physrep.2009.11.002

