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We study bond percolations on hierarchical scale-free networks with the open bond probability of the
shortcuts p̃ and that of the ordinary bonds p. The system has a critical phase in which the percolating
probability P takes an intermediate value 0� P�1. Using generating function approach, we calculate the
fractal exponent � of the root clusters to show that � varies continuously with p̃ in the critical phase. We
confirm numerically that the distribution ns of cluster size s in the critical phase obeys a power law ns�s−�,
where � satisfies the scaling relation �=1+�−1. In addition the critical exponent ��p̃� of the order parameter
varies as p̃, from ��0.164 694 at p̃=0 to infinity at p̃= p̃c=5 /32.
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I. INTRODUCTION

Dynamics on and of complex networks have been one of
the focuses of attentions since late 1990s �1–3�. Real net-
works, e.g., WWW, Internet, food-web, often have complex
properties such as scale-free degree distribution �4�, small-
world property �5�, etc., to demand more extensive frame-
work of statistical physics to investigate the interplay be-
tween dynamics and such network topology. Many analytical
and numerical works about the effects of network topology
on processes such as percolation, interacting spin systems,
epidemic processes, have been reported �6�.

Among these issues, unusual phase transitions of percola-
tions and spin systems on some networks have attracted our
current interests �7–16�. For example, the percolations on
some growing network models undergo an infinite order
transition with a Berezinskii-Kosterlitz-Thouless (BKT)-like
singularity: �i� the relative size of the largest component van-
ishes in an essentially singular way at the transition point, so
that the transition is of infinite order, and �ii� the mean num-
ber ns of clusters with size s per node �or the cluster size
distribution in short� decays in a power-law fashion with s,

ns � s−�, �1�

in a finite region below the transition point where no giant
component exists �7–11�. A similar nonordered phase with
some power-law behavior, a critical phase, has also been
observed in bond percolations on the enhanced binary tree
�17–19�, which is one of nonamenable graphs �NAGs�
�20,21�. The system on a NAG takes three distinct phases
according to the open bond probability p as follows: �i� the
nonpercolating phase �0� p� pc1� in which only finite size
clusters exist, �ii� the critical phase �pc1� p� pc2� in which
there are infinitely many infinite clusters, and �iii� the perco-
lating phase �pc2� p�1� in which the system has a unique

infinite cluster. Here infinite cluster means a cluster whose
mass diverges with system size N as N� with 0���1. To
profile the critical phase it is useful to calculate the fractal
exponent �L defined as smax�N�L, where smax is the mean
size of the largest components in the system with N nodes.
Note that �L corresponds to df /d for percolating clusters
having the fractal dimension df on d-dimensional Euclidean
lattices. Recent paper �17� has shown numerically that the
above phases are characterized as �i� �L�p�=0 for p� pc1,
�ii� continuously increasing of �L�p� �0��L�p��1� with p,
where ns also behaves as Eq. �1� with p-dependent �
satisfying

� = 1 + �L
−1, �2�

for pc1� p� pc2, and �iii� �L�p�=1 for p	 pc2. The scaling
relation �2� indicates that �L plays a role of the natural cutoff
exponent of ns as shown in the growing random tree in
which pc1=0 and pc2=1 �11�. In general the growing random
networks are considered to have pc1=0 with finite pc2
�7–10�.

There exist other systems having a similar phase. They
are in a special class of hierarchical scale-free networks,
called �decorated� �u ,v�-flower introduced comprehensively
in �22,23�. Berker et al. �16� have studied bond percolations
on the decorated �2,2�-flower by renormalization group �RG�
to show the existence of a critical phase �as known as the
partially ordered phase �24��, where RG flow converges onto
the line of nontrivial stable fixed points. But we have little
knowledge about physical properties of the critical phase,
i.e., how it is critical.

In this paper, we investigate bond percolations on the
decorated �2,2�-flower with two different probabilities p̃ and
p, which are the open bond probability of the shortcuts and
that of the ordinary bonds, respectively. Here we adopt a
generating function approach to calculate the fractal expo-
nent, the cluster size distribution, and the order parameter for
an arbitrary combination of p and p̃, to reveal a complete
picture about the phases of this model. Our calculations
show �i� the fractal exponent � and � of the order parameter
depend on the existing probability p̃ of the shortcuts, and �ii�
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ns is a power law at all the point in the critical phase, and its
exponent � also depends on p̃.

The organization of this paper is as follows: In Sec. II, we
introduce the �2,2�-flower and the decorated �2,2�-flower, and
briefly review the previous studies for the percolation on the
flowers �16,22,23�. In Sec. III, we introduce the generating
functions, and derive those recursion relations to calculate
the order parameter, fractal exponent, and cluster size distri-
bution. The main results are presented in Sec. IV, and Sec. V
is devoted to summary.

II. MODEL

In this section we briefly introduce the �2,2�-flower and
the decorated �2,2�-flower. The �2,2�-flower Fn of the nth
generation is constructed recursively as illustrated in Fig. 1.
At n=0, the flower F0 consists of two nodes connected by a
bond. Hereafter we call these nodes roots. For n
1, Fn is
obtained from Fn−1, such that each existing bond in Fn−1 is
replaced by two parallel paths consisting of two bonds each.

The decorated �2,2�-flower F̃n, a variant of the �2,2�-flower
Fn, is given by adding shortcuts to Fn, as illustrated in Fig.
1�d�.

The network properties of these two flowers have been
reported in �22,23�. The number of nodes Nn of the nth gen-
eration is Nn=2�4n+2� /3 and the degree distribution has a
scale-free form P�k��k−� with �=3 for both flowers. One of

the important differences between Fn and F̃n appears in those
dimensionality. Since the diameter Ln of Fn is Ln=2n, the
dimension d of the underlying network defined as Nn�Ln

d is

2. On the other hand F̃n is known to have small-world prop-

erty Ln� ln Nn corresponding to d��. In addition F̃n has a

high clustering coefficient C�0.820, in contrast to C=0 for
Fn.

In the present work we consider the bond percolation on

F̃n with the open bond probability p of the bonds constituting
Fn �the ordinary bonds� and that of the shortcuts p̃ being
given independently. The standard bond percolation on Fn

and F̃n are given by setting p̃=0 and p̃= p, respectively. Note

that the latter is also given by setting p=0 because F̃n with

p= p̃ and F̃n+1 with p=0 is exactly the same.
The phase diagram is solved exactly by RG technique

�16,22�. Let P�n� be a probability that both roots are in the

same cluster of a bond configuration on F̃n with fixed p̃. The
initial value is set to P�0�= p. In the large size limit, the sys-
tem is regarded as percolating if Pª limn→� P�n� is nonzero.
In this sense P or P�n� is called the percolation probability.
Since P�n� is given recursively as

P�n+1� = 1 − �1 − p̃��1 − �P�n��2�2, �3�

one obtains the flow diagram from the solution of the equa-
tion �Fig. 2�. For 0� p̃� p̃c=5 /32, there are two nonzero
stable fixed points, P= p��p̃��1 and P=1, corresponding to
the partially ordered phase and the ordered phase, respec-
tively, and one unstable fixed point between the two giving
the phase boundary, P= pc�p̃�. For p̃	 p̃c, on the other hand,
there is only one stable fixed point at P=1, so that the system
is always percolating.

Two special cases, p̃=0 and p̃= p, were investigated in
�22�. Here let us recall their results briefly. For the case of
p̃=0, i.e., the standard bond percolation on Fn, Eq. �3� gives
the critical point pc�p̃=0�= ��5−1� /2. A simple RG argu-

FIG. 3. Schematic for generating functions �a� Tn�x�, �b�
Sn�x ,y�, and �c� Un�x�. The open circles represent the root nodes.

FIG. 1. �Color online� Construction of the �2,2�-flower Fn and

the decorated �2,2�-flower F̃n. �a� Each bond is replaced by two
parallel paths consisting of two bonds each at next generation. �b�
The flower Fn+1 of the n+1-th generation is obtained by joining
four copies of Fn. �c� Realization of Fn with n=0,1 ,2 ,3. �d� Real-

ization of F̃n with n=0,1 ,2 ,3. F̃n is obtained by adding the short-
cuts �orange-dashed line in bond replacement �a�� to Fn. The short-
cuts are not replaced by others in each iteration.
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FIG. 2. �Color online� Phase diagram of the bond percolation on
the decorated �2,2�-flower �16�. The bold blue-solid and the bold
red-dashed lines denote p��p̃� �stable fixed point� and pc�p̃� �un-
stable fixed point�, respectively. The shaded region represents the
critical phase.
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ment then gives the critical exponents at pc; the exponent
��0.164 694 of the order parameter, i.e., the fraction of the
largest component P���p− pc��, and �1.63528 of the cor-
relation length ���p− pc�−, which are close to those of the
two dimensional regular systems. On the other hand the
same argument for p̃= p gives the infinite order transition,
i.e., �→�.

According to the above definition of percolation the per-
colating cluster should include both of the root nodes. It is

then convenient to consider the mean size 	s0
n of the cluster

including both roots �referred to as the root cluster� on F̃n
instead of smax�Nn� to characterize the criticality,

	s0
n � Nn
�, �4�

where � is the fractal exponent for the root cluster. Note that
� behaves essentially the same as �L for the growing random
trees �11�.

III. GENERATING FUNCTIONS

In this section we describe how to utilize generating func-
tions to calculate the fractal exponent � and the cluster size
distribution ns�p� with p̃ fixed. First let us consider the bond
percolation on Fn with open bond probability p with p̃=0.

FIG. 4. Possible diagrams contributing to �a� Tn+1�x�, �b�
Sn+1�x ,y�, �c� Un+1�x�. The roots �open circles� are not counted in
the generating functions, so that nodes connecting two Fns �closed
circles� are taken into account by multiplying x or y. For example
the first diagram of �a� represents x2Tn

4�x� and the fourth diagram of
�b� xyTn�x�Tn�y�Sn

2�x ,y�.
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FIG. 5. �Color online� Fractal exponent � on the stable fixed
points p��p̃� �bold blue-solid line� and unstable fixed points pc�p̃�
�bold red-dashed line�.
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FIG. 6. �Color online� Finite size scaling for cluster size distri-
bution ns at �a� stable fixed point �p=0.130 302� and �b� unstable
fixed point �p=0.517 492�, and �c� p=0.3, for p̃=0.1. Here � and �
in �c� are given by those at the stable fixed point. Insets show raw
data of ns. We set �a� n=9,10,11,12,13,14, �b� n=5,6 ,7 ,8 ,9 ,10,
and �c� n=8,9 ,10,11,12,13, from left to right.
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We introduce three basic quantities on Fn: the probability
tk
�n��p� that both roots are connected to the same cluster of

size k, the probability sk,l
�n��p� that the left �right� root is con-

nected to a cluster of size k�l� but these clusters are not the
same, and the mean number uk

�n��p� of clusters of size k to
which neither of the roots is connected. For the sake of con-
venience the roots are not counted in the cluster size k or l
for tk

�n��p� and sk,l
�n��p�. The corresponding generating func-

tions are defined as

Tn�x� = �
k=0

�

tk
�n��p�xk, �5a�

Sn�x,y� = �
k=0

�

�
l=0

�

sk,l
�n��p�xkyl, �5b�

Un�x� = �
k=0

�

uk
�n��p�xk. �5c�

The self-similar structure of Fn allows us to obtain the recur-
sion relations for the above generating functions

Tn+1�x� = x2Tn
4�x� + 4x2Tn

3�x�Sn�x,x� + 2xTn
2�x�Sn

2�x,1� ,

�6a�

Sn+1�x,y� = Sn
2�x,1�Sn

2�1,y� + 2Sn�x,y�Sn�x,1�Sn�1,y�

� �xTn�x� + yTn�y�� + 2xySn
2�x,y�Tn�x�Tn�y�

+ Sn
2�x,y��x2Tn

2�x� + y2Tn
2�y�� , �6b�

Un+1�x� = 4Un�x� + 2xSn
2�x,1� , �6c�

as illustrated in Figs. 3 and 4. The initial conditions are given
as T0�x�= p, S0�x ,y�=q=1− p and U0�x�=0.

It is convenient to rewrite these recursion formulas in
terms of functions of single variable x only. In order to this
we introduce new functions Vn�x��Sn�x ,x� and Rn�x�
�Sn�x ,1� to obtain

Tn+1�x� = T�Tn�x�,Vn�x�,Rn�x�,x�

� x2Tn
4�x� + 4x2Tn

3�x�Vn�x� + 2xTn
2�x�Rn

2�x� ,

�7a�

Vn+1�x� = V�Tn�x�,Vn�x�,Rn�x�,x�

� Rn
4�x� + 4xTn�x�Vn�x�Rn

2�x� + 4x2Tn
2�x�Vn

2�x� ,

�7b�

Rn+1�x� = R�Tn�x�,Rn�x�,x� = Rn
2�x��1 + xTn�x��2, �7c�

Un+1�x� = U�Rn�x�,Un�x�,x� � 4Un�x� + 2xRn
2�x� . �7d�

Indeed it is this form that enables us to obtain the solutions
for large n numerically.

Now the construction of the recursion relations for F̃n

with p̃ fixed is straightforward. Let T̃n�x�, Ṽn�x�, R̃n�x�, and

Ũn�x� denote the corresponding generating functions on F̃n.
By using the above formula �7a�–�7d� with these functions
one can construct the generating functions Tn+1�x�, Vn+1�x�,
Rn+1�x�, and Un+1�x� on the decorated �2,2�-flower of the
next generation without the shortcut directly connecting the
roots,

Tn+1�x� = T�T̃n�x�,Ṽn�x�,R̃n�x�,x� , �8a�

Vn+1�x� = V�T̃n�x�,Ṽn�x�,R̃n�x�,x� , �8b�

Rn+1�x� = R�T̃n�x�,R̃n�x�,x� , �8c�

Un+1�x� = U�R̃n�x�,Ũn�x�,x� . �8d�

The flower F̃n+1 is made by adding the shortcut to the inter-
mediate one with probability p̃ and one thus obtains

T̃n+1�x� = Tn+1�x� + p̃Vn+1�x� , �9a�

Ṽn+1�x� = q̃Vn+1�x� , �9b�

R̃n+1�x� = q̃Rn+1�x� , �9c�

Ũn+1�x� = Un+1�x� , �9d�

where q̃=1− p̃. The initial conditions are given as T̃0�x�= p,

Ṽ0�x�= R̃0�x�=q and Ũ0�x�=0. One can easily check the
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probability conservation T̃n�1�+ Ṽn�1�=1 by the iteration
�Eq. �9��.

Once these generating functions are obtained one can
evaluate various quantities of the present interest. For ex-
ample the percolation probability P�n� is given as

P�n� = T̃n�1� , �10a�

Q�n� � 1 − P�n� = S̃n�1,1� = Ṽn�1� = R̃n�1� . �10b�

Note that Eq. �3� is reobtained by putting x=1 to Eq. �9� and
using Eq. �10�. The mean number of the root cluster 	s0
n �or
the order parameter P�

�n��p�� and the cluster size distribution

ns
�n��p� on F̃n are given as

	s0
n = T̃n��1� + Ṽn��1� , �11�

P�
�n��p� =

	s0
n

Nn
= �n + �n, �12�

ns
�n��p� =

ũs
�n��p�
Nn

, �13�

where the prime denotes the first derivative with respect to x,

and we put �n= T̃n��1� /Nn and �n= Ṽn��1� /Nn.
It is useful to consider the derivatives of recursion rela-

tions �9a�–�9c� for evaluating P�
�n��p�. By noticing Ṽn��1�

=2R̃n��1� we obtain the recursion relations for �n and �n as

�n+1

�n+1
� =

Nn

Nn+1
 2q̃Q�n��1 + P�n��2 4q̃�Q�n��2�1 + P�n��

2�1 + P�n����P�n��2 + p̃Q�n��1 + P�n��� 4�1 − q̃�Q�n��2�1 + P�n���
��n

�n
�

+
1

Nn+1
 4q̃P�n��Q�n��2�1 + P�n��

2P�n��2 − P�n� − 2q̃�Q�n��2�1 + P�n���
� �14�

��
1

2
q̃Q�1 + P�2 q̃Q2�1 + P�

1

2
�1 + P��P2 + p̃Q�1 + P�� 1 − q̃Q2�1 + P� ��n

�n
� �for n � 1� , �15�

where we recall P=limn→� P�n� and Q=limn→� Q�n�. Note
that this expression is an extension of Eq. �31� in �22�.

IV. RESULTS

To profile the critical phase we calculate the fractal expo-
nent �. In the ordered phase we have trivially �=1. Other-
wise the fixed points P��1� of the RG Eq. �3� satisfy q̃�1
− P��1+ P�2=1. The recursion relation �15� is then reduced to

�n+1

�n+1
� =�

1

2
�

1

2
P 1 − ���n

�n
� , �16�

where �= �1− P� / �1+ P�. By using the largest eigenvalue
��P� of the above matrix,

��P� =
1

4
��3 − 2�� + �1 − 4��1 − 2P� + 4�2� , �17�

we can calculate the fractal exponent � on the fixed points in
the same way as �22� does:

��P� = 1 +
ln ��P�

ln 4
. �18�

The p̃-dependence of � is shown in Fig. 5. We find that �i�
for p̃� p̃c=5 /32, � on the �un�stable fixed points increases
�decreases� with increasing p̃, and �ii� for p̃	 p̃c, � is equal
to one irrespective of both p and p̃, which means that the
system is always in the percolating phase. Let us consider the
p-dependence of � with p̃� p̃c fixed. In the critical phase
�p� pc�p̃�� the percolation probability P�n� goes to p��p̃� and
the exponent �=��p��p̃�� is constant in this region. At the
critical point �p= pc�p̃�� the fixed point is P= pc�p̃� itself and
thus � discontinuously changes to ��pc�p̃��, and jumps again
to one for the percolating phase �p	 pc�p̃��. This behavior
can be also confirmed directly by evaluating the
Nn-dependence of 	s0
n numerically �not shown�. This result
indicates that the probability p̃ of the shortcuts essentially
determines how the system is critical in the partially ordered
critical phase. On the other hand, for the standard bond per-
colation on the decorated �2,2�-flower �p̃= p�, the fractal ex-
ponent � varies continuously with open bond probability p
as observed on a NAG �17�.

We also evaluate numerically the recursion relations

�9a�–�9d� to obtain the cluster size distribution ns on F̃n
given by Eq. �13�. We should observe a power-law behavior
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of ns in the whole region of the critical phase. To check this
behavior we assume a finite size scaling form

ns�N� = s−�f�sN−�� , �19�

where � is the fractal exponent obtained above and the scal-
ing function f�x� behaves as

f�x� � �rapidly decaying func. for x � 1,

constant for x � 1,
� �20�

and � satisfies the scaling relation �11,17�

� = 1 + �−1. �21�

As discussed in �11� a plausible argument leads us to the
relation as follows: By assuming ns�s−� in the critical phase,
a natural cutoff smax of the cluster size distribution �a natural
cutoff of the degree distribution was introduced in �25�� is
given as

N�
smax

�

nsds � 1 → smax � N1/��−1�. �22�

Here we emphasize that smax plays just a role of characteris-
tic cutoff of the distribution and does not need to be strictly
the mean size of the largest clusters. In this sense we can
replace the fractal exponent �L of smax with � of 	s0
, so that
the relation �21� follows. Indeed the largest cluster not con-
taining the roots is expected to the one containing the top-
most �or, equivalently, bottom-most� node in the right figure
of Fig. 4�c� contributing the second term of Eq. �6c�. The

mean size of the cluster is proportional to Ṽn��1� and so to
	s0
. Therefore one can conclude that the characteristic size
grows with N not faster than N�.

Our finite size scaling for ns is indeed well fitted on both
stable and unstable fixed points as shown in Fig. 6. Note that
for the sake of Eq. �21� no fitting parameter remains. The
scaling also works at any p in the critical phase �Fig. 6�c��,
but the convergence is not so rapid as on the fixed points.

Finally, we iterate Eq. �15� numerically to obtain the order

parameter P�
�n��p̃� on F̃n. The result for n=106 is shown in

Fig. 7. The initial growth of the order parameter becomes
moderate with increasing p̃. To examine the critical exponent
� on the phase boundary p= pc�p̃�, we follow the scaling
argument in �22� to obtain

��p̃� = −
ln ��pc�p̃��
ln ��pc�p̃��

, �23�

where

��P� =� �P�n+1�

�P�n� �
P

= 4q̃P�1 − P2� = 2�1 − �� . �24�

Figure 8 shows the p̃-dependence of �. We find that � in-
creases continuously with p̃, from �=0.164 694 at p̃=0 to
�=� at p̃= p̃c=5 /32. At p̃= p̃c we expand Eq. �3� near
pc�p̃c�=1 /3 to obtain

�P�n+1� � �P�n� +
9

8
��P�n��2, �25�

where �P�n�= P�n�− pc�p̃c�. We can estimate the solution for
small �P�0�= p− pc�p̃c�	0 as

�P�n� � �P�0� +
9n

8
��P�0��2, �26�

which is correct as long as the second term in the rhs is much
less than the first one, or equivalently, n is much less than
n��1 /�P�0�= �p− pc�−1. For n�n� , P�n� goes to 1 rapidly
and so we obtain

P� � �n�
� exp−

const.

p − pc
� , �27�

where �=��pc�p̃c�� given by Eq. �17�. We thus find an es-
sential singularity in the order parameter at p̃= p̃c.

Note that � is apparently related to � through ��pc�p̃�� as
shown in �22� �see Eqs. �18� and �23��. It is, however, not the
case in the �off-boundary� critical phase where the nontrivial
stable fixed points p��p̃� dominate the criticality while the
order parameter vanishes there.

V. SUMMARY

We have investigated bond percolations on the decorated
�2,2�-flower with two different probabilities p and p̃. Our
generating function approach has revealed that the system is
in the critical phase for p� pc�p̃� and p̃� p̃c=5 /32. We have
evaluated the fractal exponent � and confirmed the power-
law behavior of ns in the critical phase as well as those
dependence on p and p̃ and the validity of the scaling rela-
tion �=1+�−1.

We have also examined the critical exponent � in the
percolating phase and found that � also varies as p̃ from �
�0.164 694 at p̃=0, where the network is two-dimensional-
like, to �=� at p̃= p̃c, where the dimensionality of the un-
derlying network is infinite.

It is only at p̃= p̃c that the percolation on the decorated
�2,2�-flower shows an infinite order transition with the BKT-
like singularity as percolations on growing networks do
�7–10�. The finiteness of � for p̃� p̃c suggests that the exis-
tence of some critical phase adjacent to the normal ordered
phase is not enough for the network to have such an essential
singularity in the order parameter and thus an infinite order
phase transition. At present we have none of the key to re-
veal necessary conditions for the existence of the BKT-like
singularity. Further study would be required to clarify the
relation between these interesting properties of the phase
transition.
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