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We analyze the avalanche size distribution of the Abelian Manna model on two different fractal lattices with
the same dimension dg=ln 3 / ln 2, with the aim to probe for scaling behavior and to study the systematic
dependence of the critical exponents on the dimension and structure of the lattices. We show that the scaling
law D�2−��=dw generalizes the corresponding scaling law on regular lattices, in particular hypercubes, where
dw=2. Furthermore, we observe that the lattice dimension dg, the fractal dimension of the random walk on the
lattice dw, and the critical exponent D form a plane in three-dimensional parameter space, i.e., they obey the
linear relationship D=0.632�3�dg+0.98�1�dw−0.49�3�.
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Although extensive research has been performed on self-
organized criticality �1� for models on hypercubic lattices,
far less work has been done on fractal lattices �2,3�. It re-
mains somewhat unclear what to conclude from the latter
studies. Fractal lattices are important for the understanding
of critical phenomena for a number of reasons. First, results
for critical exponents in lattices with noninteger dimensions
might provide a means to determine the terms of their �=4
−d expansion. Second, fractal lattices are particularly suit-
able for real-space renormalization-group procedures, in par-
ticular those by Migdal �4�, Kadanoff �5�, and Carmona et al.
�6�. Third, scaling relations that are derived in a straightfor-
ward fashion on hypercubic lattices can be put to test in a
more general setting. In this Brief Report, we address the
first and the third aspects by examining both numerically and
analytically the scaling behavior of the Abelian version of
the Manna model �7–9� on two different fractal lattices.

The fractal lattices used in this study are generated from
the arc-fractal system �10�. The lattice sites are the invariant
set of points of the arc-fractal. We consider nearest-neighbor
interactions among sites. Here, the nearest neighbors of a
given site are all sites which have the �same� shortest Euclid-
ean distance to it. Our fractal lattices have no natural bound-
ary; instead, they have only two end points at which two
copies can join to form a bigger lattice. The dimension of the
lattices is the same as the arc-fractal that generates them.

In this study, we shall consider two fractal lattices: the
Sierpinski arrowhead and the crab �see Fig. 1�. The former is
named “Sierpinski arrowhead” because it is the same as the
well-known Sierpinski arrowhead �11�, whereas the latter is
termed “crab” because the overall shape of the generated
lattice looks like a crab. These fractal lattices are generated
through the arc-fractal system with a number of segments
n=3 and an opening angle of the arc �=�. For the Sierpinski
arrowhead, the rule for orientating the arc at each iteration is
“in-out-in,” while the rule is “out-in-out” for the crab. Both
lattices have the same dimension dg=ln 3 / ln 2�1.58. The
total number of sites on the lattice at the ith iteration is Ni
=3i+1. The coordination number of sites on these lattices
varies between two and three. Asymptotically, one third of

the sites have three nearest neighbors �called extended sites�,
while the remaining two thirds have two nearest neighbors
�called normal sites�. Since the lattice sites are being stringed
up by arcs �see Fig. 1�, they can be labeled as sites on a
one-dimensional �1D� linear chain. In order to determine the
linear size �to be used in finite-size scaling� of the lattice,
reference sites �hollow circles, which are not part of the lat-
tice� have been added between the real sites �solid circles�.
This is possible because of the uniform spacing between
sites. The linear size is then equal to the total number of
hollow and solid circles along L �see Fig. 1�. At the ith itera-
tion, the linear size is given by Li=2i+1 for the arrowhead
lattice and Li=3�2i−1 for the crab lattice. Indeed, one ob-
serves that the dimension of the lattice obeys the following

FIG. 1. Sierpinski arrowhead �top� and crab �bottom� lattices at
fourth iteration with definition of linear size. In the figure, L=17 for
arrowhead and L=24 for crab lattice.
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relation with the total number of sites and linear size of the
lattice: dg=limi→� ln Ni / ln Li.

We implement the Abelian Manna model on these two
fractal lattices that have the same dimension but possess dif-
ferent microscopic structures. Let us denote the variable zj,
which is a non-negative integer, to be the “height” or the
number of particles at lattice site j. The lattice is first initial-
ized with zj =0 for all sites. The value of zj is then evolved
according to the following algorithm. When the system is in
a stable configuration, i.e., zj �1 for all sites, the external
drive is implemented by picking a site j at random and in-
creasing its zj by 1 unit. At this juncture, an avalanche might
occur in the following manner: as long as there exist any j
with zj exceeding the threshold zc=1 �an “active” site�, pick
one of them at random, say k, and reduce zk by 2. At the
same time, pick two of its nearest neighbors, say k�, ran-
domly and independently, and increment zk� by 1 unit. This
procedure constitutes a toppling, which in the bulk is conser-
vative, i.e., the total � jzj remains unchanged by the bulk
topplings. In one dimension, every bulk site has two neigh-
bors. On the fractal lattices described above, a bulk site can
have either two or three nearest neighbors. Note that particles
can leave the system at the two end sites �labeled as 1 and
3i+1, respectively�. Owing to the Abelianess of the model,
the statistics of the avalanche sizes is independent of the
order of updates. This is different for time-dependent observ-
ables such as the avalanche duration, which is not studied in
the following.

An avalanche ceases as soon as zj �1 for all j �quies-
cence�. The size s of the avalanche is measured as the num-
ber of topplings performed between two quiescent configu-
rations. The probability density P�s� for an avalanche of size
s to occur is expected to follow a simple �finite-size� scaling,

P�s� = as−�G� s

bLD� , �1�

asymptotically in large s	s0 with lower cutoff s0, linear sys-
tem size L, nonuniversal metric factors a and b, and univer-
sal exponents � and D. The universal scaling function G de-
cays, for large arguments, faster than any power law, so that
all moments 	sq
=�dsP�s�sq exist for any finite system. Pro-
vided that q+1−�
0 one can easily show that 	sq

�LD�q+1−��.

The results presented in the following are based on Monte
Carlo simulations for four different system sizes, correspond-
ing to four different levels of iteration i=3,4 ,5 ,6, contain-
ing N=28,82,244,730 sites and with linear sizes L
=9,17,33,65 for the Sierpinski arrowhead lattice and L
=12,24,48,96 for the crab lattice. In all four cases, 108 ava-
lanches were triggered and the data were recorded in regular
intervals of 106 avalanches. Stationarity was verified by in-
specting avalanche size moments, and the transient was de-
termined to be shorter than 5�104 avalanches. Errors for the
moments are derived from a jackknife estimator �12,13� of
the variance based on the moments taken in each set of 106

measurements. The scaling exponents were determined by a
nonlinear least-squares fitting �14� of the avalanche size mo-
ments against the linear size of the lattice:

	sq
 = �aq +
bq

L
+

cq

L2�LD�q+1−��. �2�

The exponents derived in this procedure were �=1.170�5�
and D=2.792�2� for the arrowhead lattice, and �=1.153�4�
and D=3.026�2� for the crab lattice. In addition, the scaling
behavior can be probed in a data collapse, as illustrated in
Fig. 2.

With the critical exponents determined, one can immedi-
ately verify the scaling law of avalanche size distribution.
From hypercubic lattices it is well known �15� that the first
moment of the avalanche size is given by the expected num-
ber of moves that a random walker performs on the given
lattice before it reaches the boundary and leaves, i.e., by its
residence time. This is essentially because of bulk conserva-
tion: in the stationary state one particle leaves the system for
every particle added �avalanche attempt�, and the average
number of moves it performs during its residency is exactly
twice the average number of topplings occurring in the sys-
tem per particle added, which is the avalanche size. Regard-
less of the specifics of the boundary, i.e., regardless of
whether only two sites are dissipative or all sites along the
perimeter, the first moment normally scales with the linear
size of the lattices squared, D�2−��=2, independent of the
dimension of the hypercubic lattice. This is easily under-
stood, as the time and thus the total number of moves per-
formed by a random walker scale quadratically in the linear
distance traversed.

For the fractal lattices, it is obvious that D�2−�� is not
equal to 2 since it is 2.317�8� for the arrowhead lattice and
2.564�6� for the crab lattice. We will now show that the
scaling law has in fact changed to D�2−��=dw, where dw is
the fractal dimension of random walk on the lattice. The
scale law D�2−��=dw remains true for any lattice regardless
of dimension and microscopic details.

We will now calculate dw for the Sierpinski arrowhead
lattice and the crab lattice by using the first-passage time
method �16�. Due to the nearest-neighbor structure of the
fractal lattices, the calculation is not coarse-grained renor-
malizationlike, but rather, it is carried out by considering
every single edge that connects between the two end sites on
the lattice.

FIG. 2. Data collapse of binned data for Sierpinski arrowhead
lattice. Preliminary statistics of large system size �seventh iteration,
L=129� are also included to test the consistency of the data. The
plots confirm the estimated values of the critical exponents.
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We label the sites of the lattice sequentially with j
=1,2 , . . . ,3i+1 and denote by Tj

�i� the average time for the
random walker to exit through the end sites from site j �i is
the number of iterations of the lattice�. Also, we denote by t
the traverse time from one site to its nearest neighbor.

Let us define E�i� to be the set of extended sites at the ith
iteration. On the lattice, each normal site j has two nearest
neighbors j−1 and j+1. If j is an extended site, it has in
addition a third nearest neighbor j�. If the walker is at site j,
we have two situations:

If j�E�i�, the walker has only two options to choose
from: go to j−1 or go to j+1. The probability for each
choice is 1/2. We have

Tj
�i� = 1

2 �t + Tj−1
�i� � + 1

2 �t + Tj+1
�i� � = t + 1

2Tj−1
�i� + 1

2Tj+1
�i� . �3�

Note that T0
�i�=T3i+2

�i� =0.
If j�E�i�, the walker has up to three options to choose

from: go to j−1, go to j+1, or go to j�. The probability for
each choice is 1/3. Thus, we have

Tj
�i� = 1

3 �t + Tj−1
�i� � + 1

3 �t + Tj+1
�i� � + 1

3 �t + Tj�
�i�� = t + 1

3Tj−1
�i� + 1

3Tj+1
�i�

+ 1
3Tj�

�i�. �4�

Since this gives a system of linear equations, we can write
them in the form of a matrix equation: A�i�T�i�=B�i�, where
T�i� is the column vector of Tj

�i�, A�i� is the degree-normalized
adjacency matrix, while B�i� is a column vector that contains

t in every entry. As A�i� is invertible, we can solve for T�i�

= �A�i��−1B�i�. By defining the variable Sj�i�
�i� =Tj�i+1�

�i+1� /Tj�i�
�i� ,

where site j�i� at the ith iteration refers to a specific relative
position on the lattice �for example, position of the site on
top of the lattice j�i�= �3i+1� /2 or the site connecting the
lattice at the bottom j�i�= �3i−1+3� /2�, we obtain the results
as shown in Table I and Fig. 3 for the arrowhead lattice and
the crab lattice.

We observe that for both lattices Sj�i�
�i� converges to some

value Sj�i�
� as i increases. For the arrowhead lattice, Sj�i�

� =5,
while for the crab lattice, Sj�i�

� �6. On going from the ith to
�i+1�th iteration, the lattice size increases by a factor of
Li+1 /Li=2, while the escape time increases by a factor of
T�i+1� /T�i�=Sj�i�

� for large i, so that dw=ln Sj�i�
� / ln 2. By com-

paring the calculated dw to the estimated value of D�2−��
from simulation, we can see that they are in good agreement
�see Table II�.

One surprising conclusion from the above results is that
for two lattices with the same dimension but different micro-
scopic structures, the critical exponents D and � can both be
different, which suggests that on fractal lattices, the critical
exponents depend not only on the dimension but also on the
microscopic details of the lattice. In addition, our results
have validated the scaling relation D�2−��=dw for two frac-
tal lattices with different dw’s. Since on lattices with integer
dimensions dw=2 regardless of the lattice’s structure, this
scaling relation generalizes the standard version D�2−��=2
known for the hypercubic lattices. The last unexpected con-
clusion pertains to the relation between the dimensions dg
and dw, and the critical exponent D. We found that they obey
the general linear relationship D=�dg+�dw+. This
was uncovered by plotting the following six points in
three-dimensional �3D� parameter space: �dg ,dw ,D�
= �1,2 ,2.1� , �2,2 ,2.73� , �3,2 ,3.36� , �4,2 ,4� , �1.58,2.32,
2.79� , �1.58,2.58,3.03�, which correspond to the linear chain
�15�, the square �7,17�, the cube �18,19�, the hypercube �20�,
the arrowhead, and the crab lattices, respectively. It is inter-
esting that while the first four points due to the hypercubic

TABLE I. Convergence of S�3i+1�/2
�i� �first row of the pair� and S�3i−1+3�/2

�i� �second row of the pair� as the
number of iterations i increases. After i=7, we have Sj�i�

�i� �5 for the Sierpinski arrowhead lattice and Sj�i�
�i�

�6 for the crab lattice. Sj�i�
�i� for site near the end sites is also found to converge to the same limits but with

slower convergence rate.

i 1 2 3 4 5 6 7

Arrowhead 5.5 4.6414 4.3821 4.6129 4.7808 4.8949 4.9768

4.5 3.9815 4.1819 4.4213 4.6528 4.8163 4.9293

Crab 5.0 5.7611 6.2783 6.0906 5.9709 5.9655 5.9406

4.0 6.2500 5.6300 6.0690 5.9934 5.9034 5.9355

TABLE II. The calculated dw and the estimated D�2−�� for the
Sierpinski arrowhead lattice and the crab lattice.

Lattice Arrowhead Crab

dw 2.322 2.578

D�2−�� 2.317�0.008 2.564�0.006

FIG. 3. Convergence of S�3i+1�/2
�i� and S�3i−1+3�/2

�i� as the number of
iterations i increases. After i=7 we have Sj�i�

�i� =5 for arrowhead lat-
tice and Sj�i�

�i� �6 for crab lattice. Sj�i�
�i� for site near the end sites is

also found to converge to the same limits, but with slower conver-
gence rate.
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lattices are found to lie on a straight line, all six points to-
gether make up a plane instead of a tetrahedron. We have
determined the coefficients �=0.632�0.003, �
=0.980�0.014, and =−0.492�0.034 from the six points,
which leads to the following relationship:

D � Dtrial�dg,dw� = 0.632dg + 0.980dw − 0.492. �5�

A comparison of the value of D determined by Eq. �5� and
that from the simulation is shown in Table III.

Finally, we comment on the slight mismatches between
the calculated dw and the estimated D�2−�� in Table II. They
seem to be caused by finite-size corrections, which are fur-
ther suppressed at seven iterations and above, as observed in
preliminary data not included in the main analysis above. In
the presence of strong finite-size corrections and high-
accuracy measurements of the moments, the estimates for D
and � are sensitive to the choice of the fitting function, which
is constrained by the number of data points �i.e., system
sizes� available, but needs to contain as many correction

terms as possible to account for the accurate data. Our choice
�2� reflects the desire to reduce the sensitivity of the estimate
on the initial values.

It is important to note that there is a level of ambiguity in
the finite-size scaling in fractal lattices, because due to its
highly irregular nature, there is a priori no unique way of
increasing the lattice size of a fractal �21�. At a given level of
iterations, in order to increase the lattice size further, one
might either proceed by iterating the fractal or use the given
fractal to tessellate the hypercubic lattice of appropriate �em-
bedding� dimension. One might argue that finite-size scaling
is of course sensitive to that choice and, as a result, generates
asymptotically the exponents either of the fractal lattice or of
the embedding space. However, in ordinary critical phenom-
ena, there are cases �21� where the �effective� critical point
and even the scaling functions change with the level of itera-
tion i. In the current context that translates to, for example,
the amplitude Aq=aq+bq /L+cq /L2 in Eq. �2� to acquire a
dependence on i, which might distort the resulting estimates.
The exponents derived above can thus be seen only as effec-
tive exponents of a fractal lattice.
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