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We present theory and experiments for the force-distance curve F�z0� of an atomic force microscope �AFM�
tip �radius R� indenting a supported fluid bilayer �thickness 2d�. For realistic conditions the force is dominated
by the area compressibility modulus �A of the bilayer and, to an excellent approximation, given by F
=��ARz0

2 / �2d−z0�2. The experimental AFM force curves from coexisting liquid ordered and liquid disordered
domains in three-component lipid bilayers are well described by our model, which provides �A in agreement
with literature values. The liquid ordered phase has a yieldlike response that we model as due to the breaking
of hydrogen bonds.
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I. INTRODUCTION

Atomic force microscopy �AFM� �1� has become a stan-
dard tool for imaging surfaces at high resolution and probing
local mechanical properties �2�. Force-distance curves for in-
dentation of AFM tips have been used to characterize the
mechanical properties of biological membranes �3–5�, and
the usual approach is to approximate the bilayer as an elastic
solid undergoing a Hertzian contact �6–8�. However, at
physiological conditions most biological membranes are in a
fluid bilayer phase �9�, whose free energy is described by a
bending modulus � and the area compressibility modulus �A.
These are experimentally accessible through, for example,
micropipette aspiration experiments �10�, which give the av-
erage value of the elastic moduli over the whole vesicle.
However, biological membranes often have different local
compositions, and thus different local mechanical properties
and physiological functions.

Despite the growing use of AFM to study lipid bilayers,
the flexibility of using it to measure local mechanical prop-
erties has not been fully exploited. An AFM tip can bend a
freely suspended membrane and compress a supported mem-
brane. In recent work, Steltenkamp et al. �11� showed how to
extract the bending modulus of lipid bilayers from AFM
force-distance curves for bilayers deposited over well-
defined sized holes �indentation of “nanodrums”�, in which
they could safely ignore area compression due to the lack of
a supported surface. Another issue neglected in previous
AFM studies is the double leaflet form of lipid bilayers,
which is known to influence the dynamics of fluctuations
�12�. Since an AFM tip induces an asymmetric response in a
supported bilayer �13�, the distinction between the two leaf-
lets will be important to accurately model the mechanical
response.

In this paper we consider the force-distance curves ob-
tained by indenting an AFM tip into a fluid bilayer supported
on a solid substrate. The force-distance curves are calculated

from a static analysis of the deformation of the two leaflets
and differ from usual Hertzian result of the deformation of
elastic bodies. We analyze experiments on a dioleoyl-
phosphatidylcholine �DOPC�–egg sphingomyelin �SM�–
cholesterol �CHOL� phase separated supported bilayer,
which is a model mixture representative of typical in vivo
membranes �14�. For certain composition ratios of the com-
ponents, this system spontaneously phase separates into co-
existing liquid ordered �Lo, rich in SM and relatively thick
because of strong nematic order in the acyl tails� and liquid
disordered �Ld, rich in DOPC and relatively thin because of
the more disordered tails� phases. We show how to determine
the area compressibility moduli of the coexisting Lo and Ld
phases of a single sample and find values in agreement with
literature values. Here, the area compressibilities of the two
coexisting compositions in fluid bilayers have been extracted
directly. This technique should prove invaluable for studying
the composition dependence of mechanical properties in
lipid bilayers, and can be easily extended to consider more
complex interactions between AFM tip and the bilayer.

II. THEORY

We consider a supported fluid lipid bilayer of thickness 2d
probed by an AFM tip of radius R in contact mode, which
measures the force as a function of the depth z0 from the
unperturbed surface of the layer �see Fig. 1�a��. At typical
AFM speeds the viscous forces are negligible. We begin by
assuming a hard contact interaction between the tip and the
membrane. Electrostatic repulsion from the charged double
layers and van der Waals attraction are included later in the
paper when comparisons are made with experiments. Since
the lipid bilayer is not anchored it remains tension-free. We
assume that the volume is conserved at the molecular level:
as the tip penetrates the bilayer it occupies a volume �V, so
that �N=�V / �a0d� lipids are expelled into the surrounding
bilayer. Here, a0 is the area per lipid in the absence of the
AFM tip. The surface area increases by �A, due to the curved
spherical surface of the AFM tip, and the increase in area per
head group �a�a−a0 is given by

*c.das@leeds.ac.uk
†p.d.olmsted@leeds.ac.uk

PHYSICAL REVIEW E 82, 041920 �2010�

1539-3755/2010/82�4�/041920�6� ©2010 The American Physical Society041920-1

http://dx.doi.org/10.1103/PhysRevE.82.041920


�a =
A + �A

N − �N
− a0 = a0d�A + �A

V − �V
� − a0. �1�

This increased area induces an elastic cost due to the stretch-
ing elasticity of the lipid leaflets. We calculate this not by
averaging over the entire spherical cap, but by considering
small increases in radius dr and evaluating �a /a0 at each r
�Fig. 1�.

We assume that both leaflets have the same area per lipid
a0 and stretching modulus �A /2 for lipid head groups on a
flat surface. This should be valid in the absence of specific
interactions of the lipid with the substrate, although experi-
ments have shown that the surface often does have specific
interactions �13�. The head groups in the top leaflet are
forced to lie on a curved surface below the AFM tip. This
affects both the area per lipid and the stretching modulus for
the lipids on the top leaflet. We model the local lipid free
energy as a sum of a surface energy and a harmonic tail
stretching, g�L���aL /cos �+� /aL

2, where � is a surface ten-
sion, � penalizes tail stretching, and aL is the projected area
for leaflet thickness L. Here, ��r�=sin−1�r /R� �Fig. 1�c�� is
the tilt angle of the lipid surface. Minimizing g at fixed lipid
volume v�LaL leads to an effective stretching modulus
�̃A /2��A /2 sec2/3 � and an effective area per lipid a0

t

=a0 cos1/3 for the top leaflet.
Using the modifications due to the curved surface for the

head groups in the top leaflet, the excess free energy due to
the increase in the area per lipid during indentation is

G�z0� =
�A

4
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where t and b refer to the top and bottom leaflets and the
integration extends over both leaflets. The lower leaflet will
generally deform to accommodate the large energy change
due to removing too many lipids from the upper leaflet. We
let the lower and upper leaflets have thicknesses hb�r� and
ht�r�, respectively, with hb�r�+ht�r�=2d−z0+R�1−cos ��r��.
The area changes at each radius r are given by �Fig. 1�
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The measure is d2r=rd�dr. The dividing surface hb�r� is
determined by minimizing the free energy at each r. For
equal stretching moduli in both leaflets, an explicit solution
for hb�r� is possible for small tilt angle,

hb�r� =
2d − z0 + R�1 − cos ��r��

1 + sec1/3�
. �4�

For realistic values z0�2 nm, d�3 nm, and R�10 nm,
this approximation introduces less than 0.1% error in hb�r�
for the entire range of r. We use this approximation in the
rest of the paper to derive analytical expressions for the free
energy and force.

Using hm�r� from Eq. �4�, the free energy is

2G�z0�
��AR2 = 	

1−z0/R

1

x�1 + x−2/3�

	 �1 + x1/3�

x1/3
2 −
z0

d
+

R

d
�1 − x�� − 1�

2

dx , �5�

and the force on the AFM tip is given by F=�G /�z0. We use
the numerical force derived from Eq. �2� when performing
fits to the data. For small penetrations z0 the force can be
written as

F �
��AR

4

1 +

d

3R
+ � d

3R
�2�� z0

d
�2

+ O�z0
3� ¯ . �6�

A surprisingly simple function that fits the entire experimen-
tal range of forces, correct to within a few percent for R
=3d and much better for larger R, is

F =
��AR

4
� 2z0

2d − z0
�2

. �7�

The force diverges as z0 approaches 2d because the area
per lipid diverges in order to preserve molecular volume. The
quadratic free energy �Eq. �2�� is no longer valid there. Ex-
perimentally this divergence is pre-empted by pore formation
�see below�.

For comparison, the contact force between two solid
�elastic� bodies much larger than the radius of contact �Hert-
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FIG. 1. �Color online� �a� Schematic geometry of an AFM tip of
radius R indenting a fluid bilayer of thickness 2d by an amount z0.
The leaflet dividing surface at hb�r� is shown as a solid line. �b�
Cylindrical volume elements of depth z�r� at the distance r from the
center of the tip. �c� The area 2�rds of such an element in contact
with the lipid.
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zian contact� is F�z0
3/2 �15�. More relevant for AFM experi-

ments, the force to indent a finite elastic layer scales as F
�R2z0

3 /d3 if the layer is bonded to the substrate and F
�Rz0

2 /d if the layer can slip �7�. The response of fluid bilay-
ers in Eq. �6� scales differently than all of these scenarios,
and force is proportional to the area compressibility modulus
instead of Young’s modulus. For realistic experimental val-
ues the region of validity for this quadratic behavior is lim-
ited, as shown in Fig. 2.

III. EXPERIMENTS

To test the theory we performed experiments on a sup-
ported bilayer comprising DOPC, SM, and CHOL at overall
molar ratios DOPC:SM:CHOL=40:40:20. At room tem-
perature this system phase separates into coexisting DOPC
rich liquid disordered and SM rich liquid ordered domains
�Fig. 3�. The hydrocarbon tails have large nematic order in
the Lo phase, leading to a thicker bilayer and higher area
compressibility modulus. In contrast, the tails have lower
nematic order in the Ld phase with concomitant smaller
thickness and lower moduli. DOPC, CHOL �purchased from
Sigma�, and egg SM �purchased from Avanti� were dissolved
in chloroform, dried under a stream of argon for 30 min, and
then vacuum desiccated for 30 min. The lipid was resus-
pended in phosphate buffered saline �PBS� buffer at a pH of
7.4 to a concentration of 1 mg/ml by vortexing. To make
small single unilamellar vesicles �SUVs�, the cloudy lipid
suspension was tip sonicated �IKA, U50� at less than 5 °C
for 25 min �until the solution became clear�. The mica �Agar
Scientific Ltd.� surface was incubated with the SUVs at
50 °C and cooled down to room temperature in an incubator
over 15 min. After 1 h, the sample was gently rinsed with
PBS buffer to remove any excess vesicles.

Force measurements were performed at 27 °C in PBS
buffer using a Nanoscope IV Mulitmode AFM �Veeco�
equipped with a temperature control stage, using cantilevers
�NP, Veeco� with nominal spring constants of 0.12 N/m.

Spring constants were measured using the thermal noise
method �16� in air, and optical lever sensitivity was deter-
mined against a clean mica surface. The force curves ana-
lyzed in this paper were all taken from a single force-volume
map of the phase separated bilayer shown in Fig. 4 and ex-
ported using NANSCOPE software v5.12r30.
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FIG. 2. Scaled force F / ���AR� as a function of tip depth z0 /d
�solid line� for tip radius R /d=3, according to Eq. �5�. The dashed
line shows only the leading quadratic term in z0 /d �Eq. �6��. Inset:
behavior at small z0 /d. On this scale the approximation of Eq. �7� is
indistinguishable from the numerical solution of Eq. �5�.
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FIG. 3. �Color online� Phase separated lipid bilayer with liquid
ordered and liquid disordered domains. �a� Tapping mode AFM
image showing the height profile of the bilayer. �b� One-
dimensional section along the dashed line in �a�.
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FIG. 4. �Color online� Force-distance curve for a DOPC rich
bilayer in the liquid disordered phase. The data points are from
AFM experiments and the line is a fit for the theoretical prediction
with �A=0.12 N /m. Inset: SEM image of the tip to measure the tip
radius. The dashed lines are along the pyramidal face edges. The
circle drawn at the end of the tip has a radius of 10 nm.
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Scanning electron microscopy �SEM� �Camscan series III,
FEG-SEM operating at 5 kV with magnification of 160 k�
was used to measure the tip radius. The inset of Fig. 4 shows
the tip image with dashed lines along the edges of the four
pyramidal faces. The end of the tip can be approximated as
spherical. The drawn circle �Fig. 4, inset� has a radius of 10
nm. The contrast of the image is poor. Consequently the
uncertainty of the exact value of the radius is large. In our
analysis we consider the tip radius to be R=10
5 nm.

Figure 3 shows a tapping mode image of the bilayer along
with a one-dimensional cross section. There is a
�5-nm-thick Ld matrix enclosing �6-nm-thick Lo domains
�the heights reported here include the thickness of any water
layer between the bilayer and the mica surface�. The compo-
sition of the two phases was determined by following the tie
lines on the ternary phase diagram, which were determined
using AFM �17�:

Ld:�DOPC:SM:CHOL� = �68:27:5� , �8a�

Lo:�DOPC:SM:CHOL� = �3:71:26� . �8b�

Phase diagrams on similar ternary mixtures have been cal-
culated using NMR, and the compositions of the liquid dis-
ordered and liquid ordered phases are similar �18�. The un-
certainty in the compositions from placement of the tie lines
is estimated to be less than 2% of the quoted values. For both
Lo and Ld phases, force curves from contact mode AFM
were used from at least ten different measurements from dif-
ferent points within different regions �“patches,” as in Fig. 3�
of the sample.

Figure 4 �symbols� shows the force curve for the DOPC
rich bilayer in the liquid disordered phase. Besides the
stretching contribution considered so far, the tip experiences
an attractive force due to van der Waals interaction and a
short-range repulsive force due to the electric double layers
on the tip surface and the membrane top surface. In principle
the van der Waals interaction can be calculated from a
knowledge of the dielectric constants of the tip, membrane,
and the PBS buffer �19�. Similarly, the repulsive interaction
can be estimated by knowing the detailed charge distribution
and solving Poisson-Boltzmann equation. Phenomenologi-
cally, we model the van der Waals attraction as an interaction
energy of the form −A /�6 between volume elements of the
tip and the membrane separated by a distance �.

Since these forces are short ranged, we consider the tip as
a sphere, and for the volume integration consider the mem-
brane as infinitely thick. We further assume that the repulsive
interaction is strong enough to avoid adsorption. As the tip
approaches the bilayer, the bilayer deforms. The extent of the
deformation is governed by the minimum of the stretching
free energy and the long-range interactions �van der Waals
and screened Coulomb�. We assume that the deformation can
be modeled as hard interaction from a tip with radius Rc
larger than the physical tip radius R. Although A is poorly
known and depends on the detailed dielectric properties of
the membrane, its precise value only changes Rc and controls
the details of the force near contact. For deeper contact the
force is overwhelmingly dominated by the stretching modu-

lus �A, so that the force-distance curves yield the same �A,
independent of A.

The drawn line in Fig. 4 shows the fit from our theoretical
analysis, using a downhill simplex method �20� to minimize
the mean-square fractional deviation of the prediction from
the experimental data over the fitted range. The best fit for
the compressibility modulus for R=10 nm is �A
=0.12 N /m. Because of the uncertainty in the tip radius, the
range of �A for R between 5 and 10 nm is between 0.25 and
0.08 N/m, respectively. Our estimate compares well with the
literature values �A=0.13–0.6 N /m from osmotic pressure
measurements �21� and �A=0.18
0.04 N /m from micropi-
pette aspiration of giant unilamellar vesicles �GUVs� �22�
made of pure DOPC. Our model provides an excellent fit
until 2d−z0�2.5 nm, at which point the elastic energy of
the deformed bilayer overcomes the cost of forming a hole
�23� and the tip abruptly penetrates the full bilayer.

IV. RESPONSE OF LIQUID ORDERED DOMAINS

The AFM force curves for the SM rich liquid ordered
phase are qualitatively different from those in the coexisting
liquid disordered phase �Fig. 5�. The initial deformation
�5 nm�2d−z0�6 nm� shows a high modulus consistent
with the tightly packed character of the Lo phase. Around
2d−z0�5 nm the response shows a crossover to a much
lower modulus. The symbols in Fig. 5 are from 12 separate
force-distance measurements. While the experimental data
fall on the same curves away from the crossover region, the
transition from stiff to soft behavior occurs at different val-
ues of z0, which may be due to either the stochastic behavior
of an activated event or fluctuations in composition from
region to region.

We first attempt to model these force curves as due to an
effective stretching modulus that differs for small and large
penetrations far from the crossover region. Hence, we fit the
data at small penetration �2d−z05.3 nm� and large pen-
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FIG. 5. �Color online� Force-distance curve from AFM �sym-
bols� in the SM rich liquid ordered phase superposed with two
separate theoretical fits �lines, using Eq. �5�� involving two different
�A’s at small and large tip penetrations z0. Inset: closeup of the
crossover region.
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etration �2d−z0�3.5 nm�, with effective stretching moduli
according to Eq. �5�. For R=10 nm, the small z0 fit gives
�A=1.1 N /m. Recent experiments on a bovine brain SM and
CHOL equimolar mixture found �A=2.1
0.2 N /m �24�.
Since egg SM �16:0 SM� has shorter fatty acid chains than
does bovine SM �18:0 SM�, and the current composition has
comparatively smaller amounts of CHOL, we expect the
membrane to be softer �smaller �A�, as found.

The large penetration �z0� region has a stretching modulus
�A=0.05 N /m, which is much closer to that of the Ld phase
shown in Fig. 4 than the unperturbed Lo phase. The AFM tip
forces the bilayer immediately below it to decrease in thick-
ness, which thus destroys the strong nematic order of the Lo
phase and induces a yielding or phase transition of the Lo
phase into an Ld phase. It is likely that the composition of
this induced Ld phase differs from that of the Ld phase that
characterizes equilibrium coexistence far from the AFM tip
�Eq. �8a��, because of slow kinetics of composition changes
under the AFM tip. Our separate fits to extract �A suffer from
narrow available fit window ��0.3 nm� for small z0 and the
lack of small force data for the large z0 fit. Also, this proce-
dure does not elucidate the reason for two distinct elastic
regions separated by a crossover.

To understand the qualitatively difference force responses
of the Lo and Ld phases, we propose a microscopically mo-
tivated model. SM has both hydrogen bond donor and accep-
tor groups and is known to form inter-SM hydrogen bonds
�25,26�. The free energy in the Ld phase, as represented in
Eq. �2�, is dominated by solvent and tail packing entropies.
Hence, to describe the Lo phase we separately include the
short-range energy of hydrogen bond breaking through a
simple Morse potential: U�b�=ED�1−exp�−�b−b0� /�m��2,
where b is the separation between the donor and acceptor
group and b0 is the equilibrium separation. For typical hy-
drogen bonds the dissociation energy ED�2–7 kcal /mol
and the range �m�0.02–0.07 nm �27,28�. For small
changes in area per lipid and affine deformation the contri-
bution to the free energy from distortion of hydrogen bonds
is approximately

GHB�z0� = eHB	 d2r�ht�r�
d

�1 − e−�1/����a/a0�t�2

+
hb�r�

d
�1 − e−�1/����a/a0�b�2� . �9�

Here, eHB is the interlipid hydrogen bond dissociation energy
per area and ��31/4�m /�a0 for hexagonal arrangement of
the lipids. As before, the total free energy, now comprising
contributions from Eqs. �5� and �9�, is minimized at each r to
find the dividing surface between the leaflets, and the force is
calculated from F=�G /�z0.

In the limit of small penetrations this model gives an ef-
fective stretching modulus �A

eff in the Lo phase of

�A
eff = �A + 4

eHB

�2 , �10�

where �A is thus the stretching modulus of the Ld phase that
is left after the Lo phase has been destabilized and there is no

remaining hydrogen bond contribution. The fit to the data is
shown in Fig. 6. The stochastic nature of the force curves
near the rupture point �2d−z0�5.7� limits the ability to ob-
tain excellent fits. Our fit gives �A=0.13 N /m, eHB
=0.006 N /m, and �=0.1.

Assuming an area per lipid a0�0.6 nm2, the fitted value
� implies that the range of the Morse potential is �m
�0.06 nm. Simulations show about 0.5 hydrogen bond per
lipid in SM bilayers �25�. Assuming an average hydrogen
bond energy of 3.5 kcal/mol, our value for eHB gives 0.4
hydrogen bond broken per lipid. The initial deformation is
dominated by the contribution from the hydrogen bonds, and
the corresponding force curve leads to an area compressibil-
ity modulus �A

eff�2.7 N /m.

V. DISCUSSION

We have assumed a static force response, despite typical
tip velocities vtip�102 nm /s. We can estimate the correction
due to finite tip velocity by considering the dissipation from
two-dimensional viscosity � of the lipid layer. The dissipa-
tive force is found to be

FD�z0� =
��z0�2R − z0�

2d2 vtip. �11�

The two-dimensional shear viscosity for fluid bilayers is ex-
pected to be on the order of 10−10 N s /m �29�, leading to
FD�10−8 nN, much smaller than the elastic contributions.
Hence, our static approach is sufficient to describe the AFM
force-distance curves on fluid lipid layers.

In our calculations we have assumed that the two leaflets
have the same area compressibility and preferred area per
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FIG. 6. �Color online� Force-distance curve from AFM �sym-
bols� in the SM rich liquid ordered phase superposed with a micro-
scopically motivated fit that accounts for a separate energetic con-
tribution from hydrogen bond breaking �solid line, based on Eq.
�9��. Also shown are the separate contributions from the van der
Waals interaction �dotted line�, from the hydrogen bonds �dotted-
dashed line�, and the area compressibility term �dashed line�.
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head group. This may not always be the case, because of
surface interactions �13�; for example, supported bilayers of-
ten have different melting temperatures than their counter-
parts in giant unilamellar vesicles. Incorporation of asym-
metric membranes into the model is straightforward,
although more complex. We have also neglected splay or
bending energies. Part of the elastic cost of this is already
included in the increased area per lipid against the curved
surface, in Eq. �2�, but there may also be an additional neg-
ligible free energy cost due to the splay of the lipid tails,
through the bending modulus of each leaflet.

In our analysis, the initial deformation for the Lo phase is
described in terms of the stretching of hydrogen bonds. This
can be explicitly tested by performing experiments with
varying concentrations of SM or using chemicals that disrupt
hydrogen bonds. However, this is beyond the scope of the
present work.

Evidently, local applied pressure can melt the liquid or-
dered phase into the thinner Ld phase, which is not surpris-
ing. We have proposed an explicit microscopic mechanism in
terms of breaking hydrogen bonds that are implicated in sta-
bilizing Lo phase. An alternative and more general descrip-
tion could include a Landau theory for the free energy of the
Lo-Ld phase transition, with local pressure p added as an
external field to destabilize the Lo phase, �G� p�, where �
is an order parameter proportional to thickness whose value
decreases upon a transformation to the Ld phase �30�. The

phase transformation would then occur first at constant com-
position, and then one may expect the composition to change
slowly as the external force changes the local preference for
the different lipid species. The subject of kinetics and com-
position as functions of the applied pressure is interesting
and important, and we leave this for further work.

In summary, we have presented, and validated by experi-
ments, a theory for describing the force-distance F�z0� rela-
tionship for AFM experiments on fluid bilayers, which leads
to a remarkably simple expression for F�z0� �Eq. �7��. This
provides a method for finding the area compressibility modu-
lus and the amount of interlipid hydrogen bonds of fluid
bilayers. The agreement with the existing literature values
for the area compressibility is excellent. The main uncer-
tainty in our prediction is due to the uncertainty in the tip
radius R. However, the simple linear dependence on R means
that relative measurements taken with the same tip can be
compared very accurately.
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