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In many natural synchronization phenomena, communication between individual elements occurs not di-
rectly but rather through the environment. One of these instances is bacterial quorum sensing, where bacteria
release signaling molecules in the environment which in turn are sensed and used for population coordination.
Extending this motivation to a general nonlinear dynamical system context, this paper analyzes synchroniza-
tion phenomena in networks where communication and coupling between nodes are mediated by shared
dynamical quantities, typically provided by the nodes’ environment. Our model includes the case when the
dynamics of the shared variables themselves cannot be neglected or indeed play a central part. Applications to
examples from system biology illustrate the approach.
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I. INTRODUCTION

Many dynamical phenomena in biology involve some
form of synchronization. Synchronization has attracted much
research both from the theoretical �see, e.g., �1–3� to cite just
a few� and experimental �4,5� viewpoints. The particular case
of synchronized time-periodic processes, where time scales
can range from a few milliseconds to several years �6,7�,
includes, e.g., circadian rhythms in mammals �8�, the cell
cycle �9�, spiking neurons �10�, and respiratory oscillations
�11�.

When modeling such networks, it is often assumed that
each node communicates directly with other nodes in the
network �see, e.g., �12,13� and references therein�. In many
natural instances, however, network nodes do not communi-
cate directly but rather by means of noisy and continuously
changing environments. Bacteria, for instance, produce, re-
lease, and sense signaling molecules �the so-called autoin-
ducers� which can diffuse in the environment and are used
for population coordination. This mechanism, known as quo-
rum sensing �14–16�, is believed to play a key role in bac-
terial infection, as well as, e.g., in bioluminescence and bio-
film formation �17,18�. In a neuronal context, a mechanism
similar to that of quorum sensing may involve local-field
potentials, which may play an important role in the synchro-
nization of groups of neurons �19–26�, or it may occur
through a different level in a cortical hierarchy �27–31�.
Other examples of such a mechanism are the synchronization
of chemical oscillations of catalyst-loaded reactants in a me-
dium of catalyst-free solution �32�, cold atoms interacting
with a coherent electromagnetic field �33�, and the onset of
coordinated activity in a population of microorganisms living
in a shared environment �34,35�.

From a network dynamics viewpoint, the key characteris-
tic of quorum-sensing-like mechanisms lies in the fact that
communication between nodes �e.g., bacteria� occurs by
means of a shared quantity �e.g., the autoinducer concentra-

tion�, typically in the environment. Furthermore, the produc-
tion and degradation rates of such a quantity are affected by
all the nodes of the network. Therefore, a detailed model of
such a mechanism needs to keep track of the temporal evo-
lution of the shared quantity, resulting in an additional set of
ordinary differential equations. Such an indirect coupling
model has been recently reported in, e.g., �36,37� in the con-
text of periodic oscillations, while in �38� synchronization of
two chaotic systems coupled through the environment is in-
vestigated. In these papers it is shown that under suitable
conditions oscillators can synchronize and that this kind of
coupling can lead to a rich variety of synchronous behaviors.
In this paper, we will use the generic term “quorum sensing”
to describe all such interactions through a shared environ-
mental variable regardless of the dependence of this variable
on the number of network nodes.

Mathematical work on such quorum-sensing topologies is
relatively sparse �e.g., �21,36–40�� compared to that on dif-
fusive topologies, and it often neglects the dynamics of the
quorum variables or the environment, as well as the global
effects of nonlinearities. This sparsity of results is somewhat
surprising given that, besides its biological pervasiveness,
quorum sensing may also be viewed as an astute “computa-
tional” tool. Specifically, the use of a shared variable in ef-
fect significantly reduces the number of links required to
achieve a given connectivity �21�.

This paper derives sufficient conditions for the coordina-
tion of nodes communicating through dynamical quorum-
sensing mechanisms based on a full nonlinear dynamic
analysis. These results can be used both to study natural
networks and to guide design of communication mechanisms
in synthetic or partially synthetic networks.

After introducing in Sec. II the basic mathematical tool
used in the paper, we start with considering in Sec. III A the
case where the network nodes �e.g., the biological entities
populating the environment� are all identical or nearly iden-
tical. We then focus, in Sec. III B, on networks composed of
heterogeneous nodes, i.e., nodes of possibly diverse dynam-
ics. In this case we provide sufficient conditions ensuring
that all the network nodes sharing the same dynamics con-
verge to a common behavior, a particular instance of the
so-called concurrent synchronization �41,42�. In Sec. III C,

*giovanni.russo2@unina.it
†jjs@mit.edu

PHYSICAL REVIEW E 82, 041919 �2010�

1539-3755/2010/82�4�/041919�17� ©2010 The American Physical Society041919-1

http://dx.doi.org/10.1103/PhysRevE.82.041919


the results are further extended to a distributed version of
quorum sensing where multiple groups of possibly heteroge-
neous nodes communicate by means of multiple media. In
Sec. IV, we show that driving the shared environmental vari-
able with an exogenous signal of a given period provides a
mechanism for making the network nodes oscillate at the
same period, without requiring strong stability properties of
the nodes or the overall system. Finally, Sec. V studies the
dependence of synchronization properties on the number of
nodes, a question of interest, e.g., in the context of cell pro-
liferation. Section VI illustrates the general approach with a
set of examples.

Our proofs are based on nonlinear contraction theory �43�,
a viewpoint on incremental stability which we briefly review
in Sec. II and which has emerged as a powerful tool in ap-
plications ranging from Lagrangian mechanics to network
control. Historically, ideas closely related to contraction can
be traced back to �44� and even to �45� �see also �46�, �47�,
and, e.g., �48� for a more exhaustive list of related refer-
ences�. As pointed out in �43�, contraction is preserved
through a large variety of system combinations, and in par-
ticular it represents a natural tool for the study and design of
nonlinear state observers and, by extension, of synchroniza-
tion mechanisms �49�.

II. CONTRACTION THEORY TOOLS

A. Basic results

Recall that, given a norm � · � on the state space and its
induced matrix norm �A�, for an arbitrary square matrix A,
the associated matrix measure � is defined as �see �50,51��

��A� ª lim
h→0+

1

h
��I + hA� − 1� .

The basic result of nonlinear contraction analysis �43� which
we shall use in this paper can be stated as follows.

Theorem 1. (Contraction). Consider the m-dimensional
deterministic system

ẋ = f�x,t� �1�

where f is a smooth nonlinear function. The system is said to
be contracting if any two trajectories, starting from different
initial conditions, converge exponentially to each other. A
sufficient condition for a system to be contracting is the ex-
istence of some matrix measure, �, such that

∃� � 0, ∀ x, ∀ t � 0, �� � f�x,t�
�x

� � − � . �2�

The scalar � defines the contraction rate of the system.
The standard matrix measures used in this paper are listed

in Table I. More generally, contraction may be shown by
using matrix measures induced by the weighted vector norm
�x��,i= ��x�i, with � as a constant invertible matrix and i
=1,2 ,�. Such measures, denoted with ��,i, are linked to the
standard measures by

��,i�A� = �i��A�−1�, ∀ i = 1,2,� .

In this paper, � will be either the identity or a diagonal
matrix. Note that for linear time-invariant systems, contrac-
tion is equivalent to strict stability, and, using the Euclidean
vector norm, � can be chosen as the transformation matrix
which diagonalizes the system or puts it in Jordan form �43�.

For convenience, in this paper we will also say that a
function f�x , t� is contracting if the system ẋ= f�x , t� satisfies
the sufficient condition above. Similarly, we will then say
that the corresponding Jacobian matrix �f

�x �x , t� is contracting.
We shall also use the following two properties of contract-

ing systems whose proofs can be found in �43,52�.
Hierarchies of contracting systems. Assume that the Jaco-

bian in Eq. �1� is in the form

� f

�x
�x,t� = 	J11 J12

0 J22

 , �3�

corresponding to a hierarchical dynamic structure. The Jii
may be of different dimensions. Then, a sufficient condition
for the system to be contracting is that �i� the Jacobians J11
and J22 are contracting �possibly with different �’s and for
different matrix measures� and �ii� the matrix J12 is bounded.

Periodic inputs. Consider the system

ẋ = f„x,r�t�… , �4�

where the input vector r�t� is periodic, of period T. Assume
that the system is contracting �i.e., that the Jacobian matrix
�f
�x (x ,r�t�) is contracting for any r�t��. Then, the system state
x�t� tends exponentially toward a periodic state of period T.

B. Partial contraction

A simple yet powerful extension to nonlinear contraction
theory is the concept of partial contraction �49�.

Theorem 2. (Partial contraction). Consider a smooth non-
linear m-dimensional system of the form ẋ= f�x ,x , t� and as-
sume that the so-called virtual system ẏ= f�y ,x , t� is contract-
ing with respect to y. If a particular solution of the auxiliary
y system verifies a smooth specific property, then all trajec-
tories of the original x system verify this property exponen-
tially. The original system is said to be partially contracting.

Indeed, the virtual y system has two particular solutions,
namely, y�t�=x�t� for all t�0 and the particular solution
with the specific property. Since all trajectories of the y sys-
tem converge exponentially to a single trajectory, this im-
plies that x�t� verifies the specific property exponentially.

TABLE I. Standard matrix measures for a real n	n matrix, A
ª �aij�. The ith eigenvalue of A is denoted with �i�A�.

Vector norm, � · � Induced matrix measure, ��A�

�x�1=� j=1
n �xj� �1�A�=maxj�ajj +�i�j�aij��

�x�2= �� j=1
n �xj�2�1/2 �2�A�=maxi��i�

A+A�

2 �
�x��=max1�j�n�xj� ���A�=maxi�aii+� j�i�aij��
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C. Networks of contracting nodes

This section introduces preliminary results on concurrent
synchronization of networks, which will be used in the rest
of the paper.

We now consider a network where its N�1 nodes may
have different dynamics �in the rest of the paper, we will say
that nodes are heterogeneous�,

ẋi = f
�i��xi,t� + �
j�Ni

�h
�i��xj� − h
�i��xi�� , �5�

where Ni denotes the set of neighbors of node i and 
 is a
function defined between two set of indices �not necessarily
a permutation�, i.e.,


:�1, . . . ,N → �1, . . . ,s s � N . �6�

Thus, two nodes of Eq. �5�, xi and xj, share the same dynam-
ics and belong to the pth group �denoted with Gp�, i.e.,
xi ,xj �Gp, if and only if 
�i�=
�j�= p. The dimension of the
nodes’ state variables belonging to group p is n
�i�, i.e., xi
�Rn
�i� for any xi�Gp. In what follows we assume that the
Jacobians of the coupling functions h
�i� are diagonal matri-
ces with non-negative diagonal elements. We will derive
conditions ensuring concurrent synchronization in Eq. �5�;
i.e., all nodes belonging to the same group exhibit the same
regime behavior.

In what follows the following standard assumption �see
�41� and references therein� is made on the interconnections
between the agents belonging to different groups �53�.

Definition 1. Let i and j be two nodes of a group Gp,
receiving their input from elements i� and j�, respectively,
with �i� i� and j� belonging to the same group Gp�, �ii� the
coupling functions between i-i� and j-j� being the same, and
�iii� the inputs to i and j coming from different groups are the
same. If these assumptions are satisfied, then nodes i and j
are said to be input equivalent.

Given this definition, we can state the following theorem,
which generalizes results in �41� to the case of arbitrary
norms. Its proof is provided in the Appendix.

Theorem 3. Assume that in Eq. �5� the nodes belonging to
the same group are all input equivalent and that the node
dynamics are all contracting. Then, all node trajectories shar-
ing the same dynamics converge toward each other, i.e., for
any xi, xj �Gp, p=1, . . . ,s,

�xj�t� − xi�t�� → 0 as t → + � .

In the case of networks of identical nodes dynamics, the
above result amounts only to requiring contraction for each
node.

III. MAIN RESULTS

In this section, we first provide sufficient conditions for
the synchronization of a network composed of N nodes com-
municating over a common medium, itself characterized by
some nonlinear dynamics. We then extend the analysis by
providing sufficient conditions for the convergence of net-
works composed of nodes having different dynamics �non-
homogeneous nodes� or communicating over multiple �pos-
sibly nonhomogeneous� media.

A. Basic mathematical model and convergence analysis

In the following, we analyze the convergent behavior of
networks of nodes which are globally coupled through a
shared quantity �often, the environment� �see Fig. 1 �left��. In
such a network, the N nodes are assumed be all identical, i.e.,
to share the same smooth dynamics and to communicate by
means of the same common medium, also characterized by
some smooth dynamics,

ẋi = f�xi,z,t�, i = 1, . . . ,N ,

ż = g�z,��x1, . . . ,xN�,t� . �7�

A simplified version of the above model was recently ana-
lyzed by means of a graphical algorithm in �54�. In the above
equation, the set of state variables of the nodes is xi, while
the set of the state variables of the common medium dynam-
ics is z. Notice that the nodes dynamics and the medium
dynamics can be of different dimensions �e.g., xi�Rn, z
�Rd�. The dynamics of the nodes affect the dynamics of the
common medium by means of some �coupling or input�
function, � :RNn→Rd. These functions may depend only on
some of the components of the xi or of z �as the example in
Sec. VI B illustrates�.

The following result is a sufficient condition for conver-
gence of all node trajectories in Eq. �7� toward each other.

Theorem 4. All node trajectories of network �7� globally
exponentially converge toward each other if the function
f(x ,v�t� , t) is contracting for any v�t��Rd.

Proof. The proof is based on partial contraction �Theorem
2�. Consider the following reduced order virtual system,

ẏ = f�y,z,t� . �8�

Notice that now z�t� is an exogenous input to the virtual
system. Furthermore, substituting xi to the virtual state vari-
able y yields the dynamics of the ith node. That is, xi, i
=1, . . . ,N, are particular solutions of the virtual system.
Now, if such a system is contracting, then all of its solutions
will converge toward each other. Since the node state vari-
ables are particular solutions in Eq. �8�, contraction of the
virtual system implies that for any i , j=1, . . . ,N,

�xi − xj� → 0 as t → + � .

FIG. 1. A schematic representation of networks analyzed in Sec.
III A �left� and Sec. III B �right�. The nodes denoted with circles
have a different dynamics from those indicated with squares. The
dynamics of the common media is denoted with a rectangle. In our
models, the dynamics of the common media is affected by the node
state variables: this implements a feedback.
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The Theorem is proved by noting that by hypotheses the
function f(x ,v�t� , t) is contracting for any exogenous input
v�t�. This, in particular, implies that f�y ,z , t� is contracting;
i.e., Eq. �8� is contracting. �

Remarks.
�a� In the case of diffusivelike coupling between nodes

and the common medium, system �7� is reduced to

ẋi = f�xi,t� + kz�z� − kx�xi� i = 1, . . . ,N ,

ż = g�z,t� + �
i=1

N

�ux�xi� − uz�z�� . �9�

That is, the nodes and the common medium are coupled by
means of the smooth functions kz :Rd→Rn, kx :Rn→Rn and
ux :Rn→Rd, uz :Rd→Rd. These functions may depend only
on some of the components of the xi or z �as we shall illus-
trate in Sec. VI B�. Theorem 4 implies that synchronization
is attained if f�x , t�−kx�x� is contracting. Similar results are
easily derived for the generalizations of the above model
presented in what follows.

�b� The result also applies to the case where the quorum
signal is based not on the xi’s themselves but rather on vari-
ables derived from the xi’s through some further nonlinear
dynamics. Consider, for instance, the system

ẋi = f�xi,z,t�, i = 1, . . . ,N ,

ṙi = h�ri,xi,z,t�, i = 1, . . . ,N ,

ż = g�z,��r1, . . . ,rN�,t� .

Theorem 4 can be applied directly by describing each
network node by the augmented state �xi ,ri� and using prop-
erty �3� on hierarchical combinations to evaluate the contrac-
tion properties of the augmented network dynamics.

�c� Similarly, each network “node” may actually be com-
posed of several subsystems, with each subsystem synchro-
nizing with its analogs in other nodes.

�d� As in previous contraction work, the individual node
dynamics are quite general and could describe, e.g., neuronal
oscillator models as well as biochemical reactions. In the
case that the individual node dynamics represents a system
with multiple equilibria, then synchronization corresponds to
a common “vote” for a particular equilibrium.

�e� A condition for synchronization weaker than Theorem
4 is that the function f�x ,v , t� be contracting only for some
values of v, i.e., v�V�Rd. In this case, the medium dynam-
ics acts as a switch which activates or deactivates synchro-
nization according to the values of z.

B. Multiple systems communicating over a common medium

We now generalize the mathematical model analyzed in
Sec. III A by allowing for s�N groups �or clusters� of nodes
characterized by different dynamics �with possibly different
dimensions� to communicate over the same common me-
dium �see Fig. 1, right�. We will prove a sufficient condition
for the global exponential convergence of all node trajecto-
ries belonging to the same group toward each other. This

regime is called concurrent synchronization �41�.
The mathematical model analyzed here is

ẋi = f
�i��xi,z,t� ,

ż = g�z,��x1, . . . ,xN�,t� , �10�

where �i� 
 is defined as in Eq. �6�, �ii� xi denotes the state
variables of the network nodes �nodes belonging to different
groups may have different dimensions, say n
�i�� and z de-
notes the state variables for the common medium �z�Rd�;
and �iii� �, defined analogously in Sec. III A, denotes the
coupling function of the group 
�i� with the common me-
dium dynamics �� :Rn
�1� 	 ¯ 	Rn
�N�→Rd�.

Theorem 5. Concurrent synchronization is achieved in
network �10� if the functions f
�i�(x ,v�t� , t) are all contract-
ing for any v�t��Rd.

Proof. Recall that Eq. �10� is composed by N nodes hav-
ing dynamics f1 , . . . , fs. Now, in analogy with the proof of
Theorem 4, consider the following virtual system:

ẏ1 = f1�y1,z,t� ,

ẏ2 = f2�y2,z,t� ,

]

ẏs = fs�ys,z,t� , �11�

where z�t� is seen as an exogenous input to the virtual sys-
tem. Let �Xi be the set of state variables belonging to the ith
group composing the network and denote with Xi,j any ele-
ment of �Xi. We have �X1,j , . . . ,Xs,j� as the particular solu-
tions of the virtual system. Now, contraction of the virtual
system implies that all of its particular solutions converge
toward each other, which in turn implies that all the elements
within the same group �Xi converge toward each other.
Thus, contraction of virtual system �11� implies concurrent
synchronization of real system �10�.

To prove contraction of Eq. �11�, compute its Jacobian,

J = �
� f1�y1,z,t�

�y1
0 0 . . . 0

0
� f2�y2,z,t�

�y2
0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 0
� fs�ys,z,t�

�ys

� .

Now, by hypotheses, we have that all the functions
f i(x ,v�t� , t) are contracting for any exogenous input. This, in
turn, implies that virtual system �11� is contracting since its
Jacobian matrix is block diagonal with diagonal blocks being
contracting. �

C. Systems communicating over different media

In Sec. III B, we considered networks where some �pos-
sibly heterogeneous� nodes communicate over a common
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medium. We now consider a distributed version of such to-
pology, where each of the s�N groups composing the net-
work has a private medium. Communication between the
groups is then obtained by coupling only their media �see
Fig. 2�. The objective of this section is to provide a sufficient
condition ensuring �concurrent� synchronization of such net-
work topology.

Note that the network topology considered here presents a
layer structure. In analogy with the terminology used for
describing the topology of the Internet and the World Wide
Web �see, e.g., �55,56��, we term as medium �or private� level
the layer consisting of the nodes of the network and their
corresponding �private� media; we then term as autonomous
level the layer of the interconnections between the media.
That is, the autonomous level is an abstraction of the net-
work, having nodes which consist of both the network nodes
and their private medium. This in turn implies that in order
for two nodes of the autonomous level to be identical they
have to share �i� the same dynamics and number of nodes
and �ii� the same medium dynamics �see Fig. 2�.

In what follows we will denote with Gp the set of homo-
geneous nodes communicating over the medium zp. We will
denote with Np the set of media which are linked to the
medium zp. Each medium communicates with its neighbor-
ing media diffusively. The mathematical model is then

ẋi = fp�xi,zp,t�, xi � Gp,

żp = gp�zp,��Xp�,t� + �
j�Np

��p�zj� − �p�zp��, xi � Gp,

�12�

where p=1, . . . ,s and Xp is the stack of all the vectors xi
�Gp. We assume that the dynamical equations for the media
have all the same dimensions �e.g., zp�Rd�, while the nodes

belonging to different groups can have different dimensions
�e.g., xi�Rp for any i�Gp�. Here, the coupling functions
between the media, �p :Rd→Rd, are assumed to be continu-
ous and to have a diagonal Jacobian matrix with diagonal
elements being non-negative and bounded. All the matrices
�fp /�z are assumed to be bounded.

Theorem 6. Concurrent synchronization is attained in net-
work �12� if �i� the nodes of its autonomous level sharing the
same dynamics are input equivalent, �ii� fp(xi ,v�t� , t) and
gp(zp ,v�t� , t) are all contracting functions for any v�t��Rd,
and �iii� �fp /�zp are all uniformly bounded matrices.

Proof. Consider the following two-dimensional virtual
system analogous to the one used for proving Theorem 5,

ẏ1,p = fp�y1,p,y2,p,t� ,

ẏ2,p = gp„y2,p,vp�t�,t… + �
k�Np

��p�y2,k� − �p�y2,p�� , �13�

where p=1, . . . ,s and vp�t�ª��Xp�. Notice that the above
system is constructed in a similar way as in Eq. �11�. In
particular, solutions of Eq. �12� are particular solutions of the
above virtual system �see the proof of Theorem 5�. That is, if
concurrent synchronization is attained for Eq. �13�, then all
the nodes sharing the same dynamics will converge toward
each other. Now, Theorem 3 implies that concurrent synchro-
nization is attained for system �13� if �i� its nodes are con-
tracting, �ii� the coupling functions have a non-negative
bounded diagonal Jacobian, and �iii� nodes sharing the same
dynamics are input equivalent. Since the last two conditions
are satisfied by hypotheses, we only have to prove contrac-
tion of the virtual network nodes. Differentiation of node
dynamics in Eq. �13� yields the Jacobian matrix

�
� fp�y1,p,y2,p,t�

�y1,p

� fp�y1,p,y2,p,t�
�y2,p

0
�gp�y1,p,vi�t�,t�

�y2,p

� .

The above Jacobian has the structure of a hierarchy. Thus
�see Sec. II�, the virtual system is contracting if �i�
�fp�y1,p ,y2,p , t� /�y1,p and �gp�y2,p ,vi�t� , t� /�y2,p are both
contracting and �ii� �fp�y1,p ,y2,p , t� /�y2,p is bounded.

The above two conditions are satisfied by hypotheses.
Thus, the virtual network achieves concurrent synchroniza-
tion �Theorem 3�. This proves the theorem. �

Note that Theorems 4 and 5 do not make any hypotheses
on the medium dynamics—synchronization �or concurrent
synchronization� can be attained by the network nodes inde-
pendently of the particular dynamics of the single medium,
provided that the function f �or the f i’s� is contracting. By
contrast, Theorem 6 shows that the media dynamics becomes
a key element for achieving concurrent synchronization in
networks where different groups communicate over different
media.

Finally, note that all of the above results also allow di-
mensionality reduction in the analysis of the system’s final
behavior by treating each group as a single element, simi-
larly to �57�, a point we will further illustrate in Sec. V.

FIG. 2. �Color online� A schematic representation of the net-
work analyzed Sec. III C. The connections between media �and
hence the connections of the autonomous level� are pointed out.
Notice that only two nodes of the autonomous level are input
equivalent �also pointed out in the figure� since �i� their media have
the same dynamics and �ii� both media are shared by the same
number of nodes which have the same dynamics.
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IV. CONTROL OF PERIODICITY

The objective of this section is to provide a sufficient
condition to guarantee that the common node behavior to-
ward which all network nodes globally converge is oscilla-
tory and exhibits a specified period. This is obtained by driv-
ing the environmental dynamics with an exogenous signal of
the given period. A related problem has been recently ad-
dressed in �58� where entrainment of individual contracting
biological systems to periodic inputs was analyzed. In our
context, the result is by no means a direct application of the
theorem on entrainment of contracting systems to periodic
inputs discussed in Sec. II A, as the nodes or the overall
system need not be contracting and thus the role of the bi-
lateral interaction between nodes and shared environmental
variable becomes central.

Our main result, which we shall extend later in the sec-
tion, is as follows.

Theorem 7. Consider the following network:

ẋi = f�xi,z,t�, i = 1, . . . ,N ,

ż = g�z,��x1, . . . ,xN�,t� + r�t� , �14�

where r�t� is a T-periodic signal. All the nodes of the net-
work synchronize onto a periodic orbit of period T if �i�
f(xi ,v�t� , t) and g(z ,v�t� , t) are contracting functions for any
v�t��Rd and �ii� �f

�z is bounded.
Note that the dynamics f and g include the coupling terms

between nodes and environment.
Proof. Consider the virtual system

ẏ1 = f�y1,y2,t� ,

ẏ2 = g„y2,v�t�,t… + r�t� , �15�

where v�t�ª��x1 , . . . ,xN�. We will prove the theorem by
showing that such a system is contracting. Indeed, in this
case, the trajectories of Eq. �15� will globally exponentially
converge to a unique T-periodic solution, implying that also
xi will exhibit a T-periodic final behavior. It is straightfor-
ward to check that differentiation of the virtual system yields
a matrix of form �3�. That is, the virtual system is a hierarchy
and thus �see Sec. II� it is contracting if �i� �f�y1 ,y2 , t� /�y1
and �g�y2 ,v�t� , t� /�y2 are both contracting and �ii�
�f�y1 ,y2 , t� /�y2 is bounded.

The first condition is satisfied since, by hypotheses, the
functions f(x ,v�t� , t) and g(z ,v�t� , t) are contracting for any
v�Rd. The second condition is also satisfied since we as-
sumed �f /�z to be bounded. The Theorem is then proved. �

System �14� can be thought of as a dynamical system built
upon a bidirectional interaction between nodes and medium
and forced by a periodic input. In this view, the conditions of
Theorem 7 guarantee global exponential synchronization of
the network nodes onto a periodic orbit of the same period as
the input, without requiring contraction of either the nodes or
the overall dynamics. Indeed, the proof of the theorem is
based on contraction of an appropriately constructed virtual
system, a much weaker condition. In this sense, our result
provides a generalization of the basic result on global en-
trainment to periodic inputs discussed in Sec. II A.

Theorem 7 can be extended to the more general case of
networks of nonhomogeneous nodes communicating over
nonhomogeneous media.

Theorem 8. Consider the following network:

ẋi = fp�xi,zp,t�, xi � Gp,

żp = gp�zp,��Xp�,t� + �
k�Np

���zk� − ��zp�� + r�t� xj � Gp,

�16�

where Xp is the stack of all the xi�Gp and r�t� is a T-periodic
signal. Concurrent synchronization is attained, with a final
behavior periodic behavior of period T if

�1� the nodes of the autonomous level sharing the same
dynamics are input equivalent;

�2� the coupling functions � have bounded diagonal Jaco-
bian with non-negative diagonal elements;

�3� fp(xi ,v�t� , t) and gp(zp ,v�t�t) are contracting functions
for any v�t��Rd; and

�4� �fp /�zp are all uniformly bounded matrices.
Proof. The proof is formally the same as that of Theorem

6 and Theorem 7, and it is omitted here for the sake of
brevity. �

Simple example

Consider a simple biochemical reaction, consisting of a
set of N�1 enzymes sharing the same substrate. We denote
with X1 , . . . ,XN the concentration of the reaction products.
We also assume that the dynamics of S is affected by some
T-periodic input, r�t�. We assume that the total concentration
of Xi, i.e., Xi,T, is much less than the initial substrate concen-
tration, S0. In these hypotheses, a suitable mathematical
model for the system is given by �see, e.g., �59��

Ẋi = − aXi +
K1S

K2 + S
, i = 1, . . . ,N ,

Ṡ = − �
i=1

N
K1S

K2 + S
+ r�t� . �17�

with K1 and K2 as positive parameters. Thus, a suitable vir-
tual system for the network is

ẏ1 = − ay1 +
K1y2

K2 + y2
,

ẏ2 = − �
i=1

N
K1y2

K2 + y2
+ r�t� . �18�

Differentiation of the above system yields the Jacobian ma-
trix

GIOVANNI RUSSO AND JEAN JACQUES E. SLOTINE PHYSICAL REVIEW E 82, 041919 �2010�

041919-6



�− a
K2

�K2 + y1�2

0 − N
K2

�K2 + y1�2
� . �19�

It is straightforward to check that the above matrix represents
a contracting hierarchy �recall that biochemical parameters
are all positive�. Thus, all the trajectories of the virtual sys-
tem globally exponentially converge toward a unique
T-periodic solution. This, in turn, implies that Xi, i
=1, . . . ,N, globally exponentially converges toward each
other and toward the same periodic solution.

Figure 3 illustrates the behavior for N=3. Notice that, as
expected from the above theoretical analysis, X1, X2, and X3
synchronize onto a periodic orbit of the same period as r�t�.

V. EMERGENT PROPERTIES AS N INCREASES

In this section, we analyze how the convergence proper-
ties of a given quorum-sensing network vary as the number
N of nodes increases. We show that for some typical
quorum-sensing networks, as N becomes sufficiently large,
synchronization always occurs. One particular modeling con-
text where these results have important implications is that of
cell proliferation in biological systems.

A. Lower bound on N ensuring synchronization

It is well known �49� that for all-to-all diffusively coupled
networks of the form

ẋi = f�xi,t� + �
i=1

N

k�xj − xi� , �20�

the minimum coupling gain k required for synchronization is
inversely proportional to the number of nodes composing the
network. That is,

kmin 
1

N
.

We now show that a similar bound holds for nodes coupled
by means of quorum sensing of the form

ẋi = f�xi,t� + kN�z − xi�, i = 1, . . . ,N ,

ż = g�z,��x1, . . . ,xN�,t� . �21�

To simplify notations, the above model assumes that z and all
xi have the same dimensions. In addition, the coupling
strength increases with the number of nodes N, a frequent
property of actual networks based on quorum-sensing
mechanisms, such as, e.g., bacteria proliferation �16� or
local-field potentials.

Theorem 9. Assume that the Jacobian � �f
�x � is upper

bounded by � for some matrix measure �, i.e.,

∃� � R, ∀ x, ∀ t � 0, �� � f

�x
� � � .

Then, network �21� synchronizes if

k �
�

N
.

That is, kmin1 /N.
Proof. Consider the virtual system

ẏ = f�y,t� + kN�z − y� . �22�

Synchronization is attained if the virtual system is contract-
ing. Now, computing the matrix measure of the Jacobian in
Eq. �22� yields for any x and for any t�0,

�� � f

�y
− kNI� � �� � f

�y
� + kN��− I� � � − kN .

Thus, the virtual system is contracting if k�
�
N . �

B. Dependence on initial conditions

We now consider the basic quorum-sensing model �7�. We
derive simple conditions for the final behavior of the network
to become independent of initial conditions �in the nodes and
the medium� as N becomes large.

Theorem 10. Assume that for Eq. �7� the following con-
ditions hold: �i� �� �f

�x �→−� as N→+�, �ii� g(z ,v2�t� , t) is
contracting �for any v2�t� in Rd�, and �iii� � �f

�z � and � �g
�v2

� are
bounded for any x, z, and v2 �where � · � is the operator
norm�.

Then, there exist some N� such that for any N�N� all
trajectories of Eq. �7� globally exponentially converge to-
ward a unique synchronized solution, independent of initial
conditions.

Proof. We know that contraction of f(x ,v1�t� , t) for any
v1�t� �which the first condition implies for N large enough�
ensures network synchronization. That is, there exists a
unique trajectory, xs�t�, such that, as t→+�,

�xi − xs� → 0, ∀ i .

Therefore, the final behavior is described by the following
lower-dimensional system,

0 20 40 60 80 100
0
2
4

0 20 40 60 80 100
0
5

10

0 20 40 60 80 100
0
2
4

time

r(
t)

X
i
(t

)
S
(t

)

FIG. 3. �Color online� Simulation of Eq. �17�, with N=3 and
r�t�=1.1+sin�0.1t�. System parameters are set as follows: a=1,
K2=1, and K1=2.
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ẋs = f�xs,z,t� ,

ż = g�z,��xs�,t� . �23�

If in turn this reduced order system �23� is contracting, then
its trajectories globally exponentially converge toward a
unique solution, say xs

��t�, regardless of initial conditions.
This will prove the theorem �similar strategies are exten-
sively discussed in �57��.

To show that Eq. �23� is indeed contracting, compute its
Jacobian matrix

�
� f

�xs

� f

�z

�g

�xs

�g

�z
� .

Lemma 1 in the Appendix shows that the above matrix is
contracting if there exist some strictly positive constants �1,
�2 such that

�� � f

�xs
� +

�2

�1
� �g

�xs
� and �� �g

�z
� +

�1

�2
�� f

�z
� �24�

are both uniformly negative definite.
Now, ���f /�xs� and ���g /�z� are both uniformly negative

by hypotheses. Furthermore, ���f /�xs� tends to be −� as N
increases: since ��f /�z� and ��g /�xs� are bounded, this im-
plies that there exist some N� such that for any N�N� the
two conditions in Eq. �24� are satisfied. �

Also, assume that actually the dynamics f and g do not
depend explicitly on time. Then, under the conditions of the
above Theorem, the reduced system is both contracting and
autonomous, and so it tends toward a unique equilibrium
point �43�. Thus, the original system converges to a unique
equilibrium, where all xi’s are equal.

In addition, note that when the synchronization rate and
the contraction rate of the reduced system both increase with
N, this also increases robustness �41� to variability and dis-
turbances.

C. How synchronization protects from noise

In this section, we discuss briefly how the synchronization
mechanism provided by dynamical quorum-sensing protects
from noise and variability in a fashion similar to the static
mechanism studied in �21�. We show that the results of �21�,
to which the reader is referred for details about stochastic
tools, extend straightforwardly to the case where the dynam-
ics of the quorum variables cannot be neglected or indeed
may play a central part, as studied in this paper.

Assume that the dynamics of each network element xi in
Eq. �21� is subject to noise and consider, similarly to �21�,
the corresponding system of individual elements in Ito form,

dxi = �f�xi,t� + kN�z − xi��dt + �dW,i i = 1, . . . ,N ,

�25�

where the all-to-all coupling in �21� has been replaced by a
more general quorum-sensing mechanism. The subsystems

are driven by independent noise processes, and for simplicity
the noise intensity � in the equations above is assumed to be
constant. We make no assumptions about noise acting di-
rectly on the dynamics of the environment or quorum vector
z.

Proceeding exactly as in �21� yields similar results on the
effect of noise. In particular, let x• be the center of mass of
the xi, that is

x• =
1

N
�

i

xi.

Notice that when all the nodes are synchronized onto
some common solution, say xs�t�, then, by definition, x•

=xs�t�.
Adding up the dynamics in Eq. �25� gives

dx• =
1

N��
i

f�xi,t��dt + kN�z − x•�dt +
1

N
�

i

�dWi.

�26�

Let

� = f�x•,t� −
1

N
��

i=1

N

f�xi,t�� .

Note that �=0 when all the nodes are synchronized.
By analogy with Eq. �25�, Eq. �26� can then be written as

dx• = „f�x•,t� + kN�z − x•� + �…dt +
1

N
�

i

�dWi. �27�

Using the Taylor formula with integral remainder exactly as
in �21� yields a bound on the distortion term � as a function
of the nonlinearity, the coupling gain k, and the number of
cells N,

E����� � �max� �2f

�x2���kN� ,

where �max��2f /�x2� is a uniform upper bound on the spec-
tral radius of the Hessian �2f /�x2 and ��kN�→0 as kN→
+�. In particular, in Eq. �27�, both the distortion term � and
the average noise term 1

N�i �dWi tend to be zero as N→
+�.

Note that an additional source of noise may be provided
by the environment on the quorum variables themselves. We
made no assumptions above about such noise which acts
directly on the dynamics of the environment or quorum vec-
tor z. How it specifically affects the common quantity z in
Eq. �25� could be further studied.

Finally, note that this noise protection property, combined
with quorum sensing’s computational advantage �alluded to
in Sec. I, see �21�� of achieving all-to-all coupling using only
2N connections instead of N2 connections, may have inter-
esting implications in terms of the recent results in �60�,
which show that standard deviation from nominal trajectories
due to noise varies as the quartic root of the number of sig-
naling events.

Similar results hold for the effects of bounded distur-
bances and dynamic variations.
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VI. EXAMPLES

A. Synchronization of the FitzHugh-Nagumo oscillators

To illustrate synchronization and population effects simi-
lar to those described in Sec. V A, consider a network of the
FitzHugh-Nagumo oscillators coupled through a dynamic
medium,

v̇i = c�vi + wi − 1/3vi
3 + I� + kN�z − vi� ,

ẇi = − 1/c�vi − a + bwi� ,

ż =
De

N
�
i=1

N

�vi − z� − dez . �28�

In what follows, system parameters are set as a=0.3, b
=0.2, c=20, k=1, and de=De=1. Similarly to the proof of
Theorem 9, consider the virtual system

ẏ1 = c�y1 + y2 − 1/3y2
3 + I� + kN�z − y1� ,

ẏ2 = − 1/c�y1 − a + by2� ,

whose Jacobian matrix is

J ª �c�1 − y1
2� − kN c

−
1

c
−

b

c
� .

Using the matrix measure �2,� with

� = 	1 0

0 c



yields �2,��J�=�2�F�, where

F = �J�−1 = �c�1 − y1
2� − kN 1

− 1 −
b

c
� .

Thus, the virtual system is contracting if the maximum ei-
genvalue of the symmetric part of F is uniformly negative.
Similarly to Theorem 9, this is obtained if

N �
c

k
. �29�

That is, a sufficient condition for the virtual system to be
contracting—and hence for network �28� to fulfill

synchronization—is given in Eq. �29�. Figures 4 and 5 illus-
trate the corresponding system behavior for values of N be-
low and above this threshold.

B. Controlling synchronization of genetic oscillators

In Sec. IV we showed that bilateral coupling with the
environment also allowed the synchronized behavior of the
network nodes to be of a given period by driving the envi-
ronment variable by an exogenous signal having that period.
Here, we illustrate this result on a model of a population of
genetic oscillators coupled by means of the concentration of
a protein in the environment.

1. Genetic oscillators

Specifically, we consider the genetic circuit analyzed in
�61� �a variant in �62�� and schematically represented in Fig.
6. Such a circuit is composed of two engineered gene net-
works that have been experimentally implemented in E. coli,
namely, the toggle switch �63� and an intercell communica-
tion system �2�. The toggle switch is composed of two tran-
scription factors: the lac repressor, encoded by gene lacI, and
the temperature-sensitive variant of the �cI repressor, en-
coded by the gene cI857. The expressions of cI8547 and lacI
are controlled by the promoters Ptrc and PL�, respectively
�for further details see �61��. The intercell communication
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FIG. 4. �Color online� Simulation of network �28� for N=2,
showing the absence of synchronization. Left: time behavior of v1,
v2. Right: network phase plot, with initial conditions denoted with a
round marker.
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FIG. 5. �Color online� Simulation of network �28� for N=20,
showing synchronization.
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FIG. 6. A schematic representation of the genetic circuit: de-
tailed circuit.
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system makes use of components of the quorum-sensing sys-
tem from Vibro fischeri �see, e.g., �16� and references
therein�. Such a mechanism allows cells to sense population
density through the transcription factor LuxR, which is an
activator of the genes expressed by the Plux promoter, when a
small molecule AI binds to it. This small molecule, synthe-
sized by the protein LuxI, is termed as autoinducer and it can
diffuse across the cell membrane.

In �61�, the following dimensionless simplified model is
analyzed �see Fig. 7�:

u̇i =
�1

1 + vi
� +

�3wi
�

1 + wi
� − d1ui, �30a�

v̇i =
�2

1 + ui

 − d2vi, �30b�

ẇi = �� �4

1 + ui

 − d3wi� + 2d�we − wi� , �30c�

ẇe =
De

N
�
i=1

N

�wi − we� − dewe, �30d�

where ui, vi, and wi denote the �dimensionless� concentra-
tions of the lac repressor, � repressor, and LuxR-AI activa-
tor, respectively. The state variable we denotes instead the
�dimensionless� concentration of the extracellular autoin-
ducer.

In �61�, a bifurcation analysis is performed for the above
model, showing that synchronization can be attained for
some range of the biochemical parameters of the circuit.
However, as the objective of that paper was to analyze the
onset of synchronization, the problem of guaranteeing a de-
sired oscillatory behavior was not addressed. In what fol-
lows, using the results derived in the previous sections, we
address the open problem of guaranteeing a desired period
for the final oscillatory behavior of network �30�.

The control mechanism that we use here is an exogenous
signal acting on the extracellular autoinducer concentration
�see also �58��. That is, the idea is to modify Eq. �30d� as
follows:

ẇe =
De

N
�
i=1

N

�wi − we� − dewe + r�t� , �31�

where r�t� is some T-periodic signal. In the setup that we
have in mind here, multiple copies of the genetic circuit of
interest share the same surrounding solution on which r�t�
acts. From the technological viewpoint, r�t� can be imple-
mented by controlling the temperature of the surrounding
solution and/or using, e.g., the recently developed microflu-
idic technology �see, e.g., �64� and references therein�.

In what follows, we will use Theorem 4 to find a set of
biochemical parameters that ensure synchronization in Eqs.
�30a�–�30d�. This, using the results of Sec. IV, immediately
implies that forced networks �30a�–�30c� and �31� globally
exponentially converge toward a T-periodic final behavior.

System �30� has the same structure as Eq. �9�, with xi
= �ui ,vi ,wi�T, z=we, and

f�xi,t� = �
�1

1 + vi
� +

�3wi
�

1 + wi
� − d1ui

�2

1 + ui

 − d2vi

�� �4

1 + ui

 − d3wi� � ,

kz�z� − kx�xi� = � 0

0

2d�we − wi�
� ,

g�z,t� = − dewe,

�
i=1

N

�ux�xi� − uz�z�� =
De

N
�
i=1

N

�wi − we� .

We know from Theorem 7 that all nodes trajectories con-
verge toward each other if

�1� f�xi , t�−kx�xi� is contracting and
�2� g�z , t�−Nuz�z� is contracting.
That is, contraction is ensured if there exist some matrix

measures, �� and ���, such that

����xi,t� − kx�xi�� and ����g�z,t� − Nuz�z��

are uniformly negative definite. We use the above two con-
ditions in order to obtain a set of biochemical parameters
ensuring node convergence. A possible choice for the above
matrix measures is ��=���=�1 �see �65,58��. Clearly, other
choices for the matrix measures �� and ��� can be made,
leading to different algebraic conditions and thus to �eventu-
ally� a different choice of biochemical parameters.

We assume that �=�=
=2 and show how to find a set of
biochemical parameters satisfying the above two conditions.

Condition 1. Differentiation of �f /�xi−�k /�xi yields the

gene w gene v gene u

P2

P1

V

U

gene u

P3

W

We

FIG. 7. Simplified circuit using for deriving mathematical model
�30�. Both the promoters and transcription factors are renamed.
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Jacobian matrix �where the subscripts have been omitted�,

Ji ª �
− d1

− 2�1v
�1 + v2�2

2�3w

�1 + w2�2

− 2�2u

�1 + u2�2 − d2 0

− 2��4u

�1 + u2�2 0 − �d3 − 2d
� . �32�

Now, by definition of �1, we have

�1�Ji� = max�− d1 +
2�2u

�1 + u2�2 +
2��4u

�1 + u2�2 ,− d2 +
2�1v

�1 + v2�2 ,

− �d3 − 2d +
2�3w

�1 + w2�2� .

Thus, Ji is contracting if �1�Ji� is uniformly negative defi-
nite. That is,

− d1 +
2�2u

�1 + u2�2 +
2��4u

�1 + u2�2 � 0,

− d2 +
2�1v

�1 + v2�2 � 0,

− �d3 − 2d +
2�3w

�1 + w2�2 � 0 �33�

uniformly. Notice now that the maximum of the function
a�v�= āv / �1+v2�2 is â= 3�3ā

16 . Thus, the set of inequalities
�Eq. �33�� is fulfilled if

− d1 +
6�2

�3

16
+

6��4
�3

16
� 0,

− d2 +
6�1

�3

16
� 0,

− �d3 − 2d +
6�3

�3

16
� 0 �34�

uniformly.
Condition 2. In this case it is easy to check that the matrix

Jeª
�g
�z −N �u

�z is contracting for any choice of the �positive�
biochemical parameters De and de.

Thus, we can conclude that any choice of biochemical
parameters fulfilling Eq. �34� ensures synchronization of the
network onto a periodic orbit of period T. In �61�, it was
shown that a set of parameters for which synchronization is
attained is �1=3, �2=4.5, �3=1, �4=4, �=0.01, d=2, and
d1=d2=d3=1. We now use the guidelines provided by Eq.
�34� to make a minimal change of the parameter values en-
suring network synchronization with oscillations of period T.
Specifically, such conditions can be satisfied by setting d1
=6, d2=2. Figure 8 shows the behavior of the network for
such a choice of the parameters. Finally, Figure 9 shows a
simulation of the network �with N=2� when the biochemical

parameters are chosen so as to violate the two conditions
above. In such a figure, both the time behavior of wi and
phase plot are shown, indicating that synchronization is in-
deed not attained.

Note again that, depending on actual parameter values,
the overall system may or not be contracting, and therefore
synchronization to a common period is the result of coordi-
nation through the shared variable and not just of the theo-
rem on periodic inputs of Sec. II A.

2. Communication over different media

In the above sections, we assumed that all the genetic
circuits shared the same surrounding solution. We now ana-
lyze the case where two different groups of genetic circuits
are surrounded by two different media. The communication
between groups is then left to some �possibly artificial� com-
munication strategy between the two media.

We now assume that only one of the two media is forced
by the exogenous T-periodic signal r�t�, while the two media
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FIG. 9. �Color online� Behavior of Eqs. �30a�–�30c� and �31�
when N=2 and all the �’s are increased, violating condition 1 and
condition 2. The phase plot shows that synchronization is not at-
tained: w1 is on the x axis and w2 is on the y axis.
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FIG. 8. �Color online� Behavior of Eqs. �30a�–�30c� and �31�,
when N=10 and r�t�=1+sin�0.1t�. Notice that the nodes have ini-
tial different conditions and that they all converge �at approximately
t=2� onto a common asymptotic having the same period as r�t�.
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communicate with each other in a diffusive way. The math-
ematical model that we analyze here is then

u̇i1 =
�1

1 + vi1
� +

�3wi1
�

1 + wi1
� − d1ui1,

v̇i1 =
�2

1 + ui1

 − d2vi1,

ẇi1 = �� �4

1 + ui1

 − d3wi1� + 2d�we1 − wi1� ,

ẇe1 =
De

N
�
i=1

N

�wi1 − we1� − dewe1 + r�t� + ��we2� − ��we1� ,

u̇i2 =
�̄1

1 + vi2
� +

�̄3wi2
�

1 + wi2
� − d̄1ui2,

v̇i2 =
�̄2

1 + ui2

 − d̄2vi2,

ẇi2 = �� �̄4

1 + ui2

 − d3wi2� + 2d�we2 − wi2� ,

ẇe2 =
D̄e

N
�
i=1

N

�wi2 − we2� − d̄ewe2 + ��we1� − ��we2� ,

�35�

where xi1= �ui1 ,vi1 ,wi1�T and xi2= �ui2 ,vi2 ,wi2�T denote the
set of state variables of the ith oscillator of the first and
second groups, respectively. Analogously, we1 and we2 de-
note the extracellular autoinducer concentration surrounding
the first and second groups of genetic circuits.

Notice that the biochemical parameters of the nodes com-
posing the two groups and of their corresponding media are
not identical. Specifically, for the first group we use the same
parameters as in Sec. VI B 1, while for the second group we
use parameters which differ from parameters of the first
group by approximately 50% �so as to still satisfy the two
conditions of Sec. VI B 1�. To ensure concurrent synchroni-
zation, we design the coupling function between the media
��� · �� by using the guidelines provided by Theorem 6. Fur-
thermore, using Theorem 8 we can conclude that the final
behavior of the two groups is T periodic.

It is straightforward to check that the hypotheses of Theo-
rem 6 are all satisfied if

�a� the biochemical parameters of the two groups fulfill
the conditions in Eq. �34� and

�b� the coupling function �� · � is increasing.
In fact, the topology of the autonomous level of the net-

work is input equivalent by construction. Figure 10 shows
the behavior of Eq. �35� when the biochemical parameters of
the oscillators are tuned as in Sec. VI B 1 and ��x�=Kx, with
K=0.1.

3. Coexistence of multiple node dynamics

We now consider the case where the two groups analyzed
above are identical but connected with each other by means
of a third group composed of the Van der Pol oscillators. For
such oscillators, the coupling between elements of the same
group is also implemented by means of a quorum-sensing
mechanism. Communication among the three groups occurs
by means of some coupling between their media. The math-
ematical model considered here is then

u̇i1 =
�1

1 + vi1
� +

�3wi1
�

1 + wi1
� − d1ui1,

v̇i1 =
�2

1 + ui1

 − d2vi1,

ẇi1 = �� �4

1 + ui1

 − d3wi1� + 2d�we1 − wi1� ,

ẇe1 =
De

N
�
i=1

N

�wi1 − we1� − dewe1 + ��we3� − ��we1� ,

u̇i2 =
�1

1 + vi2
� +

�3wi2
�

1 + wi2
� − d1ui2,

v̇i2 =
�2

1 + ui2

 − d2vi2,

ẇi2 = �� �4

1 + ui2

 − d3wi2� + 2d�we2 − wi2� ,

ẇe2 =
De

N
�
i=1

N

�wi2 − we2� − dewe2 + ��we3� − ��we2� ,
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FIG. 10. �Color online� Behavior of Eq. �35� when r�t�=1
+sin�0.1t�. Both groups consist of N=10 nodes. Concurrent syn-
chronization is attained for the network. The time behavior of the
first group of nodes is in red �upper line�, while the time behavior of
the second group is in yellow �lower line�. Both the groups exhibit
a final, synchronized, behavior having the same period as r�t�.
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ẏ1i = y2i,

ẏ2i = − ��y1i
2 − ��y2i − �2y1i + K�we3 − y1i� ,

ẇe3 =
K

Nvdp
�
i=1

N

�y2i − we3� + g�we3� + ��we1� + ��we2�

− 2��we3� , �36�

with �y1i ,y2i�T denoting the state variables of the ith Van der
Pol oscillator and with Nvdp indicating the number of the Van
der Pol oscillators in the network. In the above model the
Van der Pol oscillators are coupled by means of the medium
we3�R. The three media, we1, we2, and we3, communicate by
means of the coupling function �� · �, assumed to be linear.
We assume that the function g governing the intrinsic dy-
namics of the medium we3 is smooth with bounded deriva-
tive. The parameters for the Van der Pol oscillator are set as
follows: �=�=�=1. Notice that now no external inputs are
applied on the network.

Recall that Theorem 6 ensures synchronization under the
following conditions:

�1� contraction of each group composing the network and
�2� topology of the autonomous level of the network con-

nected and input equivalent.
Notice that the second condition is satisfied for the net-

work of our interest. Furthermore, contraction of the two
groups composed of genetic oscillators is ensured if the their
biochemical parameters satisfy the inequalities in Eq. �34�.

To guarantee the convergent behavior of the group com-
posed of the Van der Pol oscillators, we have to check that
there exist two matrix measures, �� and ���, showing con-
traction of the following two matrices:

J1 = 	 0 1

− ��y2i
2 − �� − �2 − 2�y2iy1i − K


 , �37a�

J2 =
�g

�we3
− K . �37b�

Now in �49�, using the Euclidean matrix measure �2, it is
shown that matrix �37a� is contracting if K��. On the other

hand, to ensure contraction of J2, we have to choose K� Ḡ,

where Ḡ is the maximum of �g /�we3. Thus, contraction of
the group composed of the Van der Pol oscillators is guaran-
teed if the coupling gain, K, is chosen such that

K � max��,Ḡ .

Using g�x�=sin�x�, K=2.5, Nvdp=2, and ��x�=Kx, with
K=3, Fig. 11 shows that all the nodes of the two groups of
genetic oscillators in Eq. �36� are synchronized, in agreement
with the theoretical analysis. Figure 12 also shows that the
two nodes belonging to the group of the Van der Pol oscil-
lators are synchronized with each other.

C. Analysis of a general quorum-sensing pathway

In Sec. VI B 3, we showed that our results �with appro-
priate choice of matrix measure� can be used to derive easily
verifiable conditions on the biochemical parameters of the
genetic oscillator ensuring contraction and hence synchroni-
zation �onto a periodic orbit of desired period� and concur-
rent synchronization. We now show that our methodology
can be applied to analyze a wide class of biochemical sys-
tems involved in cell-to-cell communication.

We focus on the analysis of the pathway of the quorum-
sensing mechanism that uses as autoinducers, molecules
from the AHL �acyl homoserine lactone� family. The
quorum-sensing pathway implemented by AHL �see Fig. 13�
is one of the most common for bacteria and drives many
transcriptional systems regulating their basic activities.

We now briefly describe the pathway of our interest �see
�66� for further details�. The enzyme LuxI produces AHL at
�approximately� a constant rate. AHL in turn diffuses into
and out of the cell and forms �in the cytoplasm� a complex
with the receptor LuxR. Such complex polymerizes and then
acts as a transcription factor by binding the DNA. This
causes the increase of the production of LuxI, generating a
positive feedback loop.

The pathway can be described by a set of ordinary differ-
ential equations �using the law of mass action; see �66,67��.
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FIG. 11. �Color online� Behavior of Eq. �36�: each of the two
groups of genetic oscillators contains N=4 nodes. Top: phase plot
of the nodes belonging to the first group of genetic oscillators �left�
and phase plot of the nodes belonging to the second group of ge-
netic oscillators �right�. Bottom: phase plot of two nodes belonging
to the two different groups of genetic oscillators �left� and their time
behavior. Both the phase plots and the time series show that syn-
chronization is attained.
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FIG. 12. �Color online� Time behavior of the two nodes com-
posing the group of the Van der Pol oscillators in Eq. �36�.

GLOBAL CONVERGENCE OF QUORUM-SENSING NETWORKS PHYSICAL REVIEW E 82, 041919 �2010�

041919-13



Specifically, denoting with xe the mass of AHL outside of the
cell and with xc the mass of AHL within the cell, we have the
following mathematical model:

ẋc = � +
�xc

n

xthresh
n + xc

n − 
cxc − d1xc − d2xe,

ẋe = d1xc − d2xe − 
exe. �38�

The physical meaning of the parameters in Eq. �38� is given
in Table II.

Now, contraction of the above system is guaranteed if
�1� −
c+2�xthresh

2 xc / �xthresh
2 +xc

2�2 is uniformly negative
definite and

�2� −d2−
e is uniformly negative definite.
Recall that xc and xe are both scalars. Now, the second

condition is satisfied since system parameters are all positive.
That is, to prove contraction we have only to guarantee that

− 
c +
2�xthresh

2 xc

�xthresh
2 + xc

2�2

is uniformly negative. Since

− 
c +
2�xthresh

2 xc

�xthresh
2 + xc

2�2 � − 
c +
3��3

8xthresh

contraction is ensured if the biochemical parameters �, g,
and xthresh fulfill the following condition:

�

xthresh
�

8
c

3�3
.

VII. CONCLUDING REMARKS

In this paper, we presented a systematic methodology to
derive conditions for the global exponential convergence of
biochemical models modeling quorum-sensing systems. To
illustrate the effectiveness of our results and to emphasize
the use of our techniques in synthetic biology design, we
analyzed a set of biochemical networks where the quorum-
sensing mechanism is involved as well as a typical pathway
of the quorum sensing. In all such cases we showed that our
results can be used to determine system parameters and dy-
namics ensuring convergence.
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APPENDIX: PROOFS

To prove Theorem 3 we need the following Lemma,
which is a generalization of a result proven in �58�.

Lemma 1. Consider the block partition for a square matrix
J,

J = 	 A�x� B�x,y�
C�x,y� D�y� 
 ,

where A and D are square matrices of dimensions nA	nA
and nD	nD, respectively. Assume that A and B are contract-
ing with respect to �A and �D �induced by the vector norm
� · �A and � · �D�. Then, J is contracting if there exists two posi-
tive real numbers �1, �2 such that

�A�A� +
�2

�1
�C�x,y��A,D � − cA

2 ,

�D�D� +
�1

�2
�B�x,y��D,A � − cB

2 ,

where � · �A,D and � · �D,A are the operator norms induced by
� · �A and � · �D on the linear operators C and B. Furthermore,
the contraction rate is c2=max�cA

2 ,cB
2.

Proof. Let zª �x ,y�T. We will show that, with the above
hypotheses, J is contracting with respect to the matrix mea-
sure induced by the following vector norm:

LuxI

AHLLuxR

AHL/LuxR (Monomer)

AHL/LuxR (Polymer)

DNA

AHL (extra cellular)

Cytoplasm
Medium

FIG. 13. The quorum-sensing pathway implemented by
AHL.

TABLE II. Biochemical parameters for system �38�.

Parameter Physical meaning

� Low production rate of AHL

� Increase of production rate of AHL


c Degradation rate of AHL in the cytosol


e Degradation rate of AHL outside the cell

d1 Diffusion rate of the extracellular AHL

d2 Diffusion of the intracellular AHL

xthresh

Threshold of AHL between low and increased
activity

n Degree of polymerization
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�z� ª �1�x�A + �2�y�D,

with �1 ,�2�0. In this norm, we have

��I + hJ�z� = �1��I + hA�x + hBy�A + �2��I + hD�y + hCx�D.

Thus,

��I + hJ�z� � �1��I + hA�x�A + h�1�By�D,A + �2��I + hD�y�D
+ h�2�Cx�A,D.

Now pick h�0 and a unit vector z �depending on h� such

that ��I+hJ�z�= ��I+hJ�z�. We have, dropping the subscripts
for the norms,

1

h
��I + hJ� − 1� �

1

h
��I + hA� − 1 +

�2

�1
h�C���x��1

+
1

h
��I + hD� − 1 +

�1

�2
h�B���y��2.

Since 1= �z�=�1�x�A+�2�y�B, we finally have

1

h
��I + hJ� − 1� � max�1

h
��I + hA� − 1 +

�2

�1
h�C��,

1

h
��I + hD� − 1 +

�1

�2
h�B��� .

Taking now the limit for h→0+,

��J� � max���A�A +
�2

�1
�C�,��D�D +

�1

�2
�B�� ,

thus proving the result. �
Following the same arguments, Lemma 1 can be straight-

forwardly extended to the case of a real matrix J partitioned
as

J = �J11 J12 . . . J1N

. . . . . . . . . . . .

JN1 JN2 . . . JNN
� ,

where the diagonal blocks of J are all square matrices. Then,
J is contracting if

��J11� +
�2

�1
�J12� + ¯ +

�N

�1
�J1N� � − c11

2 ,

. . .

��JNN� +
�1

�N
�JN1� + ¯ +

�N−1

�N
�J1N� � − cNN

2 �A1�

�where subscripts for matrix measures and norms have been
neglected�.

Proof of Theorem 3

The assumption of input equivalence for the nodes im-
plies the existence of a linear invariant subspace associated
to the concurrent synchronization final behavior. We will
prove convergence toward such a subspace by proving that
the network dynamics is contracting. Let � f be the matrix
measure where the nodes dynamics is contracting and define
Xª �x1

T , . . . ,xN
T�T, with F�X� as the stack of all intrinsic nodes

dynamics and H�X� as the stack of node coupling functions.
We want to prove that there exists a matrix measure, �

�which is, in general, different from � f�, where the whole
network dynamics is contracting. Denote with Lª �lij the
Laplacian matrix �68� of the network and define the matrix

L̃�X�, whose ijth block, L̃ij�X�, is defined as follows:

L̃ij�X� ª lij

�h
�i�

�xj
.

�Notice that if all the nodes are identical and have the same

dynamics and the same coupling functions, then L̃ can be
written in terms of the Kronecker product, � , as �L � In� �H

�X ,
with n denoting the dimension of the nodes and In the
n	n identity matrix.�

The Jacobian of Eq. �5� is then

J ª 	 �F

�X
− L̃�X�
 . �A2�

The system is contracting if

�� �F

�X
− L̃�X��

is uniformly negative definite. Now,

�	 �F

�X
− L̃�X�
 � �� �F

�X
� + ��− L̃�X�� .

Notice that, by hypotheses, the matrix −L̃�X� has negative
diagonal blocks and zero column sum. Thus, using Eq. �A1�
with �i=� j for all i , j=1, . . . ,N, i� j, yields

��− L̃�X�� = 0.

Thus,
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�� �F

�X
− L̃�X�� � �� �F

�X
� .

Since the matrix �F
�X is block diagonal, i.e., all of its off-

diagonal elements are zero, Eq. �A1� yields

�� �F

�X
� = max

x,t,i
�� f� � f
�i�

�x
�� .

The theorem is then proved by noticing that by hypothesis
the right-hand side of the above expression is uniformly
negative.
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