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We present a Green’s function-based perturbative approach to solving nonlinear reaction-diffusion problems
in networks of endothelial cells. We focus on a single component �Ca2+�, piecewise nonlinear model of
endoplasmic calcium dynamics and trans-membrane diffusion. The decoupling between nonlinear reaction
dynamics and the linear diffusion enables the calculation of the diffusion part of the Green’s function for
network of cells with nontrivial topologies. We verify analytically and then numerically that our approach leads
to the known transition from propagation of calcium front to failure of propagation when the diffusion rate is
varied relative to the reaction rates. We then derive the Green’s function for a semi-infinite chain of cells with
various boundary conditions. We show that the calcium dynamics of cells in the vicinity of the end of the
semi-infinite chain is strongly dependent on the boundary conditions. The behavior of the semi-infinite chain
with absorbing boundary conditions, a simple model of a multicellular structure with an end in contact with the
extracellular matrix, suggests behavioral differentiation between cells at the end and cells embedded within the
chain.

DOI: 10.1103/PhysRevE.82.041913 PACS number�s�: 87.18.Mp, 87.18.Fx, 87.18.Hf, 87.17.Pq

I. INTRODUCTION

From tumorigenesis, to tissue engineering to blood ves-
sels, questions concerning the interactions between living
cells and their environment/architecture have received in-
creasing attention �1–9�. One aspect particularly relevant to
these questions is the emerging behavior of a multicellular
architecture in which cell-level functions, such as intracellu-
lar pathways, integrate with the architecture through cell-to-
cell interactions. For example, downstream and upstream
signal conduction between endothelial cells along the walls
of vessels is playing an important role in circulatory function
of formed vasculatures, vascular network remodeling, vascu-
logenesis and neovascularisation �10�. Central to this prob-
lem is that cellular networks inherently combine dynamical
and structural complexity. Some mathematical approaches
have tackled the problem by setting aside the dynamics of
the network nodes �cells� and emphasizing the complexity of
the network architecture �11�. On the other hand, Othmer and
Scriven �12� developed, following Turing’s pioneering math-
ematical treatise of morphogenesis �13�, an approach in
which the information about the underlying network topol-
ogy, through a connectivity matrix, is decoupled from that of
the intracellular reaction pathway dynamics thus incorporat-
ing complexity at the level of the cell and the network. In a
series of studies �14,15�, we used the Green’s function-based
interface response theory �IRT� �16�, a method originally de-
veloped for studying composite media in condensed matter
physics, to augment Scriven-Othmer’s method to investigate
coupled dynamical networks with nontrivial connectivity
matrices and therefore study cell dynamics in complex net-
work architectures. Using a linear model of the reaction dy-
namics of intracellular Ca2+ and inositol triphosphate �IP3�
negative feedback loop in endothelial cells, we showed the

existence of propagating oscillatory compositional waves
that were affected by the topology of the cell networks. Con-
sidering models of networks comprised of a main chain of
endothelial cells and multiple side chains in ordered, de-
fected, or disordered topologies, we observed that the trans-
mission spectra of the compositional waves encode architec-
tural information separately in terms of spatial arrangement
and branch length via scattering and resonant filtering, re-
spectively. From a biological point of view, to decode these
signals, individual cells would need cellular control on
frequency-dependent intracellular pathways such as protein
phosphorylation by a Ca2+-calmodulin activated kinase
which is ubiquitous in a variety of cell types �17�.

Plahte �18,19� argued that linear analysis of reaction-
dynamics problems must be complemented by nonlinear
analysis to effectively explain pattern formation. Of particu-
lar interest in the study of systems with nonlinear reaction
dynamics is the phenomenon of propagation failure, where
the wave speed is zero. In a model of a chain of nearest-
neighbor, diffusively coupled, overdamped oscillators the
propagation failure and the nature of the wave front depends
on the nonlinearity of the dynamics of the model �20�. Simi-
lar behavior has been observed in a discrete version of
Nagumo equation modeling excitable cells with a cubic dy-
namics �21�. There, propagation of a wave front occurs when
the strength of the diffusion coupling is large enough. Simi-
lar results have been obtained by Kladko et al. �22�. Propa-
gation failure of traveling waves in two-dimensional discrete
lattice with nearest-neighbor diffusive-coupling and bistable
scalar ODE at each site has demonstrated the angular depen-
dency of the zero speed conditions through the detuning pa-
rameter of the nonlinearity �23�.

In this context, the present paper focuses on the develop-
ment of a Green’s function-based approach for modeling
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diffusion-reaction problems with nonlinear reaction dynam-
ics. The goal is to implement a framework that would enable
the use of IRT for studying the propagation of compositional
waves in complex multicellular networks with nonlinear re-
action dynamics. We set out to develop a theoretical model
of information transmission along chains of endothelial cells
based on wavelike Ca2+ signals, which are considered impor-
tant, for instance, in vascular function �24�. In Sec. II of this
paper, we present in details the development of a Green’s
function-based approach for solving the diffusion-reaction
problem with intracellular Ca2+ nonlinear reaction dynamics
and chains of endothelial cells. The decoupling between re-
action dynamics and diffusion enables us to introduce a
short-time propagator that can be used to predict the time
evolution of calcium concentration. We show that the form
of our propagator with linear dynamics is completely equiva-
lent to that introduced by Othmer and Scriven �12�. We apply
the Green’s function approach in Sec. III to tackling the
problem of propagation failure of a calcium wave front in an
infinite chain of endothelial cells and we verify that the be-
haviors we observe are qualitatively comparable to those al-
ready reported in the literature �21,22�. Moreover, we show
that our formalism is completely compatible with the IRT
and we derive analytic expressions for the nonlinear
reaction-diffusion propagator in semi-infinite chains of cells
with various boundary conditions. We demonstrate theoreti-
cally for the first time that the dynamics of the calcium con-
centration in cells in the vicinity of the end of the semi-
infinite chain is strongly dependent on the boundary
conditions suggesting behavioral differentiation between
cells in nonhomogeneous multicellular architectures. Finally
conclusions are drawn in Sec. IV as to the applicability of
our approach to more complex endothelial cell networks as
well as to its biological relevance.

II. MODELS AND METHODS

A. Background

At the level of the individual cell, Ca2+ signals rely on the
intake or release of Ca2+ ions from intracellular stores such
as the endoplasmic reticulum �ER�. The physiological state
of the cytoplasm of a cell determines the nature of the dy-
namics of calcium release and intake �25�. Within endothelial
cells of arterioles, a calcium based signaling pathway exists
that contains a two-component negative feedback loop. This
loop occurs between Ca2+ and IP3. This inositol phospholipid
signaling pathway is started by an extracellular signal mol-
ecule that activates a transmembrane G-protein coupled re-
ceptor which in turn activates phospholipase C-�. Phospho-
lipase C-� cleaves intracellular membrane bound phospho
inositol 4,5-bisphosphate �PI�4,5�P2� causing the cytoplas-
mic release of IP3. Cytoplasmic IP3 can bind and open IP3
gated Ca2+ channels in the endoplasmic reticulum leading to
increased cytoplasmic Ca2+ concentration. IP3 concentration
is degraded by phosphorylation via Ca2+ regulated kinase.
The cytoplasmic inositol 1,4,5-triphosphate 3-kinases
�IP3Ks� are a group of calcium-regulated inositol polyphos-
phate kinases that convert IP3 into inositol 1,3,4,5-
tetrakisphosphate. This later specie is inactive as a Ca2+ re-

lease inducer, thus reducing intracellular Ca2+ concentration.
The overall effect of this signaling cascade is that of a two
component �Ca2+ and IP3� negative feedback loop. Conse-
quently, the physiological state of a cell may be bistable with
two resting states for calcium concentration; low basal and
high corresponding to replete ER and empty ER, respec-
tively, and separated by an intermediate unstable threshold
concentration. The bistable state may lead to traveling fronts
in spatially extended systems. The physiological state may
also be that of an excitable cytoplasm, and may be consid-
ered to be a variant on the bistable state with the possibility
of returning to the low basal concentration beyond a high
cytosol concentration threshold. Excitable cytoplasm may
produce pulse waves in spatially extended systems. There
exist a large variety of mathematical models of calcium dy-
namics and calcium waves �25–28�. However, since the ob-
jective of the present work is to demonstrate the feasibility of
a Green-function-based approach to solving diffusion-
reaction problems with nonlinear reaction dynamics, for the
sake of mathematical tractability, we assume an effective
nonlinear intracellular reaction dynamics involving only
Ca2+. For this we utilize a simple piecewise-linear model of
the nonlinear Ca2+ reaction dynamics. This model mimics
the Ca2+ depletion of the cytoplasm and repletion separated
by a threshold concentration. Such piece-wise linear models
have been shown to possess the essential features of nonlin-
ear biological dynamical systems �29,30�.

The development of the Green’s function-based theory of
complex multicellular architectures with nonlinear reaction
dynamics is enabled by the convergence of three areas. The
first area is the development of a theory of complex multi-
cellular architectures with linear reaction dynamics that pro-
vides solutions that can be used as starting approximations
for perturbative methods to be applied to architectures with
nonlinear dynamics. This approach is based on the interface
response theory �IRT� �16�. The second area relates to the
so-called adiabatic switching formalism used in statistical
mechanics for the calculation of the free energy of a system
of interest by connecting it through a reversible path to a
system with a known free energy. An effective Hamiltonian
is constructed as a linear combination of the Hamiltonians of
the two systems using a continuous variable �31,32�. In fact,
this approach is similar to He’s homotopy perturbation
method �HPM� �33�. Here, an operator is separated into its
linear and nonlinear parts. An embedding parameter that can
vary between 0 and 1 is used to construct an operator that
can transition between the linear operator and the nonlinear
one. The solution to the switching operator is assumed to be
expandable into a power series of the embedding parameters.
Upon taking the limit of the embedding parameter toward 1
one obtains an approximate solution to the original nonlinear
operator. The HPM has been shown to be able to effectively
solve strongly nonlinear problems including nonlinear para-
bolic differential equations �34�. The final area is the use of
Lippman-Schwinger equation or propagator theory for time
dependent processes that enables us to write the Green’s
function of a perturbed system in terms of a series of integral
terms involving the product of Green’s function of the un-
perturbed system and of the perturbation operator. These per-
turbation expansions of the Green’s function have been sum-
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marized in the form of Feynman diagrams which have found
applications in both high energy and condensed matter phys-
ics �35,36�.

In the rest of this section, we address the treatment of
linear and nonlinear reaction dynamics with Green’s function
approaches. We then turn to extending this approach to in-
clude spatial degrees of freedom in the case of the linear
reaction- and nonlinear reaction-diffusion problems.

B. Linear and nonlinear reaction dynamics

We address the problem of linear and nonlinear reaction
dynamics to establish the mathematical foundations in terms
of Green’s functions that will enable us to derive an expres-
sion for a time propagator. Let us first start with a simple
linear reaction problem where the kinetics of the reaction is
described by the following equation:

du

dt
= − Ku �1�

where K is the reaction rate �taking positive or negative val-
ues�, and u some composition variable. The solution to that
equation is obtained by integration over time and takes the
form

u�t� = u�t��e−K�t−t��. �2�

Equation �1� can also be solved by using Laplace transforms.
It becomes

�ũ − u�0� = − Kũ , �3�

� is the variable conjugated with time in the transform.
The Laplace transform of the composition is obtained as

ũ = u�0�
1

� + K
. �4�

The inverse Laplace transform of Eq. �4� gives the solution
of Eq. �2� where t� is taken as the origin of time.

Finally, one may recast Eq. �1� in terms of a time depen-
dent Green’s function or propagator, G�t− t��, in the form

LG�t − t�� = ��t − t�� , �5�

where the operator L is defined as

L =
d

dt
+ K . �6�

The solution to Eq. �5� is given by

G�t − t�� = H�t − t��e−K�t−t��. �7�

In Eq. �7�, H�t− t�� is the Heaviside function with

H�t − t�� = �0 if t � t�

1 if t � t�
� . �8�

The solution for the composition is recovered by the time
integration of the product of the propagator and some initial
condition u�0�. For instance using, t=0 as origin of time and
u�0�=u0��t� with � being the usual delta function, the time

dependence of the composition is obtained as

u�t� = �
−�

�

H�t − t��e−K�t−t��u0��t��dt� = u0e−Kt.

Let us now consider a single component nonlinear reaction
problem that can be modeled via a two-segment piecewise
linear function. The differential equation which solution is
the time evolution of the composition, u�t�, is written as

�u

�t
+ �1 − H�u − uc��K1u + H�u − uc�K2u = 0 �9�

Here K1 and K2 are the reaction rates of the linear segments.
uc is the composition at which the system can switch be-
tween state 1 �reaction rate K1� and state 2 �rate K2�. H is the
Heaviside function or any other function that might describe
the transition from one reaction rate to another upon change
in composition.

He’s homotopy perturbation method �HPM� starts with
the differential equation

A�u� = 0, �10�

where A is a general differential operator than can be divided
into a linear part, L and a nonlinear part N. The differential
equation then becomes

L�u� + N�u� = 0. �11�

If the solution of the linear differential equation L�u�=0 is
uL, then one rewrites the general differential equation in the
form,

L�u� + �1 − p�L�uL� + pN�u� = 0 �12�

where p is an embedding parameter. The parameter p varies
between 0 and 1 and continuously links the linear problem to
the nonlinear one of interest. When p=0, the problem re-
duces to the linear one with solution uL. In the case p=1, the
differential equation becomes the original one. Assuming
that the solution of Eq. �10� can be written in the form of a
power series in p, in the limit of p→1, one recovers the
solution to the nonlinear problem of interest. We illustrate
the extension of He’s HPM with propagator’s theory to solve
a nonlinear reaction differential equation. Replacing H in Eq.
�9� by an embedding parameter p, Eq. �9� becomes isomor-
phic to Eq. �12�. When p=0, and p=1, Eq. �9� becomes a set
of two linear equations extending over the complete interval
of values accessible to u,

�u

�t
+ K1u = 0,

�u

�t
+ K2u = 0. �13�

Introducing the Green’s function formalism, Eqs. �13� take
the form,

� �

�t
+ Ki	Gi

0�t − t�� = ��t − t�� with i = 1,2, �14�

with solutions
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G1
0�t − t�� = H�t − t��e−K1�t−t��,

G2
0�t − t�� = H�t − t��e−K2�t−t��. �15�

Equation �9� also becomes


 �

�t
+ K1 + p�K2 − K1��G�t − t�� = ��t − t�� , �16�

where the third term in the parenthesis can be thought of as a
perturbation operator

V = p�K1 − K2� . �17�

To progress further, let us make for now the assumption that
the perturbation V is independent of time, i.e., we make the
Eikonal approximation for slow varying perturbations to cal-
culate time integrals. We may take the value of the embed-
ding parameter to be that corresponding to the initial com-
position, p�u�0��.

Considering a system described by a Green’s function,
G1

0, the Green’s function, G, for this same system but per-
turbed by the operator, V, satisfies the Lippmann-Schwinger
equation,

G�t − t�� = G1
0�t − t�� − �

−�

+�

dt�G1
0�t − t��VG1

0�t� − t�� + �
−�

+�

dt��
−�

+�

dt�G1
0�t − t��VG1

0�t� − t��VG1
0�t� − t�� − ¯ . �18�

Inserting Eq. �15� into Eq. �18� and performing the appropriate integrations for times before or after switching, one obtains

G�t − t�� = H�t − t��e−K1�t−t��
1 − V�t − t�� +
1

2
V2�t − t��2 −

1

6
V3�t − t��3. . .� . �19�

Equation �19� is a power series in V and therefore p. One
notes that when p=0 �H�u−uc�=0 or u�uc� the solution to
the problem is that of the differential equation with linear
dynamics and rate constant K1. The embedding parameter
allows the transition from the state 1 to the state 2 �solution
of the differential equation with reaction constant K2�. The
parenthesis in Eq. �19� converges to e−V�t−t��=e−p�K2−K1��t−t��

and in the limit p=1 �H�u-uc�=1 or u�uc�, G converges to
G2

0.
The solution for the propagator in the case of a constant

perturbation �p� takes the form

G�t − t�� = H�t − t��e−K1�t−t��e−p�K2−K1��t−t��. �20�

Again, in performing the integrals in Eq. �18�, we have con-
sidered that the perturbation operator V and therefore the
embedding parameter p are independent of time. However, it
is clear in Eq. �9� that the embedding parameter represents a
transition function of composition which is time dependent.
Consequently, the Green’s function or propagator of the per-
turbed system given by Eq. �20� cannot be used as is to
represent the solution of the nonlinear dynamics problem
with time dependent embedding parameter. We therefore use
an iterative process to solve the nonlinear dynamics of the
system. Let us consider a small time difference, �t= t− t�,
with known composition at t�, u�t��, we assume that p(u�t�)
takes the constant value p(u�t��) during that interval of time.
This enables us to propagate the composition using Eq. �20�
to the later time t. At that time, the new composition is used
to determine the new value of the embedding parameter and
propagates the composition further in time. Equation �20�
can therefore be used iteratively as a propagator over only
small time intervals �t. The size of the time interval depends

on the nature of the function describing the composition de-
pendence of the embedding parameter.

The solution of Eq. �9� can be also obtained by perform-
ing a Laplace transform assuming that p is independent of
time over some time interval �0, t� taking the value p(u�0�),

�� + k1 + p�K2 − K1��ũ = u�0� . �21�

The Laplace transform of the composition is

ũ = u�0�
1

� + K1 + p�K2 − K1�
, �22�

which leads to the sought solution when doing the inverse
Laplace transform

u�t� = u�0�e−K1te−p�K2−K1�t. �23�

This solution is obtained by assuming that p is constant.
Again, to account for the actual nonlinear reaction dynamics
where the embedding parameter is composition �and time�
dependent, one may use Eq. �23� in an iterative process over
short-time intervals to solve for the time dependence of the
composition over a series of short-time intervals starting
from some known initial condition. The approach developed
here will now be used to derive an analytical expression for
the propagator of the reaction-diffusion problem of a chain
of cells with nonlinear reaction dynamics.

C. Diffusion-reaction problem with linear or nonlinear
reaction dynamics

The objective of this section is to add spatial degrees of
freedom to the approach described in Sec. II A and derive an
expression for the reaction-diffusion propagator with nonlin-
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ear reaction dynamics. We first tackle the problem of linear
reaction kinetics in conjunction with diffusion. We consider a
one-dimensional chain of cells as illustrated in Fig. 1.

The linear reaction-diffusion problem is described by the
equation,

dun

dt
= W�un+1 − 2un + un−1� − Kun. �24�

The first term in the right-hand side of the equation repre-
sents the diffusion process between adjacent cells via the
discrete Laplacian operator. From a biological point of view
transmembrane diffusion may take place via gap junctions.
The second term represents the linear reaction dynamics of
cell “n.” W relates to the nearest-neighbor calcium transfer
rate. K is the reaction rate.

We can Laplace transform Eq. �24� which becomes

�ũn − un�0� = W�ũn+1 − 2ũn + ũn−1� − Kũn. �25�

In Eq. �25�, un�0� is the initial concentration profile along the
chain. If we choose un�0�=�nm where �nm is the usual Kroe-
necker symbol as initial condition, that is a unit initial con-
centration at the cell “m,” then Eq. �25� may be rewritten into
the form

Wũn+1 − �2W + � + K�ũn + Wũn−1 = − �nm. �26�

The composition ũn in Eq. �26� can therefore be thought as a

spatial Green’s function, D̃n,m, that is the response of the
system at location “n” to a delta stimulus at location “m.”
Eq. �26� can be rewritten in matrix form

W�. . . 0 1 − 2� 1 0 0 . . .

. . . 0 0 1 − 2� 1 0 . . .

. . . 0 0 0 1 − 2� 1 0

�

·

D̃n−1,m

D̃n,m

D̃n+1,m

·

 = − IJ.

�27�

In Eq. �27�, IJ, is the identity matrix and �=1+ ��+K�
2W . The

diffusion-reaction matrix on the left hand side of Eq. �27� is
tridiagonal. The solution to Eq. �27� is known �37� and is
given by

D̃n,m =
− 1

W

	�n−m�+1

	2 − 1
, �28�

with

	 = � � − ��2 − 1�1/2 if � � 1

� + ��2 − 1�1/2 if � � − 1

� + i�1 − �2�1/2 if − 1 � � � 1
� . �29�

When K is positive, it is obvious that �=1+ ��+K�
2W �1 and 	 is

given by the first relation in Eq. �29�. When K�0, then we

consider the inversion formula for the Laplace transform of
some function, F���,

h�t� =
1

2
i
�

C−i�

C+i�

e�tF���d� �30�

In Eq. �30�, the integration is along the imaginary axis with
the real part of �, C, taking any large positive value, thus
enabling � to remain greater than 1 independently of the sign
of K. We can also obtain the solution by considering K=0,
then Eq. �28� can we rewritten as

D̃nm =
1

���� + 4W�

 2W

�2W + �� + ���� + 4W�
��n−m�

.

�31�

The inverse Laplace transform of Eq. �31� is given by �42�

Dnm�t� = e−2WtI�n−m��2Wt� , �32�

with I�n−m� being the modified Bessel function. Equation �32�
is the Green’s function for the diffusion problem along a
discrete chain. If we now consider a nonzero reaction rate, K,
we can make the change of variable ��=�+K in Eq. �31�.
Here we used the fact that the sign of K does not impact the
choice of the solution in Eq. �29� as discussed previously due
to the nature of the inverse Laplace transform. We now use
the relation LT�e−ath�t��=F��+a� with LT representing the
Laplace transformation for all a’s, positive or negative, to
obtain

Dnm�t� = e−Kte−2WtI�n−m��2Wt� . �33�

Let us now treat the case of nonlinear reaction dynamics,

dun

dt
= W�un+1 − 2un + un−1� − �K1 + p�K2 − K1��un �34�

Following Sec. II A, we can now address this problem in the
limit of short times, i.e., time intervals during which we as-
sume that the embedding parameter, p, is constant. We are
now in a position to write the sought expression for the
reaction-diffusion propagator with nonlinear reaction dynam-
ics. The Green’s function propagator in the short-time inter-
val is obtained in the form,

Dnm�t − t�� = e−�K1+p�K2−K1���t−t��e−2W�t−t��I�n−m��2W�t − t��� .

�35�

Knowing an initial condition, the time evolution of the com-
position field in the one-dimensional chain of cells can there-
fore be obtained in an iterative manner according to

un�t + �t� = �
m

Dnm��t�un�t� , �36�

where �t is small.

D. Relation to Othmer’s approach

Here, we will place Eq. �35� in the context of the ap-
proach of Othmer and Scriven. Othmer and Scriven, while

FIG. 1. Model of chain of cells.
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analyzing the onset of instability at homogeneous steady
states of multicellular networks, developed an elegant
method that decouples the intracellular biochemical dynam-
ics from the network structure of an underlying reaction/
diffusion problem �12�. They assumed a mixture of n reac-
tants in each one of the N cells, each attached to one or more
other cells to form the desired topology. The small excur-
sions around the steady-state concentration values of cell �
is represented by the n�1 vector u��� which is solution of a
linear vector differential equation given by

du���

dt
= W
���u��� + Ku���, � = 1, . . . ,N . �37�

Equation �37� is the extension of Eq. �24� to multiple reac-
tants. The elements, Wij, i , j=1, . . . ,n, of the n�n transfer
matrix W quantify the effect of reactant j on the transfer of
reactant i through the barrier separating adjacent cells. The
Laplacian 
���u���=u��+1��t�−2u����t�+u��−1��t� encodes the
connection pattern among the cells as also described in Eq.
�24�. The Laplacian of a chain of N cells is a N�N matrix.
We use Cx to represent the resulting structural matrix. For
instance the structural matrix C� of an infinite chain of cells
�see Fig. 1� has the familiar tridiagonal form �see Eq. �27��

C� =�
� � � �

� � � � �

¯ 0 1 − 2 1 0 ¯

¯ 0 1 − 2 1 0 ¯

¯ 0 1 − 2 1 0 ¯

¯ 0 1 − 2 1 0 ¯

� � � � �

� � � �


 .

�38�

The three nonzero entries in each row correspond to the co-
efficients in the discrete approximation of the Laplacian.

The reaction matrix K represents a linearized intracellular
reaction dynamics with the elements, kij, i , j=1, . . . ,n, rep-
resenting the collective effect of reactant j on the reactant i.
The time evolution of concentration excursions in all of the
cells is concatenated into a Nn�1 column vector given by

u�t� = �
k=1

N

xk � e�K+�kW�tyk
0, �39�

with � representing the tensor product. In Eq. �39�, �k
and xk, k=1, . . . ,N, are the Eigen values and Eigen vec-
tors of the connectivity matrix, Cx, respectively. The n�1
vector yk

0 is the projection of the initial condition vector ū0
=u�t=0� onto a derived set of basis vectors spanning the
vector space that includes u�t�, � j, j=1,2 , . . . ,n with � j

= ��0,0 , . . . ,0 ,1 jthposition ,0 , . . . ,0�T�.
yk

0 is therefore given by

yk
0 = �

j=1

N

�u0,xk � � j�� j . �40�

The terms between brackets in Eq. �40� take the form,

�u0,xk � � j� = �
m=−�

+�

u0
�j+mn� . xk

�m. �41�

In Eq. �41�, the � stands for the complex conjugate. To illus-
trate the construction of a solution for the composition along
an infinite chain, we write the Eigen values and Eigen vec-
tors corresponding to the operator matrix of Eq. �38� �38�,

�k = − 4 sin2� ka0

2
	 ,

xk = �. . . e−ika0 1 eika0 . . . �T, �42�

where k is the propagation constant and a0 is the lattice con-
stant spacing between cells. Note that for the infinite chain, k
is a continuous variable and that the discrete summation in

Eq. �39� has to be replaced by an integral, that is �
k=−�

�

→�−


 dk

2
 . xk is a discrete complex sinusoidal function with
wave number k. k is a measure of the spatial variation of the
Eigenvectors. The Eigenvectors of Eq. �42� correspond to
propagating waves, taking a0=1 as unit of length, these are
periodic functions in k�=ka0 defined over the interval �
−
 ,
�. Notice that each Eigenvector is of infinite length and
its mth element uk,m represents the mth cell in the chain,
where m is an integer.

We now apply the approach to a single component n=1
problem. We use an initial condition, u0

���=��m, that is a delta
concentration at cell m. With this initial condition, u���

=D�m that is the spatial Green’s function of the Diffusion-
reaction problem. In this case Eq. �39� takes the simple form

u��� =� dk

2

e�K+�kW�teika0��−m�. �43�

In Eq. �43�, K and W are scalar quantities for a single com-
ponent reaction.

Inserting the Eigenvalues and Eigenvectors of the infinite
chain into Eq. �43� gives:

u��� = eKt� dk

2

e�−4 sin2 ka0

2
W	teika0��−m� �44�

We then use the trigonometric identity sin2 �= 1
2 − 1

2cos 2� to
cast Eq. �44� in the form

u��� = eKte−2Wt� dk

2

e2Wt cos�ka0�eika0��−m�. �45�

We need to consider only the real part of the integral in Eq.
�45�,
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Re�� dke2Wt cos�ka0�eika0��−m��

=� dke2Wt cos�ka0� cos�ka0�� − m�� . �46�

Taking a0=1, and in light of the evenness of the cosine func-
tion, we replace �−m by its absolute value ��−m� and the
integral in Eq. �46� reduces to the modified Bessel function,

I��−m��2Wt� =
1



�

0




dke2Wt cos k cos�k�� − m�� . �47�

With Eq. �47�, we recover the solution of Eq. �33� for the
case of linear reaction dynamics.

Again, the separation of the reaction dynamics and the
diffusion dynamics in Eq. �39�, suggests that we can use this
very same solution to develop a short-time propagator for a
nonlinear reaction dynamics using an embedding parameter,
i.e., to obtain Eq. �35�. It is therefore possible to use Oth-
mer’s approach to solving the diffusion-reaction problem
with linear reaction dynamics to develop expressions for the
propagator of the nonlinear dynamics over short-time inter-
vals. The application of the method presented here to more
complex multicellular networks relies on the knowledge of
the connectivity matrix and their corresponding Eigenvectors
and Eigenvalues.

III. RESULTS

A. Propagation failure in a one-dimensional chain of cells

Let us treat the problem of a chain of cells with variable
calcium concentration due to intake and release by endoplas-
mic reticulae �ER�. This case can be treated by considering
the nonlinear reaction dynamics with K1�0 and K2�0.
From the point of view of an isolated cell, when the calcium
concentration is less than the critical value uc, the ER deplete
the endoplasm. When the calcium concentration exceeds the
critical value, the ER releases calcium into the cell.

We consider solutions to the nonlinear reaction dynamics-
diffusion problem in the form of propagating waves, that is

un�t� = ��n − ct� . �48�

In Eq. �48�, position is expressed in units of a0=1 by the
integer n. c is the wave velocity.

Inserting this general form into Eq. �36� gives

��n − c�t + �t��

= e−�K1+p�K2−K1���te−2W�t�
m

I�n−m��2W�t���m − ct� .

�49�

It is convenient to define: �n=n−ct and take �t=1 /c as the
time for a one step motion. With these definitions, Eq. �49�
reduces to

���n−1� = e−�K1+p�K2−K1���te−2W�t�
m

I�n−m��2W�t����m� .

�50�

We assume that the function � is single valued. In that case,
p=H����n−uc��=h��n�. We can choose without loss of gen-
erality, the point �n where the composition is equal to the
critical value for switching between rate K1 and rate K2,

���n� � uc for �n � 0,

���n� � uc for �n � 0. �51�

If follows that we can also write

e−�K1+p�K2−K1���t = e−K1�t + h��n��eK2�t − e−K1�t� . �52�

Inserting all this into Eq. �5� gives

���n−1� = �eK1/c + h��n��eK2c − eK1/c��e−2W/c�
m

I�n−m�

��2W/c����m� . �53�

Equation �53� provides a means of calculating the velocity of
the wave, c, in terms of the diffusion constant W and of the
reaction rates, K1 and K2.

We assume that uc=0.5 and we now make a simple piece-
wise linear approximation to the wave solution, �,

���n� = �
1 if �n � 2b

0 if �n � − 2b

1

2
+

�n

4b
if − 2b � �n � 2b� . �54�

The parameter b represents the width of the transition region
between the two calcium concentrations 0 and 1. This func-
tion represents the propagation of a concentration front. With
this solution, the summation in Eq. �53� becomes

�
m

I�n−m��2W/c����m� = �
−2b

2b

I�n−m��2W/c��1

2
+

�m

4b
	

+ �
m�2b

I�n−m��2W/c� . �55�

We rewrite Eq. �53� at two points along the concentration
profile, namely, n=1 and n=−1. We obtain a set of two equa-
tions
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1

2
= e−K2/ce−2W/c
�

−2b

2b

I�1−m��2W/c��1

2
+

�m

4b
	 + �

m�2b

I�1−m��2W/c��if n = 1,

1

2
−

1

2b
= e−K1/ce−2W/c
�

−2b

2b

I�−1−m��2W/c��1

2
+

�m

4b
	 + �

m�2b

I�−1−m��2W/c��if n = − 1. �56�

After extensive algebraic manipulations, using the properties of the modified Bessel functions, the set of Eqs. �56� can be
simplified,

e��eK2/c − 1� = I2b��� + I2b+1��� +
1

b�
�
p=1

2b

p2Ip��� if n = 1,

�1 −
1

b
	e�eK1/c = e� − �I0��� + I1��� + I2b��� + I2b+1���� −

1

b�
�
p=1

2b

p2Ip��� if n = − 1, �57�

where �=2W /c.
We can obtain a relationship between the wave velocity,

width and the physical parameters of the problem, namely
diffusion coefficient and reaction rates by taking the sum of
both Eqs. �57�. This gives

e�
2 − eK2/c − eK1/c�1 −
1

b
	� = I0��� + I1��� . �58�

To determine the wave velocity, it is easier to define x=1 /c
and recast Eq. �58� in the form

f�x,b� = 2 − eK2x − eK1x�1 −
1

b
	 = e−2Wx�I0�2Wx� + I1�2Wx��

= g�x,W� . �59�

Using Eq. �59�, we can study the condition for propagation
of the compositional front wave as a function of the front

width, diffusion and reaction parameters. For the sake of
illustration, we plot in Fig. 2, the functions f�x ,b� and
g�x ,W� representing the left-hand side and right-hand side of
Eq. �59� for a variety of widths of the wave front, b, and
diffusion constant W, as functions of x. For simplicity we
also take the rate of calcium release and intake of the cal-
cium stores to be equal in magnitude, i.e., K1=1 and K2=
−1.

The intersection points between the functions f�x ,b� and
g�x ,W� correspond to the solutions of Eq. �59�. There is
propagation failure of the compositional wave when the two
curves do not intersect. For instance, a front with b=2 does
not propagate unless the diffusion constant exceeds a value
somewhere between 1 and 2. A physically unrealistic very
narrow wave front �b=1� appears to have a single solution
for x=0 independently of the diffusion coefficient. This so-
lution corresponds to an infinite wave velocity, c. There ap-
pears to exist two solutions for the speed for fronts with b
�1 and diffusion coefficients W�2. It is important to note
that the particular details of the functions f and g as well as
the solutions of Eq. �59� may be artifacts due to the choice of
a spatially symmetric piecewise linear function as an ap-
proximate solution of the concentration wave front. The
main point that needs to be retained from this approximate
analysis is that conditions in terms of diffusion and reaction
dynamics may exist for which a wave front may experience
propagation failure.

To investigate the failure of propagation further, we de-
velop two numerical algorithms. The first one is a simple
finite difference time domain �FDTD� method applied to
solving the nonlinear reaction-diffusion equation. All rates,
W, K1, and K2 have dimension of inverse time. Since W�t is
a dimensionless quantity, transfer rates, reaction rates and
time interval will be expressed as dimensionless quantities in
the rest of the paper. The second approach makes use of the
propagator in Eqs. �35� and �36�. The second approach uses a
short-time approximation to the modified Bessel function
�39�, namely,

FIG. 2. Functions f�x ,b� and g�x ,W� for case K1=1 and K2

=−1 and uc=0.5.
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I�n−m��2W�t� �
�W�t��n−m�

�n − m�!
. �60�

The nonlinear reaction dynamics is supplemented with a cap
at a concentration of 1. The FDTD algorithm is significantly
faster computationally than its Green’s function counterpart
since the evaluation of the discrete Laplacian involves only
nearest-neighbor cells. The Green’s function algorithm, how-
ever, requires the computationally expensive summation of
Eq. �36�. We have found a computational compromise be-
tween accuracy and computing time by choosing a time step
of �t=0.01. The convergence of the algorithm depends on
the number of cell with nonzero contributions to the summa-
tion in Eq. �36�. As the number of such contributions in-
creases, convergence requires a decrease in the time step.
Figure 3 illustrates the transition from propagation to propa-
gation failure of the concentration wave. The conditions of
the calculations are given in the caption. These conditions
differ from those of Fig. 2 as the later were obtained for an
approximate analytical solution. More specifically, we use
the critical concentration, uc=0.3 to observe propagation and
propagation failure with K1=−K2=1 and W�1. The initial
condition is a delta concentration located at cell 100 and
exceeding the concentration threshold of the nonlinear reac-

tion dynamics. Figure 3�a� shows the propagation of two
symmetrical fronts from that initial condition. The deviations
between the concentration profiles obtained with the FDTD
and Green’s function methods are the result of accumulation
of errors due to the approximation made in Eq. �60�. It is
therefore clear that when W=0.7, K1=1, and K2=−1, wave
propagation takes place. The width of the wave front in-
cludes approximately 4 to 5 cells and is not described cor-
rectly by a linear function. Reducing the diffusion constant,
W, from 0.7 to 0.5 leads to a transition to a nonpropagating
mode. Propagation failure leads to a concentration profile
that does not evolve with time. Using the FDTD approach,
the transition between front propagation and propagation
failure occurs for a diffusion constant W=0.6109. We note
that the two algorithms agree very well numerically since the
number of cells contributing to the summation in Eq. �36� is
small. The concentration profile at steady state has a half-
width of approximately 4 to 5 cells consistent with that of the
propagating front.

In summary, from the numerical calculations, it is clear
that the analytically derived Eq. �59� and corresponding Fig.
2 can only be used in a qualitative fashion due to the piece-
wise symmetrical approximation made in defining the shape
of the concentration front. However, this approach shows
qualitatively that a transition from propagation to propaga-
tion failure occurs as the diffusion constant decreases. From
a numerical point of view, the Green’s function approach is
computationally more expensive than the FDTD method.
The Green’s function approach will give an advantage when
considering finite chains of cells with cells at their ends
obeying absorbing boundary conditions as such conditions
are not trivial to implement in a FDTD scheme. This topic is
addressed in the next section.

Finally, both analytical and numerical approaches show
propagation failure of a calcium wave front in an infinite
chain of endothelial cells. This behavior is qualitatively com-
parable to other examples of propagation failure of front al-
ready reported in the literature �21,22�. More specifically, our
models show the known behavior of a transition from propa-
gation to propagation failure when the diffusion rate is varied
relative to the reaction rates.

B. Semi-infinite chain of cells with various boundary
conditions

In this section, we illustrate the usefulness of the Green’s
function formalism to shed light on the effect of nonlinear
dynamics on calcium wave behavior in chains of endothelial
cells with ends. In particular we investigate the behavior of
cells in the vicinity of the end of a semi-infinite chain. The
formalism introduced in this paper decouples the diffusion
problem from the reaction dynamics. We can therefore use
the IRT �16� to determine the Green’s function for diffusion
along chains of cells with perturbations such as a free end.
We consider the cleavage of an infinite chain of cells illus-
trated in Fig. 4 by severing the gap junctions between cells 0
and 1, that is, inhibiting diffusion between these two cells.

Let us consider a linear reaction with constant K. In this
case Eq. �27� must be rewritten in the form
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FIG. 3. Time evolution of calcium concentration profile for �a�
W=0.7, K1=1, K2=−1 and �b� W=0.5, K1=1, K2=−1. The open
symbols correspond to finite difference time domain solutions. The
closed symbols correspond to solutions obtained with Green’s
function-based algorithm. The close triangles are the initial condi-
tion. �t=0.01 and uc=0.3.
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W�
. 1 0 0 0 0 0 0 0 .

. − 2� 1 0 0 0 0 0 0 .

. 1 − 2� 1 0 0 0 0 0 .

. 0 1 − 2� 1 0 0 0 0 .

. 0 0 1 − 2� 0 0 0 0 .

. 0 0 0 0 − 2� 1 0 0 .

. 0 0 0 0 1 − 2� 1 0 .

. 0 0 0 0 0 1 − 2� 1 .

. 0 0 0 0 0 0 1 − 2� .

. 0 0 0 0 0 0 0 1 .


� .

d̃−1,m

d̃0,m

d̃1,m

.

 = − IJ, �61�

where �=1+ ��+K�
2W and �= 1

2 + ��+K�
2W . The difference between

the reaction-diffusion matrix of Eq. �27� and of Eq. �61� is a
cleavage matrix operator whose only nonzero terms are de-
fined at the cells 0 and 1,

VJs =
1

W
� 1 − 1

− 1 1
	 . �62�

The Green’s function of the cleaved chain, dJ, can be obtained
by solving Dyson’s equation. This equation treats the cleav-
age operator as a perturbation and expresses the Green’s
function of the cleaved system in terms of the Green’s func-

tion DJ of the infinite chain. Dyson’s equation is written as

dJ�IJ+ VJDJ� = DJ . �63�

In Eq. �63� we have dropped the symbol X̃ for the sake of
simplifying the notation but we will keep in mind that the
Green’s functions are Laplace transforms. Writing Eq. �63� in
component form gives

dn,n� + dn,0V0,0D0,n� + dn,0V0,1D1,n� + dn,1V1,0D0,n�

+ dn,1V1,1D1,n� = Dn,n�. �64�

Let us find the Green’s function for the semi-infinite chain
with n ,n��1. In that case, dn,0=0 since there is no diffusion
between cell 0 and cells in the positive semi-infinite chain.
Equation �64� simplifies to

dn,n� + dn,1V1,0D0,n� + dn,1V1,1D1,n� = Dn,n�. �65�

Equation �65� can be expressed at the cell n�=1,

dn,1 + dn,1V1,0D0,1 + dn,1V1,1D1,0 = Dn,1. �66�

Inserting the expression for the Green’s function of the infi-
nite chain given by Eq. �28� as well as Eq. �62� into Eq. �66�
results in

dn,1 =
− 1

W

	n

	 − 1
. �67�

Inserting Eq. �67� into Eq. �65� leads to the sought Green’s
function,

d̃n,n� =
− 1

W

	�n−n��+1 + 	n+n�

	2 − 1
. �68�

The inverse Laplace transform of Eq. �68� gives the Green’s
function of the semi-infinite chain Dn,n�

s , that is for n ,n�
� �1,��,

Dn,n�
s �t� = e−Kte−2Wt�I�n−m��2Wt� + In+n�−1�2Wt�� �69�

The short-time propagator for the nonlinear reaction dynam-
ics is therefore written as

Dn,n�
s ��t� = e−�K1+p�K2−K1���te−2W�t�I�n−n���2W�t�

+ In+n�−1�2W�t�� . �70�

Propagator �Eq. �70�� corresponds to a zero-flux boundary
condition at the end of the semi-infinite chain.

A variety of other Green’s function can be obtained using
the IRT. These include, for instance, a segment of cells with
finite length, an infinite chain with finite side branch �15�.
Without derivation, we also write below the Green’s function
for a semi-infinite chain with absorbing boundary conditions
at the end of the semi-infinite chain �37�,

Dn,n�
A ��t� = e−�K1+p�K2−K1���te−2W�t�I�n−n���2W�t�

− In+n��2W�t�� . �71�

We note that in Eq. �71�, the Green’s function vanishes at
n=0, thus imposing the absorbing condition. From a biologi-
cal point of view, this propagator may represent a semi-
infinite chain with its end embedded into the extracellular
matrix �ECM� that serves as diffusion sink. The ECM is the
extracellular component of a tissue that performs several
functions such as providing support to the cells.

Figure 5 illustrates the time evolution of a calcium front
originating at cell 10 from the end of a semi-infinite chain,
calculated with Eqs. �70� and �71�. Again here, we have used

FIG. 4. Two semi-infinite chains of endothelial cells obtained by
severing the gap junctions between cells 0 and 1.
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a short-time approximation for the modified Bessel function.
The conditions of the calculations are: W=0.7, K1=−K2=1,
�t=0.01, uc=0.3. The initial condition corresponds to a delta
concentration located at n=10 of magnitude u�t=0�=0.55.

With the zero-flux conditions, the concentration at the end
cell �cell 1� remains at its maximum value of 1. The absorb-
ing boundary conditions establish a concentration profile be-
tween cell 2 and 1. The propagator given by Eq. �71� reduces
the concentration at cell 1 to a value significantly lower than
1 compatible with the large flux associated with the absorb-
ing conditions at n=0. The calcium concentration of cell 1
�at the end of the semi-infinite chain� is therefore clearly
dependent on the imposed boundary conditions. Away from
the end of the semi-infinite chain, the calcium concentration
front appears to be independent of the boundary conditions.
The Green’s function-based approach to solving the
diffusion-reaction problem with nonlinear reaction dynamics
is therefore providing a practical way to address problems
with a variety of boundary conditions.

To investigate further the effect of the boundary condi-
tions at the end of a semi-infinite chain of endothelial cells,
we contrast the effect on composition of the propagator for
the infinite chain of cells �Eq. �35�� and that with absorbing
boundary conditions given by Eq. �71�. For this we first con-
sider an initial condition um�t=0�= �uc+���m,1 where � is
some small positive number such that the embedding param-
eter at site m=1 takes the value 1. This may represent a
fluctuation of calcium concentration just beyond the critical
concentration. The composition at a subsequent time step, �t,
at the site of cell 1, calculated with both propagators, will
therefore be given by

u1
I ��t� = e−K2�te−2W�tI0�2W�t��uc + �� ,

u1
A��t� = e−K2�te−2W�t�I0�2W�t� − I2�2W�t���uc + �� .

�72�

In Eq. �72�, the upper scripts I and A refer to the infinite
chain and the semi-infinite one with absorbing boundary
conditions. The effect of the absorbing boundary condition
resides in the modified Bessel function, I2 which reduces the
rate of change of the calcium concentration at site 1 com-
pared to that of the infinite chain. The difference between the
two propagators will accumulate as one solves for the cal-
cium concentration iteratively over numerous time steps.
This is illustrated in Fig. 6 where we report the calcium
concentration at sites 1 and 2 when we apply the initial con-
dition um�t=0�=0.55�m,1 to the infinite chains and the semi-
infinite chain with absorbing boundary conditions. In this
figure we have taken W=0.6, K1=−K2=1, �t=0.01, uc=0.3.
These conditions correspond to propagation failure. We have
verified that one obtains similar results when the time step is
reduced by a factor of two, indicating that the Green’s
function-based algorithm has converged. One sees clearly in
the figure that the initial condition grows to a nonpropagating
profile in the case of the infinite chain with the maximum
centered on site 1. In contrast the calcium concentration at
site 1 and 2 in the semi-infinite chain decays in spite of the
initial concentration that exceeds the threshold, uc.

This original example illustrates the importance of the
architecture of the network of endothelial cells �e.g., infinite
chain versus semi-infinite chain with absorbing boundary
conditions� on the behavior of endothelial cells relative to
their Ca2+ dynamics and concentration. Cell 1 is saturated in
calcium in the infinite chain while it is depleted in the semi-
infinite structure.

In summary, we have shown that the calcium dynamics of
cells in the vicinity of the end of the semi-infinite chain is
strongly dependent on the boundary conditions. We have
demonstrated that the behavior of the semi-infinite chain
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FIG. 5. Closed circles are for the semi-infinite system with zero-
flux boundary conditions �propagator given by Eq. �70�� and the
open are for the semi-infinite chain with the absorbing conditions at
n=0 �propagator given by Eq. �71��. The inset illustrates the time
evolution of the concentration at the end site �site I� and its sym-
metrical counterpart with respect to the initial delta concentration
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with absorbing boundary conditions, a simple model of a
multicellular structure with an end in contact with the extra-
cellular matrix, suggests behavioral differentiation between
cells at the end and cells embedded within the chain.

IV. CONCLUSIONS

We have developed a Green’s function-based �i.e.,
propagator-based� approach to solving nonlinear reaction-
diffusion problems in networks of endothelial cells. The de-
coupling between the nonlinear reaction dynamics and the
linear diffusion makes our approach compatible with the in-
terface response theory �IRT� �16,38� which enables the cal-
culation of the diffusion Green’s function of nontrivial net-
works of cells. We demonstrated that our approach leads to
the propagation of calcium wave fronts in a chain of endot-
helial cells with Ca2+ nonlinear reaction dynamics and trans-
membrane diffusion. More specifically, we showed that our
model is in qualitative agreement with previously reported
observations of transition between propagation and propaga-
tion failure as the strength of the diffusion constant is varied
relative to the reaction constant. Our approach also enables
the derivation of the propagator for a semi-infinite chain of
cells with various boundary conditions. The primary result of
this study consists of demonstrating that the Ca2+ dynamics
of cells in the vicinity of the end of a semi-infinite chain with
absorbing boundary conditions differs from that of cells
deeply embedded in the chain. This behavior may be repre-
sentative of multicellular structures imbedded in an extracel-
lular matrix that serves as calcium diffusion sink. Although,
we focused on calcium waves, the formalism and results pre-
sented in this paper would apply to other type of signals
exhibiting a rather general nonlinear reaction dynamics with
positive rate below a threshold and negative rate beyond that

threshold. The findings predict that cells at the end of “dead-
ended” branches of a cellular network would sense and/or
respond differently to a variety of propagated signal wave.
For instance, in branching morphogenesis �40�, such as in the
generation of the bronchial tree of the lung or the expansion
of a vascular bed via angiogenesis, new branches arise from
existing network elements �i.e., bronchus tube or blood ves-
sel�. In blood vessels, for example, a newly forming branch
elongates behind a leading tip cell. In the mouse retina, ini-
tiation, and elongation of the neovessel is controlled by dif-
ferential VEGF signaling along the length of the branch �41�.
VEGF stimulates invasive behavior in the tip cell, but pro-
liferation in stalk cell of the new branch. Additionally, a sec-
ond molecular system initiated by the tip cell, the DLL4-
Notch signaling axis �42�, regulates stalk cell behavior such
that new tip cells �and therefore new branches� are not aber-
rantly formed. While both of these signaling axes �VEGF
and Notch� are externally applied and may not be recapitu-
lated in the Green’s function-based simulations, they high-
light the different responses occurring in the cells of the
forming branch. How these differences are established and
what stimuli impart these differences are not clear. Perhaps,
as implied by the theoretical work presented here, that
network-wide signals, such as Ca2+ waves, alter the cellular
milieu at the tip relative to elsewhere in the branch leading to
responsive capability. Further experiments, guided by the
predictions of the simulations, could provide important in-
sight into the likely complex dynamics of these cellular
structures.
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